Extended Data Fig. 5: Stability and convergence of the chiral–continuum extrapolation. | Nature

Extended Data Fig. 5: Stability and convergence of the chiral–continuum extrapolation.

From: A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics

Extended Data Fig. 5

In the left panel, the model-averaged result (‘model avg’) is the black square. The vertical magenta band is the resulting 68% confidence band. The next six values are results from individual extrapolations that go into the model average, described in Supplementary Information, section S.7A. Uncertainties are one s.e.m. ‘ct’, counter-term; ‘FV’, finite volume; ‘disc.’, discretization; αS = g2/(4π), where g is the quark–gluon coupling of QCD. The middle panel shows the augmented χ2 (\({\chi }_{{\rm{a}}{\rm{u}}{\rm{g}}}^{2}\)) per degree of freedom (dof), where \({\chi }_{{\rm{a}}{\rm{u}}{\rm{g}}}^{2}\) is the sum of the χ2 values from the data and from the priors. All fits have 16 degrees of freedom because each prior is counted as a data point. The right panel shows the resulting Bayes factors normalized by the NLO Taylor \({\varepsilon }_{{\rm{\pi }}}^{2}\) Bayes factor, which is found to be the largest among them. These normalized Bayes factors are used as relative weights in the model-averaging procedure. The stability of the extrapolation analysis is tested by including additional discretization terms, omitting the predicted NLO finite-volume corrections, increasing the prior widths on the leading order (LO) and all low-energy constants, and applying cuts on the pion masses considered and on the discretization scales included. All variations are contained within 1σ of the model-average value, with most being substantially smaller than 1σ from the central value. Finally, we show the resulting extrapolation from the complete next-to-next-to-next-to-leading order (N3LO) chiral perturbation theory analysis and from the NLO chiral perturbation theory analysis with degrees of freedom (χPT()). The N3LO fit is not included in the average because it has five unknown low-energy constants and we have only five different pion mass values. The NLO χPT() value is not included because it requires input from phenomenology and is thus not a pure lattice QCD prediction, and also the next-to-next-to-leading order (NNLO) χPT() extrapolation function is not known, so a test of stability and convergence is not possible.

Back to article page