Extended Data Fig. 5: Noise measurements at finite temperature differences.
From: Electronic noise due to temperature differences in atomic-scale junctions

a, Current–voltage curves for a set of different junction realizations at \(\bar{T}\) = 13.3 ± 0.3 K and ∆T = 12.6 ± 0.2 K. The conductance of each junction is obtained by the slope of the curve. Here, G = 0.82G0, 1.52G0, 2.57G0, 4.05G0, 5.30G0 and 6.34G0, with all values ±0.01G0, starting from the smallest slope. b, Total noise as a function of frequency for the same junctions examined in a. The top spectrum corresponds to the junction with the highest conductance. The noise is suppressed by low-pass RC filtering owing to the capacitance of the setup and the finite sample and wire resistance. c, Examples for RC transfer function and \({S}_{I}^{{\rm{i}}{\rm{n}}}\) fitting to spectra of total noise versus frequency measured at a fixed temperature of 5.4 ± 0.5 K, and different conductance values (0.51G0–6.03G0 ± 0.01G0). The arrow points in the direction of increasing conductance G. d, Same as c at a fixed conductance of G = 0.77G0 ± 0.01G0, and different temperatures (5.4 ± 0.5 K to 37.5 ± 0.9 K). The arrow points in the direction of increasing temperature T. The setup capacitance and \({S}_{I}^{{\rm{i}}{\rm{n}}}\) are extracted from the fitting. e, The data presented in b corrected by an RC transfer function followed by subtraction of \({S}_{I}^{{\rm{i}}{\rm{n}}}\). f, Total noise as a function of conductance obtained by averaging the noise presented in e in a frequency range of 180–230 kHz, coloured blue in e.