Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Platelets as drivers of immunothrombosis in rheumatic diseases

Abstract

Platelets are central players in inflammatory and thrombotic responses that drive the onset and progression of rheumatic diseases. In particular, they regulate immunothrombosis, a defence mechanism in which the immune and blood-clotting systems cooperate to contain infections or vascular damage. Although immunothrombosis can help to preserve blood-vessel integrity and promote healing, it becomes harmful when exaggerated or chronic. In rheumatic diseases, such as systemic lupus erythematosus, systemic sclerosis and antiphospholipid syndrome, immunothrombosis contributes to persistent inflammation, abnormal blood-clot formation and long-term damage to the small blood vessels. It has also been implicated in maintaining autoimmune responses to autoantigens released by neutrophils. Platelets are among the first responders to vascular injury and influence the activity of immune cells, particularly neutrophils, by promoting the formation of neutrophil extracellular traps. Platelets express proteins such as P-selectin and the damage-associated molecule high-mobility group box 1 (HMGB1), which have distinct and non-redundant roles, both via direct interactions locally at sites of vascular damage and systemically via the release of extracellular vesicles. Understanding how platelets contribute to vascular inflammation and clotting in autoimmune settings elucidates disease mechanisms and might lead to the identification of new therapeutic targets.

Key points

  • Immunothrombosis integrates innate immune defence with coagulation, when dysregulated, it sustains maladaptive immune responses, driving inflammation, thrombotic complications and pathological tissue remodelling — highlighting its relevance as a key therapeutic target.

  • Platelets are central orchestrators of immunothrombosis, bridging vascular injury and immune activation in rheumatic diseases.

  • Although the hallmarks of immunothrombosis are shared across rheumatic diseases, the cellular mediators and initiating pathways vary according to disease-specific inflammatory contexts.

  • Pharmacological targeting of immunothrombosis holds promise not only for reducing autoimmune-driven cardiovascular risk but also for controlling chronic inflammation and limiting tissue damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acute microvascular injury drives the early interaction between activated platelets and neutrophils.
Fig. 2: Platelet-derived HMGB1 promotes neutrophil NET formation.
Fig. 3: Responses to vascular injury in healthy people and patients with systemic sclerosis.
Fig. 4: Mechanisms that link platelet activation and immunothrombosis in antiphospholipid syndrome.

Similar content being viewed by others

References

  1. Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 18, 666–682 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Olumuyiwa-Akeredolu, O. O., Page, M. J., Soma, P. & Pretorius, E. Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat. Rev. Rheumatol. 15, 237–248 (2019).

    Article  PubMed  Google Scholar 

  3. Scherlinger, M., Richez, C., Tsokos, G. C., Boilard, E. & Blanco, P. The role of platelets in immune-mediated inflammatory diseases. Nat. Rev. Immunol. 23, 495–510 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Nicolai, L., Pekayvaz, K. & Massberg, S. Platelets: orchestrators of immunity in host defense and beyond. Immunity 57, 957–972 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Boilard, E. & Bellio, M. Platelet extracellular vesicles and the secretory interactome join forces in health and disease. Immunol. Rev. 312, 38–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Boulaftali, Y., Massberg, S. & Nicolai, L. Platelets in vascular inflammation: fire-fighters or pyromaniacs? Curr Opin Hematol 32, 221–230.(2025).

    Article  PubMed  Google Scholar 

  7. Maugeri, N. et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci. Transl. Med. 10, eaao3089 (2018).

    Article  PubMed  Google Scholar 

  8. Manfredi, A. A. et al. Platelet phagocytosis via P-selectin glycoprotein ligand 1 and accumulation of microparticles in systemic sclerosis. Arthritis Rheumatol. 74, 318–328 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Linge, P., Fortin, P. R., Lood, C., Bengtsson, A. A. & Boilard, E. The non-haemostatic role of platelets in systemic lupus erythematosus. Nat. Rev. Rheumatol. 14, 195–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Melki, I. et al. Platelets release mitochondrial antigens in systemic lupus erythematosus. Sci. Transl. Med. 13, eaav5928 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Raschi, E., Borghi, M. O., Tedesco, F. & Meroni, P. L. Antiphospholipid syndrome pathogenesis in 2023: an update of new mechanisms or just a reconsideration of the old ones? Rheumatology 63, SI4–SI13 (2024).

    Article  PubMed  Google Scholar 

  12. Tektonidou, M. G. et al. Kidney whole-transcriptome profiling in primary antiphospholipid syndrome reveals complement, interferons and NETs-related gene expression. Rheumatology 63, 3184–3190 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Machlus, K. R. & Italiano, J. E. Jr The incredible journey: from megakaryocyte development to platelet formation. J. Cell Biol. 201, 785–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poscablo, D. M. et al. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell 187, 3090–3107.e21 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heazlewood, S. Y. et al. High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production. Nat. Commun. 14, 2099 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anjum, A. et al. Aging platelets shift their hemostatic properties to inflammatory functions. Blood 145, 1568–1582 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, X. et al. Highly efficient platelet generation in lung vasculature reproduced by microfluidics. Nat. Commun. 14, 4026 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lefrancais, E. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Puhm, F., Laroche, A. & Boilard, E. Diversity of megakaryocytes. Arterioscl. Thromb. Vasc. Biol. 43, 2088–2098 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Conrad, C. et al. Decoding functional hematopoietic progenitor cells in the adult human lung. Blood 145, 1975–1986 (2025).

    Article  CAS  PubMed  Google Scholar 

  21. Livada, A. C. et al. Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models. J. Clin. Invest. 134, e181111 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rossaint, J. et al. Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education. J. Exp. Med. 218, e20201353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pariser, D. N. et al. Lung megakaryocytes are immune modulatory cells. J. Clin. Invest. 131, e137377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu, J. et al. Lung megakaryocytes engulf inhaled airborne particles to promote intrapulmonary inflammation and extrapulmonary distribution. Nat. Commun. 15, 7396 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Valet, C. et al. Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. J. Clin. Invest. 132, e153920 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maher, T. M. Interstitial lung disease: a review. JAMA 331, 1655–1665 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Joy, G. M. et al. Prevalence, imaging patterns and risk factors of interstitial lung disease in connective tissue disease: a systematic review and meta-analysis. Eur. Respir. Rev. 32, 220210 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou, Y. et al. Megakaryocytes participate in the occurrence of bleomycin-induced pulmonary fibrosis. Cell Death Dis. 10, 648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nicolai, L. et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat. Commun. 11, 5778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Italiano, J. E. Jr et al. Mechanisms and implications of platelet discoid shape. Blood 101, 4789–4796 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Patel-Hett, S. et al. The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation. Blood 118, 1641–1652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gupta, S. et al. Hemostasis vs. homeostasis: platelets are essential for preserving vascular barrier function in the absence of injury or inflammation. Proc. Natl Acad. Sci. USA 117, 24316–24325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho-Tin-Noe, B., Le Chapelain, O. & Camerer, E. Platelets maintain vascular barrier function in the absence of injury or inflammation. J. Thromb. Haemost. 19, 1145–1148 (2021).

    Article  PubMed  Google Scholar 

  34. Koszalka, P. et al. Targeted disruption of cd73/ecto-5’-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ. Res. 95, 814–821 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Chaurasia, S. N., Kushwaha, G., Pandey, A. & Dash, D. Human platelets express functional ectonucleotidases that restrict platelet activation signaling. Biochem. Biophys. Res. Commun. 527, 104–109 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Thienel, M. et al. Immobility-associated thromboprotection is conserved across mammalian species from bear to human. Science 380, 178–187 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Vachon, L. et al. Platelet extracellular vesicles preserve lymphatic endothelial cell integrity and enhance lymphatic vessel function. Commun. Biol. 7, 975 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sixma, J. J. & de Groot, P. G. Regulation of platelet adhesion to the vessel wall. Ann. N. Y. Acad. Sci. 714, 190–199 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Monroe, D. M., Hoffman, M. & Roberts, H. R. Platelets and thrombin generation. Arterioscler. Thromb. Vasc. Biol. 22, 1381–1389 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Risman, R. A., Sen, M., Tutwiler, V. & Hudson, N. E. Deconstructing fibrin(ogen) structure. J. Thromb. Haemost. 23, 368–380 (2025).

    Article  PubMed  Google Scholar 

  41. Aggarwal, A., Jennings, C. L., Manning, E. & Cameron, S. J. Platelets at the vessel wall in non-thrombotic disease. Circ. Res. 132, 775–790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oshinowo, O., Azer, S. S., Lin, J. & Lam, W. A. Why platelet mechanotransduction matters for hemostasis and thrombosis. J. Thromb. Haemost. 21, 2339–2353 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Heijnen, H. & van der Sluijs, P. Platelet secretory behaviour: as diverse as the granules… or not? J. Thromb. Haemost. 13, 2141–2151 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Semple, J. W., Italiano, J. E. Jr & Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaiser, R., Escaig, R. & Nicolai, L. Hemostasis without clot formation: how platelets guard the vasculature in inflammation, infection, and malignancy. Blood 142, 1413–1425 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Marchesi, V. T. Some electron microscopic observations on interactions between leukocytes, platelets, and endothelial cells in acute inflammation. Ann. N. Y. Acad. Sci. 116, 774–788 (1964).

    Article  CAS  PubMed  Google Scholar 

  50. Gaertner, F. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 171, 1368–1382.e23 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Ho-Tin-Noe, B., Boulaftali, Y. & Camerer, E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood 131, 277–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Kaiser, R. et al. Mechanosensing via a GpIIb/Src/14-3-3ζ axis critically regulates platelet migration in vascular inflammation. Blood 141, 2973–2992 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Deppermann, C. et al. Platelet secretion is crucial to prevent bleeding in the ischemic brain but not in the inflamed skin or lung in mice. Blood 129, 1702–1706 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Piccardoni, P. et al. Platelet/polymorphonuclear leukocyte adhesion: a new role for SRC kinases in Mac-1 adhesive function triggered by P-selectin. Blood 98, 108–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Hidalgo, A. et al. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat. Med. 15, 384–391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zarbock, A., Ley, K., McEver, R. P. & Hidalgo, A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118, 6743–6751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lam, F. W., Burns, A. R., Smith, C. W. & Rumbaut, R. E. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1. Am. J. Physiol. Heart Circ. Physiol. 300, H468–H475 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Dib, P. R. B. et al. Innate immune receptors in platelets and platelet-leukocyte interactions. J. Leukoc. Biol. 108, 1157–1182 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Manfredi, A. A. et al. Anti-TNFɑ agents curb platelet activation in patients with rheumatoid arthritis. Ann. Rheum. Dis. 75, 1511–1520 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2023).

    Article  PubMed  Google Scholar 

  61. Hu, S. et al. The biological disease-modifying antirheumatic drugs and the risk of cardiovascular events: a systematic review and meta-analysis. Mediators Inflamm. 2021, 7712587 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liew, J. W. et al. The association of TNF inhibitor use with incident cardiovascular events in radiographic axial spondyloarthritis. Semin. Arthritis Rheum. 68, 152482 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stark, K. et al. Antibodies and complement are key drivers of thrombosis. Immunity 57, 2140–2156.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Maugeri, N., Rovere-Querini, P. & Manfredi, A. A. Disruption of a regulatory network consisting of neutrophils and platelets fosters persisting inflammation in rheumatic diseases. Front. Immunol. 7, 182 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Petzold, T. et al. Neutrophil “plucking” on megakaryocytes drives platelet production and boosts cardiovascular disease. Immunity 55, 2285–2299.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cunin, P. et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. eLife 8, e44031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Centurione, L. et al. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1low mice. Blood 104, 3573–3580 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Sims, M. C. et al. Novel manifestations of immune dysregulation and granule defects in gray platelet syndrome. Blood 136, 1956–1967 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Khatib-Massalha, E. et al. Defective neutrophil clearance in JAK2V617F myeloproliferative neoplasms drives myelofibrosis via immune checkpoint CD24. Blood https://doi.org/10.1182/blood.2024027455 (2025).

  71. De Giovanni, M. et al. GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell 185, 815–830.e19 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Maugeri, N. et al. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J. Thromb. Haemost. 4, 1323–1330 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Maugeri, N., de Gaetano, G., Barbanti, M., Donati, M. B. & Cerletti, C. Prevention of platelet-polymorphonuclear leukocyte interactions: new clues to the antithrombotic properties of parnaparin, a low molecular weight heparin. Haematologica 90, 833–839 (2005).

    CAS  PubMed  Google Scholar 

  74. Maugeri, N. & Manfredi, A. A. Tissue factor expressed by neutrophils: another piece in the vascular inflammation puzzle. Semin. Thromb. Hemost. 41, 728–736 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Rinder, H. M., Bonan, J. L., Rinder, C. S., Ault, K. A. & Smith, B. R. Dynamics of leukocyte-platelet adhesion in whole blood. Blood 78, 1730–1737 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Ramirez, G. A., Manfredi, A. A. & Maugeri, N. Misunderstandings between platelets and neutrophils build in chronic inflammation. Front. Immunol. 10, 2491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Joseph, J. E., Harrison, P., Mackie, I. J., Isenberg, D. A. & Machin, S. J. Increased circulating platelet-leucocyte complexes and platelet activation in patients with antiphospholipid syndrome, systemic lupus erythematosus and rheumatoid arthritis. Br. J. Haematol. 115, 451–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. NaveenKumar, S. K. et al. Low ectonucleotidase activity and increased neutrophil-platelet aggregates in patients with antiphospholipid syndrome. Blood 143, 1193–1197 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Ueno, K. et al. Circulating platelet-neutrophil aggregates play a significant role in Kawasaki disease. Circ. J. 79, 1349–1356 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Michelson, A. D., Barnard, M. R., Krueger, L. A., Valeri, C. R. & Furman, M. I. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 104, 1533–1537 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, Z. L., Bresette, C., Aidun, C. K. & Ku, D. N. SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Adv. 6, 2453–2465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Banka, A. L. et al. Cargo-free particles divert neutrophil-platelet aggregates to reduce thromboinflammation. Nat. Commun. 14, 2462 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maugeri, N. et al. Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and β2 integrin-dependent cell clearance program. Blood 113, 5254–5265 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Maugeri, N. et al. Clearance of circulating activated platelets in polycythemia vera and essential thrombocythemia. Blood 118, 3359–3366 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Senchenkova, E. Y. et al. Novel role for the AnxA1-Fpr2/ALX signaling axis as a key regulator of platelet function to promote resolution of inflammation. Circulation 140, 319–335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Manfredi, A. A., Covino, C., Rovere-Querini, P. & Maugeri, N. Instructive influences of phagocytic clearance of dying cells on neutrophil extracellular trap generation. Clin. Exp. Immunol. 179, 24–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Manfredi, A. A., Ramirez, G. A., Rovere-Querini, P. & Maugeri, N. The neutrophil’s choice: phagocytose vs make neutrophil extracellular traps. Front. Immunol. 9, 288 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. McDonald, B., Urrutia, R., Yipp, B. G., Jenne, C. N. & Kubes, P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12, 324–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Keulen, G. M., Huckriede, J., Wichapong, K. & Nicolaes, G. A. F. Histone activities in the extracellular environment: regulation and prothrombotic implications. Curr. Opin. Hematol. 31, 230–237 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McDonald, B. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129, 1357–1367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ngo, A. T. et al. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 8, e171054 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kaiser, R., Gold, C. & Stark, K. Recent advances in immunothrombosis and thromboinflammation. Thromb Haemost https://doi.org/10.1055/a-2523-1821 (2025).

  93. Maugeri, N. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 12, 2074–2088 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 125, 4638–4654 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Stark, K. et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 128, 2435–2449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maugeri, N. & Manfredi, A. A. Platelet HMGB1 steers intravascular immunity and thrombosis. J. Thromb. Haemost. 22, 3336–3345 (2024).

    Article  CAS  PubMed  Google Scholar 

  97. von Bruhl, M. L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209, 819–835 (2012).

    Article  Google Scholar 

  98. Tadie, J. M., Bae, H. B., Banerjee, S., Zmijewski, J. W. & Abraham, E. Differential activation of RAGE by HMGB1 modulates neutrophil-associated NADPH oxidase activity and bacterial killing. Am. J. Physiol. Cell Physiol. 302, C249–C256 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Josefsson, E. C. Platelet intrinsic apoptosis. Thromb. Res. 231, 206–213 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Denorme, F. & Campbell, R. A. Procoagulant platelets: novel players in thromboinflammation. Am. J. Physiol. Cell Physiol. 323, C951–C958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Puhm, F., Boilard, E. & Machlus, K. R. Platelet extracellular vesicles: beyond the blood. Arterioscler. Thromb. Vasc. Biol. 41, 87–96 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Hottz, E. D. et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 122, 3405–3414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cornelius, D. C. et al. NLRP3 inflammasome inhibition attenuates sepsis-induced platelet activation and prevents multi-organ injury in cecal-ligation puncture. PLoS One 15, e0234039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Marongiu, F., Ruberto, M. F., Marongiu, S., Matucci Cerinic, M. & Barcellona, D. A journey to vasculopathy in systemic sclerosis: focus on haemostasis and thrombosis. Clin. Exp. Med. 23, 4057–4064 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Beretta, L. et al. Genome-wide whole blood transcriptome profiling in a large European cohort of systemic sclerosis patients. Ann. Rheum. Dis. 79, 1218–1226 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, S. et al. Integrative transcriptomic analysis of peripheral blood monocytes in systemic sclerosis and shared pathogenic pathways in autoimmune diseases. Arch. Med. Res. 56, 103072 (2025).

    Article  CAS  PubMed  Google Scholar 

  107. Gonzalez-Tajuelo, R. et al. Spontaneous pulmonary hypertension associated with systemic sclerosis in P-selectin glycoprotein ligand 1-deficient mice. Arthritis Rheumatol. 72, 477–487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gonzalez-Sanchez, E. et al. Targeted nanotherapy with everolimus reduces inflammation and fibrosis in scleroderma-related interstitial lung disease developed by PSGL-1 deficient mice. Br. J. Pharmacol. 179, 4534–4548 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Maugeri, N. et al. Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity 45, 584–587 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Maugeri, N. et al. Oxidative stress elicits platelet/leukocyte inflammatory interactions via HMGB1: a candidate for microvessel injury in sytemic sclerosis. Antioxid. Redox Signal. 20, 1060–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Maugeri, N. et al. Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19. J. Thromb. Haemost. 20, 434–448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mouawad, J. E. et al. Role of extracellular vesicles in the propagation of lung fibrosis in systemic sclerosis. Arthritis Rheumatol. 75, 2228–2239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bello, N., Meyers, K. J., Workman, J., Hartley, L. & McMahon, M. Cardiovascular events and risk in patients with systemic lupus erythematosus: systematic literature review and meta-analysis. Lupus 32, 325–341 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Scherlinger, M. et al. Systemic lupus erythematosus and systemic sclerosis: all roads lead to platelets. Autoimmun. Rev. 17, 625–635 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Nhek, S. et al. Activated platelets induce endothelial cell activation via an interleukin-1β pathway in systemic lupus erythematosus. Arterioscler. Thromb. Vasc. Biol. 37, 707–716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cornwell, M. G. et al. Modeling of clinical phenotypes in systemic lupus erythematosus based on the platelet transcriptome and FCGR2a genotype. J. Transl. Med. 21, 247 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaplan, M. J. Exploring the role of neutrophil extracellular traps in systemic lupus erythematosus: a clinical case study and comprehensive review. Arthritis Rheumatol. 77, 247–252 (2025).

    Article  PubMed  Google Scholar 

  118. Tay, S. H. et al. Platelet TLR7 is essential for the formation of platelet-neutrophil complexes and low-density neutrophils in lupus nephritis. Rheumatology 63, 551–562 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Munoz-Callejas, A. et al. Low P-selectin glycoprotein ligand-1 expression in neutrophils associates with disease activity and deregulated NET formation in systemic lupus erythematosus. Int. J. Mol. Sci. 24, 6144 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Scherlinger, M. et al. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci. Transl. Med. 13, eabi4994 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Melki, I. et al. FcγRIIA expression accelerates nephritis and increases platelet activation in systemic lupus erythematosus. Blood 136, 2933–2945 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lood, C. et al. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 116, 1951–1957 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. San Antonio, E. et al. PSGL-1, ADAM8, and selectins as potential biomarkers in the diagnostic process of systemic lupus erythematosus and systemic sclerosis: an observational study. Front. Immunol. 15, 1403104 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ramirez, G. A. et al. Histone-specific CD4+ T cell plasticity in active and quiescent systemic lupus erythematosus. Arthritis Rheumatol. 76, 739–750 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Duffau, P. et al. Platelet CD154 potentiates interferon-ɑ secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci. Transl. Med. 2, 47ra63 (2010).

    Article  PubMed  Google Scholar 

  126. El Bannoudi, H. et al. Platelet LGALS3BP as a mediator of myeloid inflammation in systemic lupus erythematosus. Arthritis Rheumatol. 75, 711–722 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kumari, P., Russo, A. J., Shivcharan, S. & Rathinam, V. A. AIM2 in health and disease: inflammasome and beyond. Immunol. Rev. 297, 83–95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Antiochos, B. et al. The DNA sensors AIM2 and IFI16 are SLE autoantigens that bind neutrophil extracellular traps. Elife 11, e72103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dong, M. & Fitzgerald, K. A. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat. Immunol. 25, 2001–2014 (2024).

    Article  CAS  PubMed  Google Scholar 

  132. Whittall-Garcia, L. P. et al. Circulating neutrophil extracellular trap remnants as a biomarker to predict outcomes in lupus nephritis. Lupus Sci. Med. 11, e001038 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Meng, H. et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody-mediated venous thrombosis. Arthritis Rheumatol. 69, 655–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grossi, C. et al. Beta 2 glycoprotein I and neutrophil extracellular traps: potential bridge between innate and adaptive immunity in anti-phospholipid syndrome. Front. Immunol. 13, 1076167 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Knight, J. S. & Erkan, D. Rethinking antiphospholipid syndrome to guide future management and research. Nat. Rev. Rheumatol. 20, 377–388 (2024).

    Article  PubMed  Google Scholar 

  136. Yalavarthi, S. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 67, 2990–3003 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Knight, J. S. & Kanthi, Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin. Immunopathol. 44, 347–362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tohidi-Esfahani, I., Mittal, P., Isenberg, D., Cohen, H. & Efthymiou, M. Platelets and thrombotic antiphospholipid syndrome. J. Clin. Med. 13, 741 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hanata, N. & Kaplan, M. J. The role of neutrophil extracellular traps in inflammatory rheumatic diseases. Curr. Opin. Rheumatol. 37, 64–71 (2025).

    Article  CAS  PubMed  Google Scholar 

  140. Shiratori-Aso, S. & Nakazawa, D. The involvement of NETs in ANCA-associated vasculitis. Front. Immunol. 14, 1261151 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Matsumoto, K., Yasuoka, H., Yoshimoto, K., Suzuki, K. & Takeuchi, T. Platelet CXCL4 mediates neutrophil extracellular traps formation in ANCA-associated vasculitis. Sci. Rep. 11, 222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nishibata, Y. et al. Cathepsin C inhibition reduces neutrophil serine protease activity and improves activated neutrophil-mediated disorders. Nat. Commun. 15, 6519 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Michailidou, D. et al. Mitochondrial-mediated inflammation and platelet activation in giant cell arteritis. Clin. Immunol. 255, 109746 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Michailidou, D. et al. Neutrophil extracellular trap formation in anti-neutrophil cytoplasmic antibody-associated and large-vessel vasculitis. Clin. Immunol. 249, 109274 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ibrahim, H. E. & De Bari, C. Giant cell arteritis: update on pathogenesis and clinical implications. Curr. Opin. Rheumatol. 37, 72–79 (2025).

    Article  CAS  PubMed  Google Scholar 

  146. Palamidas, D. A. et al. Neutrophil extracellular traps in giant cell arteritis biopsies: presentation, localization and co-expression with inflammatory cytokines. Rheumatology 61, 1639–1644 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 593–601 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Jiang, M., Wu, W., Xia, Y., Wang, X. & Liang, J. Platelet-derived extracellular vesicles promote endothelial dysfunction in sepsis by enhancing neutrophil extracellular traps. BMC Immunol. 24, 22 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cloutier, N. et al. Platelets can enhance vascular permeability. Blood 120, 1334–1343 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Tessandier, N. et al. Platelets disseminate extracellular vesicles in lymph in rheumatoid arthritis. Arterioscler. Thromb. Vasc. Biol. 40, 929–942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Carmona-Rivera, C. et al. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight 5, e139388 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. O’Neil, L. J. et al. Neutrophil extracellular trap-associated carbamylation and histones trigger osteoclast formation in rheumatoid arthritis. Ann. Rheum. Dis. 82, 630–638 (2023).

    Article  PubMed  Google Scholar 

  154. Xu, M. et al. Platelets derived citrullinated proteins and microparticles are potential autoantibodies ACPA targets in RA patients. Front. Immunol. 14, 1084283 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cross, A. L. et al. Circulating neutrophil extracellular trap-forming neutrophils in rheumatoid arthritis exacerbation are majority dual endothelin-1/signal peptide receptor+ subtype. Clin. Exp. Immunol. 218, 163–168 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sowa, M. A. et al. Inhibiting the P2Y12 receptor in megakaryocytes and platelets suppresses interferon-associated responses. JACC Basic. Transl. Sci. 9, 1126–1140 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Garshick, M. S., Rosenthal, P. B., Luttrell-Williams, E., Cronstein, B. N. & Berger, J. S. Ticagrelor added to methotrexate improves rheumatoid arthritis disease severity. Rheumatology 60, 5473–5475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Manfredi, A. A., Rovere-Querini, P., D’Angelo, A. & Maugeri, N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol. Res. 123, 146–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Zalghout, S. & Martinod, K. Therapeutic potential of DNases in immunothrombosis: promising succor or uncertain future? J. Thromb. Haemost. 23, 760–778 (2025).

    Article  PubMed  Google Scholar 

  160. Polzin, A. et al. Long-term FXa inhibition attenuates thromboinflammation after acute myocardial infarction and stroke by platelet proteome alteration. J. Thromb. Haemost. 23, 668–683 (2025).

    Article  PubMed  Google Scholar 

  161. Schneckmann, R. et al. Rivaroxaban attenuates neutrophil maturation in the bone marrow niche. Basic. Res. Cardiol. 118, 31 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kindberg, K. M. et al. Neutrophil extracellular traps in ST-segment elevation myocardial infarction: reduced by tocilizumab and associated with infarct size. JACC Adv. 3, 101193 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Yeung, A. K., Villacorta-Martin, C., Hon, S., Rock, J. R. & Murphy, G. J. Lung megakaryocytes display distinct transcriptional and phenotypic properties. Blood Adv. 4, 6204–6217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Asquith, N. L. et al. The bone marrow is the primary site of thrombopoiesis. Blood 143, 272–278 (2024).

    Article  CAS  PubMed  Google Scholar 

  165. Middleton, E. A., Weyrich, A. S. & Zimmerman, G. A. Platelets in pulmonary immune responses and inflammatory lung diseases. Physiol. Rev. 96, 1211–1259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Stone, A. P., Nikols, E., Freire, D. & Machlus, K. R. The pathobiology of platelet and megakaryocyte extracellular vesicles: A (c)lot has changed. J. Thromb. Haemost. 20, 1550–1558 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided to their laboratory by the European Union — Next Generation EU — NRRP M6C2 — Investment 2.1, “Enhancement and strengthening of biomedical research in the NHS”, Project: PNRR-MR1-2022-12376638. This Review is a product of the knowledge and research environment fostered by this support.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Angelo A. Manfredi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Jason S. Knight, who co-reviewed with Somanathapura K.; Naveen Kumar, Marko Radic and Eric Boilard, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

α-granules

Platelet granules that contain haemostatic proteins (such as fibrinogen and von Willebrand Factor), growth factors, angiogenic signals and adhesion molecules (such as P-selectin).

αIIbβ3 integrin

Also known as GPIIb/GPIIIa. Mediates platelet aggregation by binding fibrinogen and contributing to clot formation.

Dense granules

Store small molecules such as ADP, ATP, serotonin and calcium ions, which contribute to platelet aggregation and activation.

Emperipolesis

A cellular process in which one living cell (such as a neutrophil) actively enters and resides within another cell (such as a megakaryocyte) without being destroyed. In the context of haematopoiesis, emperipolesis contributes to platelet heterogeneity by enabling the transfer of membrane components from neutrophils to developing platelets.

GPIb–IX–V complex

A mechanoreceptor that interacts with von Willebrand Factor on the subendothelial matrix during platelet adhesion.

High-mobility group box 1

(HMGB1). A damage-associated molecular pattern released from platelets that amplifies inflammation and neutrophil activation in immunothrombosis.

Immunothrombosis

A physiological process in which components of the innate immune system and coagulation system, including platelets and neutrophils, cooperate to form intravascular microthrombi, which help to contain pathogens and limit their systemic spread.

Iterative fission events

A stepwise process by which megakaryocytes produce platelets, involving the repeated extension and fragmentation of proplatelet projections into the bloodstream to generate mature platelets.

ST-segment elevation myocardial infarction

(STEMI). A type of acute myocardial infarction characterized by persistent ST-segment elevation on electrocardiography, indicating complete or prolonged occlusion of a coronary artery.

Thrombocytopoiesis

The biological process by which platelets are produced from megakaryocytes, primarily in the bone marrow but also in other tissues such as the spleen and lungs during stress or inflammation.

Thromboinflammation

A pathological state that results from dysregulated or excessive immunothrombosis, in which inflammation and thrombosis amplify one another, leading to tissue damage, vascular dysfunction and organ injury.

Thromboxane A2

Promotes platelet activation, aggregation and vasoconstriction.

Von Willebrand factor

(vWF). Binds GPIb to mediate platelet adhesion under shear stress.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maugeri, N., Manfredi, A.A. Platelets as drivers of immunothrombosis in rheumatic diseases. Nat Rev Rheumatol 21, 478–493 (2025). https://doi.org/10.1038/s41584-025-01276-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01276-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing