Extended Data Fig. 2: Pathways activated by Acmsd knockdown in worms are conserved in mammalian cells. | Nature

Extended Data Fig. 2: Pathways activated by Acmsd knockdown in worms are conserved in mammalian cells.

From: De novo NAD+ synthesis enhances mitochondrial function and improves health

Extended Data Fig. 2

a, Acmsd transcript levels reflected by the Ct values in different hepatic and renal cells and cell lines (n = 4). Ct values larger than 35 reflect very low transcript levels. b, Efficiency of Acmsd shRNA in mouse primary hepatocytes 48 h post adenoviral transduction (n = 6). c, NAD+ levels in mitochondria of AML-12 cells transduced with either shRNA control or shRNA against Acmsd (n = 5). d, e, Blue native PAGE followed by in-gel activity assay for complex II (blue) (d), and complex I (purple) and IV (brown) (e) on mitochondria extracted from mouse primary hepatocytes transduced with either shRNA control or shRNA against Acmsd for 48 h. The experiment was performed once. f, Primary hepatocytes extracted from a Sirt1L2/L2 mouse were transduced either with an adenovirus encoding GFP (wild-type condition) or the Cre recombinase to generate Sirt1 knockout primary hepatocytes. These hepatocytes were exposed to an shRNA targeting a random sequence or shRNA targeting Acmsd. Transcript levels of Acmsd and Sirt1 (n = 3). g, FOXO1 acetylation levels in mouse primary hepatocytes transduced with either shRNA control or shRNA against Acmsd for 48 h. The experiment was independently performed twice. Data are mean ± s.e.m.; each n represents a biologically independent sample. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. P values calculated using two-tailed t-test. For gel source images see Supplementary Fig. 1. For individual P values, see Source Data.

Source data

Back to article page