Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pain in systemic lupus erythematosus: emerging insights and paradigms

Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by protean clinical manifestations that are associated with immune system dysregulation. Of these manifestations, pain and pain-related symptoms such as fatigue, mood disturbance and cognitive impairment are the most common features reported by patients and represent important determinants of quality of life. Nevertheless, the relationship of these symptoms to underlying immune mechanisms is unclear. To advance scientific study and patient-centric care, this Review will consider the origin of pain in SLE and the clinical ramifications. Although many of the inflammatory aspects of SLE, including arthritis, serositis and skin disease, can be associated with nociceptive pain, patients frequently report pain that seems out of proportion to the degree of inflammation. In many of these patients, pain might reflect central and peripheral nervous system sensitization that mediates nociplasticity, a change in brain processing; with nociplasticity, changes in neuronal function and brain connections can amplify the experience of pain and pain-related symptoms. The close interplay between the immune and the nervous systems means that widespread pain and the associated symptoms can be considered as essential features of SLE; these features might share pathogenic mechanisms with other autoimmune diseases and nociplastic pain syndromes such as fibromyalgia.

Key points

  • Symptoms of systemic lupus erythematosus (SLE) are protean but differ in their relationship to inflammation and autoreactivity as determined by current biomarkers.

  • Pain and pain-associated symptoms such as fatigue, mood changes and cognitive impairment are important determinants of quality of life in patients with SLE.

  • Many aspects of the patient response to disease, including interoception, sickness behaviour and nociplasticity, complicate the assessment of pain in patients with SLE.

  • Pain and pain-associated symptoms might reflect immune-mediated peripheral and central nervous system sensitization that results in nociplasticity.

  • The term lupus-associated nociplasticity might help to explain many of the symptoms identified as most concerning by patients living with SLE.

  • Managing pain in SLE requires a multimodal approach that uses pharmacological and non-pharmacological interventions directed at both pain and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuroinflammation, central sensitization and neuroimmune interactions in systemic lupus erythematosus and chronic pain.
Fig. 2: Immune system interactions with nociceptive neurons that underly pain in systemic lupus erythematosus.

Similar content being viewed by others

References

  1. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2, 16039 (2016).

    Article  PubMed  Google Scholar 

  2. Barr, S. G., Zonana-Nacach, A., Magder, L. S. & Petri, M. Patterns of disease activity in systemic lupus erythematosus. Arthritis Rheum. 42, 2682–2688 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Piga, M. et al. Clinical patterns of disease: from early systemic lupus erythematosus to late-onset disease. Best practice & research. Clin. Rheumatol. 37, 101938 (2023).

    Google Scholar 

  4. Ruperto, N. et al. International consensus for a definition of disease flare in lupus. Lupus 20, 453–462 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Pisetsky, D. S., Clowse, M. E. B., Criscione-Schreiber, L. G. & Rogers, J. L. A novel system to categorize the symptoms of systemic lupus erythematosus. Arthritis Care Res. 71, 735–741 (2019).

    Article  Google Scholar 

  6. Pisetsky, D. S. et al. Nociplasticity: a proposed concept to understand the symptomatology of systemic lupus erythematosus. Arthritis Rheumatol. 77, 966–970 (2025).

    Article  PubMed  Google Scholar 

  7. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Pisetsky, D. S. & Lipsky, P. E. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 16, 565–579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pisetsky, D. S. Anti-DNA antibodies-quintessential biomarkers of SLE. Nat. Rev. Rheumatol. 12, 102–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Mustelin, T., Lood, C. & Giltiay, N. V. Sources of pathogenic nucleic acids in systemic lupus erythematosus. Front. Immunol. 10, 1028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soni, C. & Reizis, B. Self-DNA at the epicenter of SLE: immunogenic forms, regulation, and effects. Front. Immunol. 10, 1601 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rönnblom, L. & Leonard, D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci. Med. 6, e000270 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vallin, H., Perers, A., Alm, G. V. & Rönnblom, L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J. Immunol. 163, 6306–6313 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Barrat, F. J., Elkon, K. B. & Fitzgerald, K. A. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu. Rev. Med. 67, 323–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Venner, A. A. et al. Comparison of three anti-dsDNA assays: performance and correlation with systemic lupus erythematosus disease activity. Clin. Biochem. 46, 317–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Weinstein, A., Alexander, R. V. & Zack, D. J. A review of complement activation in SLE. Curr. Rheumatol. Rep. 23, 16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rogers, J. L. et al. Evaluation of Type 2 SLE symptoms in patients with a range of lupus nephritis activity. Clin. Rheumatol. 43, 1319–1326 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alarcón, G. S. et al. Systemic lupus erythematosus in three ethnic groups. XI. Sources of discrepancy in perception of disease activity: a comparison of physician and patient visual analog scale scores. Arthritis Rheum. 47, 408–413 (2002).

    Article  PubMed  Google Scholar 

  19. Golder, V. et al. Discordance of patient and physician health status concerns in systemic lupus erythematosus. Lupus 27, 501–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Todd, A. J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11, 823–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fillingim, R. B. Individual differences in pain: understanding the mosaic that makes pain personal. Pain 158, S11–S18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gilam, G., Gross, J. J., Wager, T. D., Keefe, F. J. & Mackey, S. C. What is the relationship between pain and emotion? Bridging constructs and communities. Neuron 107, 17–21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pinto, A. M. et al. Neurophysiological and psychosocial mechanisms of fibromyalgia: a comprehensive review and call for an integrative model. Neurosci. Biobehav. Rev. 151, 105235 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Porreca, F., Ossipov, M. H. & Gebhart, G. F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C. et al. Neural circuit basis of placebo pain relief. Nature 632, 1092–1100 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ji, R. R., Xu, Z. Z. & Gao, Y. J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug. Discov. 13, 533–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Donnelly, C. R., Chen, O. & Ji, R. R. How do sensory neurons sense danger signals? Trends Neurosci. 43, 822–838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woolf, C. J. & Costigan, M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc. Natl Acad. Sci. USA 96, 7723–7730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gold, M. S. & Gebhart, G. F. Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji, R. R., Nackley, A., Huh, Y., Terrando, N. & Maixner, W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129, 343–366 (2018).

    Article  PubMed  Google Scholar 

  32. Fanouriakis, A. et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 83, 15–29 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Grossman, J. M. Lupus arthritis. Best. Pract. Res. Clin. Rheumatol. 23, 495–506 (2009).

    Article  PubMed  Google Scholar 

  34. Di Matteo, A., De Angelis, R., Cipolletta, E., Filippucci, E. & Grassi, W. Systemic lupus erythematosus arthropathy: the sonographic perspective. Lupus 27, 794–801 (2018).

    Article  PubMed  Google Scholar 

  35. Shumilova, A. & Vital, E. M. Musculoskeletal manifestations of systemic lupus erythematosus. Best. Pract. Res. Clin. Rheumatol. 37, 101859 (2023).

    Article  PubMed  Google Scholar 

  36. Corzo Garcia, P. et al. Musculoskeletal involvement in systemic lupus erythematosus: a contrast-enhanced magnetic resonance imaging study in 107 subjects. Rheumatology 63, 423–429 (2024).

    Article  PubMed  Google Scholar 

  37. Steiner, G. & Toes, R. E. M. Autoantibodies in rheumatoid arthritis - rheumatoid factor, anticitrullinated protein antibodies and beyond. Curr. Opin. Rheumatol. 36, 217–224 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trouw, L. A., Rispens, T. & Toes, R. E. M. Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 331–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Singh, J. et al. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ. 30, 861–875 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Antonini, L., Le Mauff, B., Marcelli, C., Aouba, A. & de Boysson, H. Rhupus: a systematic literature review. Autoimmun. Rev. 19, 102612 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Frade-Sosa, B. et al. A comparative study on clinical and serological characteristics between patients with rhupus and those with systemic lupus erythematosus and rheumatoid arthritis. Lupus 29, 1216–1226 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Jurczak, A. et al. Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody. Brain Behav. Immun. 113, 212–227 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Wigerblad, G. et al. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann. Rheum. Dis. 75, 730–738 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Krishnamurthy, A. et al. Combination of two monoclonal anti-citrullinated protein antibodies induced tenosynovitis, pain, and bone loss in mice in a peptidyl arginine deiminase-4-dependent manner. Arthritis Rheumatol. 75, 164–170 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Raposo, B. et al. Divergent and dominant anti-inflammatory effects of patient-derived anticitrullinated protein antibodies (ACPA) in arthritis development. Ann. Rheum. Dis. 82, 724–726 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. He, Y. et al. A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis. Nat. Commun. 14, 691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lacagnina, M. J. et al. B cells drive neuropathic pain-related behaviors in mice through IgG-Fc gamma receptor signaling. Sci. Transl. Med. 16, eadj1277 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Bai, Z. et al. Synovial fibroblast gene expression is associated with sensory nerve growth and pain in rheumatoid arthritis. Sci. Transl. Med. 16, eadk3506 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simon, N. et al. Characterisation of the antinociceptive effect of baricitinib in the collagen antibody-induced arthritis mouse model. Ann. Rheum. Dis. 84, 421–434 (2025).

    Article  PubMed  Google Scholar 

  50. Hubbard, E. L. et al. Analysis of gene expression from systemic lupus erythematosus synovium reveals myeloid cell-driven pathogenesis of lupus arthritis. Sci. Rep. 10, 17361 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nzeusseu Toukap, A. et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 56, 1579–1588 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Kasturi, S. & Goodman, S. Current perspectives on arthroplasty in systemic lupus erythematosus: rates, outcomes, and adverse events. Curr. Rheumatol. Rep. 18, 59 (2016).

    Article  PubMed  Google Scholar 

  53. Long, Y. et al. Risk of osteonecrosis in systemic lupus erythematosus: an 11-year Chinese single-center cohort study. Lupus 30, 1459–1468 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Dhital, R. et al. Trends in avascular necrosis and related arthroplasties in hospitalized patients with systemic lupus erythematosus and rheumatoid arthritis. Semin. Arthritis Rheum. 66, 152444 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Motta, F., Timilsina, S., Gershwin, M. E. & Selmi, C. Steroid-induced osteonecrosis. J. Transl. Autoimmun. 5, 100168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaplan, C. M. et al. Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms. Nat. Rev. Neurol. 20, 347–363 (2024).

    Article  PubMed  Google Scholar 

  57. Fitzcharles, M. A. et al. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet 397, 2098–2110 (2021).

    Article  PubMed  Google Scholar 

  58. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).

    Article  PubMed  Google Scholar 

  59. Kosek, E. et al. Chronic nociplastic pain affecting the musculoskeletal system: clinical criteria and grading system. Pain 162, 2629–2634 (2021).

    Article  PubMed  Google Scholar 

  60. Rafferty, C. & Ward, J. Fibromyalgia is linked to increased subjective sensory sensitivity across multiple senses. Perception 53, 276–286 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Staud, R., Godfrey, M. M. & Robinson, M. E. Fibromyalgia patients are not only hypersensitive to painful stimuli but also to acoustic stimuli. J. Pain 22, 914–925 (2021).

    Article  PubMed  Google Scholar 

  62. López-Solà, M. et al. Towards a neurophysiological signature for fibromyalgia. Pain 158, 34–47 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Middleton, G. D., McFarlin, J. E. & Lipsky, P. E. The prevalence and clinical impact of fibromyalgia in systemic lupus erythematosus. Arthritis Rheum. 37, 1181–1188 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Mistry, S., Daoud, A., Magrey, M. N. & Pamuk, O. N. The frequency of fibromyalgia in patients with systemic lupus erythematosus and associated factors: a systematic review and meta-analysis. Clin. Rheumatol. 44, 9–21 (2025).

    Article  PubMed  Google Scholar 

  65. Staud, R. Are patients with systemic lupus erythematosus at increased risk for fibromyalgia? Curr. Rheumatol. Rep. 8, 430–435 (2006).

    Article  PubMed  Google Scholar 

  66. Wolfe, F., Michaud, K., Li, T. & Katz, R. S. Chronic conditions and health problems in rheumatic diseases: comparisons with rheumatoid arthritis, noninflammatory rheumatic disorders, systemic lupus erythematosus, and fibromyalgia. J. Rheumatol. 37, 305–315 (2010).

    Article  PubMed  Google Scholar 

  67. Maixner, W., Fillingim, R. B., Williams, D. A., Smith, S. B. & Slade, G. D. Overlapping chronic pain conditions: implications for diagnosis and classification. J. Pain 17, T93–T107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Murphy, A. E., Minhas, D., Clauw, D. J. & Lee, Y. C. Identifying and managing nociplastic pain in individuals with rheumatic diseases: a narrative review. Arthritis Care Res. 75, 2215–2222 (2023).

    Article  Google Scholar 

  69. Meng, C. F. et al. Characterizing nonarticular pain at early rheumatoid arthritis diagnosis: evolution over the first year of treatment and impact on remission in a prospective real-world early rheumatoid arthritis cohort. Arthritis Rheumatol. 77, 405–413 (2025).

    Article  CAS  PubMed  Google Scholar 

  70. Schrepf, A. et al. Top down or bottom up? An observational investigation of improvement in fibromyalgia symptoms following hip and knee replacement. Rheumatology 59, 594–602 (2020).

    Article  PubMed  Google Scholar 

  71. Gnall, K. E. et al. Changes in interoception in mind-body therapies for chronic pain: a systematic review and meta-analysis. Int. J. Behav. Med. 31, 833–847 (2024).

    Article  PubMed  Google Scholar 

  72. Todd, J. et al. Heightened interoception in adults with fibromyalgia. Biol. Psychol. 186, 108761 (2024).

    Article  PubMed  Google Scholar 

  73. Valenzuela-Moguillansky, C., Reyes-Reyes, A. & Gaete, M. I. Exteroceptive and interoceptive body-self awareness in fibromyalgia patients. Front. Hum. Neurosci. 11, 117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fillingim, R. B. et al. Psychological factors associated with development of TMD: the OPPERA prospective cohort study. J. Pain 14, T75–T90 (2013).

    Article  PubMed  Google Scholar 

  75. Falasinnu, T. et al. The problem of pain in rheumatology: clinical profiles associated with concomitant diagnoses with chronic overlapping pain conditions. ACR Open. Rheumatol. 4, 890–896 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 42, 599–608 (1999).

  77. Oomatia, A., Fang, H., Petri, M. & Birnbaum, J. Peripheral neuropathies in systemic lupus erythematosus: clinical features, disease associations, and immunologic characteristics evaluated over a twenty-five-year study period. Arthritis Rheumatol. 66, 1000–1009 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Galosi, E. et al. Clinical, histologic, and immunologic signatures of small fiber neuropathy in systemic lupus erythematosus. J. Peripher. Nerv. Syst. 29, 315–328 (2024).

    Article  PubMed  Google Scholar 

  79. Florica, B. et al. Peripheral neuropathy in patients with systemic lupus erythematosus. Semin. Arthritis Rheum. 41, 203–211 (2011).

    Article  PubMed  Google Scholar 

  80. Lauria, G. et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J. Peripher. Nerv. Syst. 15, 202–207 (2010).

    Article  PubMed  Google Scholar 

  81. Lukashenko, M. V. et al. Corneal confocal microscopy in the diagnosis of small fiber neuropathy: faster, easier, and more efficient than skin biopsy? Pathophysiology 29, 1–8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Grayston, R. et al. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: implications for a new paradigm in fibromyalgia etiopathogenesis. Semin. Arthritis Rheum. 48, 933–940 (2019).

    Article  PubMed  Google Scholar 

  83. Dumolard, A. et al. Central sensitization and small-fiber neuropathy are associated in patients with fibromyalgia. Clin. J. Pain 39, 8–14 (2023).

    Article  PubMed  Google Scholar 

  84. Jänsch, S. et al. Distinguishing fibromyalgia syndrome from small fiber neuropathy: a clinical guide. Pain. Rep. 9, e1136 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hoeijmakers, J. G. J., Merkies, I. S. J. & Faber, C. G. Small fiber neuropathies: expanding their etiologies. Curr. Opin. Neurol. 35, 545–552 (2022).

    Article  PubMed  Google Scholar 

  86. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kelley, K. W. et al. Cytokine-induced sickness behavior. Brain, Behav., Immun. 17, S112–S118 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Sleijfer, S., Bannink, M., Van Gool, A. R., Kruit, W. H. & Stoter, G. Side effects of interferon-ɑ therapy. Pharm. World Sci. 27, 423–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Gimeno-Torres, L. et al. Prevalence and risk factors for serositis in patients with systemic lupus erythematosus: a case-control study. Lupus 30, 2095–2101 (2021).

    Article  PubMed  Google Scholar 

  90. Louthrenoo, W. et al. Clinical features, imaging findings, and outcomes of acute abdominal pain in systemic lupus erythematosus: comparing mesenteric vasculitis, non-mesenteric vasculitis, and surgical conditions. Clin. Rheumatol. 43, 3699–3712 (2024).

    Article  PubMed  Google Scholar 

  91. Feld, J., Tayer-Shifman, O. E., Su, J., Anderson, M. & Touma, Z. Primary headache in SLE -systematic review and meta-analysis. Semin. Arthritis Rheum. 69, 152566 (2024).

    Article  PubMed  Google Scholar 

  92. Hanly, J. G. et al. Headache in systemic lupus erythematosus: results from a prospective, international inception cohort study. Arthritis Rheum. 65, 2887–2897 (2013).

    Article  PubMed  Google Scholar 

  93. Yan, D. et al. Cutaneous lupus concerns from the patient perspective: a qualitative study. Lupus Sci. Med. 8, e000444 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Stull, C., Sprow, G. & Werth, V. P. Cutaneous involvement in systemic lupus erythematosus: a review for the rheumatologist. J. Rheumatol. 50, 27–35 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, H. J. Pruritus in autoimmune connective tissue diseases. Ann. Transl. Med. 9, 441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Samotij, D. et al. Clinical characteristics of itch in cutaneous lupus erythematosus: a prospective, multicenter, multinational, cross-sectional study. Lupus 30, 1385–1393 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Wolfe, F. Fibromyalgianess. Arthritis Rheum. 61, 715–716 (2009).

    Article  PubMed  Google Scholar 

  98. Wolfe, F. et al. Fibromyalgia, systemic lupus erythematosus (SLE), and evaluation of SLE activity. J. Rheumatol. 36, 82–88 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rogers, J. L. et al. Using clinical characteristics and patient-reported outcome measures to categorize systemic lupus erythematosus subtypes. Arthritis Care Res. 73, 386–393 (2021).

    Article  Google Scholar 

  100. Robl, R. et al. Molecular endotypes of type 1 and type 2 SLE. Lupus Sci. Med. 10, e000861 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Condon, L. F. et al. Parabrachial calca neurons drive nociplasticity. Cell Rep. 43, 114057 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Duffield, S. J., Miller, N., Zhao, S. & Goodson, N. J. Concomitant fibromyalgia complicating chronic inflammatory arthritis: a systematic review and meta-analysis. Rheumatology 57, 1453–1460 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nichilatti, L. P., Fernandes, J. M. & Marques, C. P. Physiopathology of pain in systemic erythematosus lupus. Lupus 29, 721–726 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Pisetsky, D. S., Eudy, A. M., Clowse, M. E. B. & Rogers, J. L. The categorization of pain in systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 47, 215–228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rogers, J. L. et al. Patient and physician perspectives of systemic lupus erythematosus flare: a qualitative study. J. Rheumatol. 51, 488–494 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Album, D. & Westin, S. Do diseases have a prestige hierarchy? A survey among physicians and medical students. Soc. Sci. Med. 66, 182–188 (2008).

    Article  PubMed  Google Scholar 

  107. Johannessen, L. E. F., Album, D. & Rasmussen, E. B. Do nurses rate diseases according to prestige? A survey study. J. Adv. Nurs. 76, 1691–1697 (2020).

    Article  PubMed  Google Scholar 

  108. Matsuda, M., Huh, Y. & Ji, R. R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 33, 131–139 (2019).

    Article  PubMed  Google Scholar 

  109. Kavelaars, A. & Heijnen, C. J. Immune regulation of pain: friend and foe. Sci. Transl. Med. 13, eabj7152 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Troubat, R. et al. Neuroinflammation and depression: a review. Eur. J. Neurosci. 53, 151–171 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Brock, J. et al. Immune mechanisms of depression in rheumatoid arthritis. Nat. Rev. Rheumatol. 19, 790–804 (2023).

    Article  PubMed  Google Scholar 

  112. Druce, K. L. & Basu, N. Predictors of fatigue in rheumatoid arthritis. Rheumatology 58, v29–v34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Oláh, C. et al. Cognitive dysfunction in autoimmune rheumatic diseases. Arthritis Res. Ther. 22, 78 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lacagnina, M. J., Heijnen, C. J., Watkins, L. R. & Grace, P. M. Autoimmune regulation of chronic pain. Pain. Rep. 6, e905 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mountford, R. et al. Antibody-mediated autoimmunity in symptom-based disorders: position statement and proceedings from an international workshop. Pain. Rep. 9, e1167 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fiore, N. T. et al. Reducing IgG accumulation via neonatal Fc receptor (FcRn) blockade relieves neuropathic pain. Brain, Behav., Immun. 125, 371–387 (2025).

    Article  CAS  PubMed  Google Scholar 

  117. Berwick, R. J. et al. Postacute COVID-19 syndrome and fibromyalgia syndrome are associated with anti-satellite glial cell IgG serum autoantibodies but only fibromyalgia syndrome serum-IgG is pronociceptive. Pain. https://doi.org/10.1097/j.pain.0000000000003629 (2025).

  118. Goebel, A. et al. Passive transfer of fibromyalgia symptoms from patients to mice. J. Clin. Invest. 131, e144201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fanton, S. et al. Anti-satellite glia cell IgG antibodies in fibromyalgia patients are related to symptom severity and to metabolite concentrations in thalamus and rostral anterior cingulate cortex. Brain, Behav., Immun. 114, 371–382 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Krock, E. et al. Fibromyalgia patients with elevated levels of anti-satellite glia cell immunoglobulin G antibodies present with more severe symptoms. Pain 164, 1828–1840 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Seefried, S. et al. Autoantibodies in patients with fibromyalgia syndrome. Pain 166, 1922–1933 (2025).

    Article  PubMed  Google Scholar 

  122. Robinson, W. H. et al. Cutting-edge approaches to B-cell depletion in autoimmune diseases. Front. Immunol. 15, 1454747 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nestor, J. et al. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J. Exp. Med. 215, 2554–2566 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zarfeshani, A., Carroll, K. R., Volpe, B. T. & Diamond, B. Cognitive impairment in SLE: mechanisms and therapeutic approaches. Curr. Rheumatol. Rep. 23, 25 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Brimberg, L. et al. Antibodies as mediators of brain pathology. Trends Immunol. 36, 709–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Carroll, K. R. et al. Lupus autoantibodies initiate neuroinflammation sustained by continuous HMGB1:RAGE signaling and reversed by increased LAIR-1 expression. Nat. Immunol. 25, 671–681 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Martucci, K. T., Weber, K. A. 2nd & Mackey, S. C. Altered cervical spinal cord resting-state activity in fibromyalgia. Arthritis Rheumatol. 71, 441–450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mawla, I. et al. Large-scale momentary brain co-activation patterns are associated with hyperalgesia and mediate focal neurochemistry and cross-network functional connectivity in fibromyalgia. Pain 164, 2737–2748 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ichesco, E. et al. Altered fMRI resting-state connectivity in individuals with fibromyalgia on acute pain stimulation. Eur. J. Pain 20, 1079–1089 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Mackay, M., Tang, C. C. & Vo, A. Advanced neuroimaging in neuropsychiatric systemic lupus erythematosus. Curr. Opin. Neurol. 33, 353–361 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Basu, N. et al. Functional and structural magnetic resonance imaging correlates of fatigue in patients with rheumatoid arthritis. Rheumatology 58, 1822–1830 (2019).

    Article  PubMed  Google Scholar 

  132. Iancheva, D., Trenova, A., Mantarova, S. & Terziyski, K. Functional magnetic resonance imaging correlations between fatigue and cognitive performance in patients with relapsing remitting multiple sclerosis. Front. Psychiatry 10, 754 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Toikumo, S. et al. A multi-ancestry genetic study of pain intensity in 598,339 veterans. Nat. Med. 30, 1075–1084 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Diatchenko, L., Fillingim, R. B., Smith, S. B. & Maixner, W. The phenotypic and genetic signatures of common musculoskeletal pain conditions. Nat. Rev. Rheumatol. 9, 340–350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yuan, J. H. et al. Genetic, electrophysiological, and pathological studies on patients with SCN9A-related pain disorders. J. Peripher. Nerv. Syst. 28, 597–607 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, L. et al. Single-cell RNA sequencing in the context of neuropathic pain: progress, challenges, and prospects. Transl. Res. 251, 96–103 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Tansley, S. et al. Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain. Nat. Commun. 13, 843 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hubbard, E., Bachali, P., Grammer, A. C. & Lipsky, P. E. Validation of eight endotypes of lupus based on whole-blood RNA profiles. Lupus Sci. Med. 12, e001526 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Catalina, M. D., Owen, K. A., Labonte, A. C., Grammer, A. C. & Lipsky, P. E. The pathogenesis of systemic lupus erythematosus: harnessing big data to understand the molecular basis of lupus. J. Autoimmun. 110, 102359 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Navratilova, E., Fillingim, R. B. & Porreca, F. Sexual dimorphism in functional pain syndromes. Sci. Transl. Med. 13, eabj7180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jiwrajka, N. & Anguera, M. C. The X in seX-biased immunity and autoimmune rheumatic disease. J. Exp. Med. 219, e20211487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Andrade, R. M. et al. Accelerated damage accrual among men with systemic lupus erythematosus: XLIV. Results from a multiethnic US cohort. Arthritis Rheum. 56, 622–630 (2007).

    Article  PubMed  Google Scholar 

  143. Jolly, M. et al. Sex differences in quality of life in patients with systemic lupus erythematosus. Arthritis Care Res. 71, 1647–1652 (2019).

    Article  Google Scholar 

  144. Jiang, T. E., Mackey, S., Darnall, B. D., Simard, J. F. & Falasinnu, T. The problem of pain in systemic lupus erythematosus: a comprehensive analysis of pain distribution using the CHOIR body map and PROMIS measures. Lupus 34, 47–56 (2025).

    Article  CAS  PubMed  Google Scholar 

  145. Minhas, D., Murphy, A. & Clauw, D. J. Fibromyalgia and centralized pain in the rheumatoid arthritis patient. Curr. Opin. Rheumatol. 35, 170–174 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Di Carlo, M. et al. Fibromyalgia: one year in review 2024. Clin. Exp. Rheumatol. 42, 1141–1149 (2024).

    PubMed  Google Scholar 

  147. Eller-Smith, O. C., Nicol, A. L. & Christianson, J. A. Potential mechanisms underlying centralized pain and emerging therapeutic interventions. Front. Cell. Neurosci. 12, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Aringer M., & Pisetsky D. S. The dynamics of antinuclear antibody production in systemic lupus erythematosus: new insights for new therapies. Arthritis Rheumatol. https://doi.org/10.1002/art.43220 (2025).

  149. Clowse, M. E. B. et al. Development and psychometric evaluation of a physician global assessment for type 2 systemic lupus erythematosus symptoms. Lupus Sci. Med. 10, e001016 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Martínez-Lavín, M. Dorsal root ganglia: fibromyalgia pain factory? Clin. Rheumatol. 40, 783–787 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ji, R. R., Chamessian, A. & Zhang, Y. Q. Pain regulation by non-neuronal cells and inflammation. Science 354, 572–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Park, C. K. et al. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82, 47–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lehmann, S. M. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 15, 827–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Martucci, K. T. & Mackey, S. C. Neuroimaging of pain: human evidence and clinical relevance of central nervous system processes and modulation. Anesthesiology 128, 1241–1254 (2018).

    Article  PubMed  Google Scholar 

  156. Wolfe, F. et al. 2016 revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 46, 319–329 (2016).

    Article  PubMed  Google Scholar 

  157. Wolfe, F., Walitt, B. T., Rasker, J. J., Katz, R. S. & Häuser, W. The use of polysymptomatic distress categories in the evaluation of fibromyalgia (FM) and FM severity. J. Rheumatol. 42, 1494–1501 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Sun, K. et al. Using PROMIS-29 to determine symptom burdens in the context of the type 1 and 2 systemic lupus erythematosus (SLE) model: a cross sectional study. J. Patient Rep. Outcomes 7, 136 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Craig, B. M. et al. US valuation of health outcomes measured using the PROMIS-29. Value Health 17, 846–853 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yost, K. J., Eton, D. T., Garcia, S. F. & Cella, D. Minimally important differences were estimated for six patient-reported outcomes measurement information system-cancer scales in advanced-stage cancer patients. J. Clin. Epidemiol. 64, 507–516 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Arcani, R., Jouve, E., Chiche, L. & Jourde-Chiche, N. Categorization of patients with systemic lupus erythematosus using disease activity, patient-reported outcomes, and transcriptomic signatures. Clin. Rheumatol. 42, 1555–1563 (2023).

    Article  PubMed  Google Scholar 

  162. Eudy, A. M. et al. The use of patient-reported outcome measures to classify type 1 and 2 systemic lupus erythematosus activity. Lupus 31, 697–705 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Petri, M., Hellmann, D. & Hochberg, M. Validity and reliability of lupus activity measures in the routine clinic setting. J. Rheumatol. 19, 53–59 (1992).

    CAS  PubMed  Google Scholar 

  164. Buyon, J. P. et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. Ann. Intern. Med. 142, 953–962 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Clauw, D. J. Why don’t we use a body map in every chronic pain patient yet? Pain 165, 1660–1661 (2024).

    Article  Google Scholar 

  166. Scherrer, K. H. et al. Development and validation of the collaborative health outcomes information registry body map. Pain. Rep. 6, e880 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Brummett, C. M. et al. Preliminary validation of the Michigan Body Map. Pain 157, 1205–1212 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lumley, M. A. et al. Emotional awareness and other emotional processes: implications for the assessment and treatment of chronic pain. Pain. Manag. 11, 325–332 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Boersma, K. & Flink, I. K. Key aspects concerning the role of emotion in the chronic pain experience. Curr. Opin. Psychol. 62, 102000 (2025).

    Article  PubMed  Google Scholar 

  171. Falasinnu, T. et al. The problem of pain in the United States: a population-based characterization of biopsychosocial correlates of high impact chronic pain using the national health interview survey. J. Pain. 24, 1094–1103 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Vergne-Salle, P. et al. The burden of pain in rheumatoid arthritis: impact of disease activity and psychological factors. Eur. J. Pain. 24, 1979–1989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Garg, S. et al. Multiplicative impact of adverse social determinants of health on outcomes in lupus nephritis: a meta-analysis and systematic review. Arthritis care Res. 76, 1232–1245 (2024).

    Article  Google Scholar 

  174. Williams, E. M. et al. Cost-effectiveness of a peer mentoring intervention to improve disease self-management practices and self-efficacy among African American women with systemic lupus erythematosus: analysis of the peer approaches to lupus self-management (PALS) pilot study. Lupus 28, 937–944 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yul Huh for assistance in generating the figures included in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David S. Pisetsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Daniel Clauw, Elisabet Welin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allodynia

A condition in which ordinarily non-painful stimuli (such as touch) elicit pain.

Central nervous system sensitization

A key feature of nociplastic pain. This form of sensitization involves changes in the processing of pain information at multiple levels in the nervous system and leads to pain amplification.

Dysesthesia

An unusual sensation that is elicited by touch and can be experienced as unpleasant or strange. Dysesthesia can be described as burning, tingling or pins and needles among other sensations.

Fibromyalgia

A form of nociplastic pain characterized by widespread pain in association with symptoms such as fatigue, mood disturbances and cognitive impairment. Fibromyalgia can occur alone or in association with nociceptive and/or neuropathic pain from another disease process. Fibromyalgia involves pain amplification that arises from central nervous system sensitization.

Hyperalgesia

A manifestation of pain amplification in which a stimulus elicits more pain than expected from the intensity of the stimulus.

Lupus-associated nociplasticity

A condition in which central sensitization leads to amplification of pain and other symptoms, most prominently fatigue, mood disturbance and cognitive impairment. The term builds upon the terminology of nociplastic pain but is not confined only to pain.

Neuropathic pain

A form of pain that results from nerve injury or dysfunction.

Neuropsychiatric SLE

An array of neurological and psychological manifestations that can affect all levels of the nervous system in patients with systemic lupus erythematosus (ranging from mood disturbance to transverse myelitis). Determining the cause of these manifestations is key and often involves testing to determine whether the condition can be explained by another process (such as adverse effects of medication).

Nociceptive pain

A form of pain that results from stimulation of nociceptors by noxious stimuli. Nociceptive pain has a protective function.

Nociplastic pain

A form of pain that occurs in the absence of inflammation or other evidence of tissue injury. Nociplastic pain arises from changes in pain processing at various levels, is chronic and lacks an apparent protective function.

Nosology

A branch of medical science involved with the classification of disease. This classification can be based on cause, pathogenesis or symptoms.

Peripheral nervous system sensitization

This form of sensitization alters the sensitivity of the peripheral nervous system to noxious stimuli. This process involves changes in the activation threshold of nociceptive neurons and therefore increased signalling.

Peripheral neuropathy

Damage or injury to peripheral nerves (that is, nerves outside of the CNS) that can arise from a wide variety of causes including inflammatory, metabolic and degenerative processes. Symptoms depend on the nerves affected and can involve disturbances of sensory and motor function and autonomic dysfunction.

Serositis

Inflammation of serosal surfaces such as the pleura or pericardium. Serositis can be experienced as painful and can occur in association with symptoms such as fever. Serositis can be visualized using imaging (such as radiography or ultrasonography), although it can be inferred from characteristic symptoms.

Sickness behaviour

An array of symptoms such as weakness, fatigue and malaise that can arise in response to infection, systemic inflammation or the administration of cytokine therapies. Sickness behaviour might promote host defence by influencing energy fluxes and expenditure necessary to mount an immune response.

Small-fibre neuropathy

A form of peripheral neuropathy that affects the small-fibre nerves, both myelinated and unmyelinated, involved with the sensation of skin and other organs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisetsky, D.S., Eudy, A.M., Rogers, J.L. et al. Pain in systemic lupus erythematosus: emerging insights and paradigms. Nat Rev Rheumatol 21, 626–639 (2025). https://doi.org/10.1038/s41584-025-01290-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01290-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing