Extended Data Fig. 1: Lack of mass-dependent isotope fractionation in the step-crushing neon data. | Nature

Extended Data Fig. 1: Lack of mass-dependent isotope fractionation in the step-crushing neon data.

From: Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon

Extended Data Fig. 1

Péron et al.8 suggested that using the highest measured 20Ne/22Ne ratios for characterizing the plume mantle is inappropriate because mass-dependent isotope fractionation may occur during bubble formation8. In this scenario, mass-dependent fractionation during bubble formation would lead to 20Ne/22Ne ratios scattering about the ‘true’ mean value, with some bubbles characterized by relatively high 20Ne/22Ne ratios while other bubbles displayed relatively low 20Ne/22Ne ratios. This hypothesis can be tested by measuring 4He/3He and 38Ar/36Ar ratios during the same step-crushes as the neon isotopes as illustrated here. a, b, The measured neon isotopic compositions of individual step-crushes plotted against those of helium (a) and argon (b) along with predicted trajectories of mass-dependent isotope fractionation during bubble formation obtained by applying a Rayleigh fractionation model78. Here, the parental melt is assumed to have an initial 20Ne/22Ne ratio of 12.65 ± 0.08, similar to the value of ref. 8. Initial helium and argon isotopic compositions are from the mean values determined for sample EW9309_5D in this study (Supplementary Table 1). The curves show the trajectory of the melts during degassing, the evolution of an instantaneously lost vapour phase (bubbles; short-dashed line) and the cumulative evolution of the vapour phase (bubbles; solid line). Plotted along with these curves are the individual step-crushes (circles) from this study (sample EW9309_5D) with their associated 2σ uncertainties (error bars). Note that the 4He/3He ratios were measured only on one aliquot of EW9309_5D. The helium–neon–argon isotopic compositions measured in the individual step-crushes do not follow the predicted Rayleigh fractionation trends. Rather, the data cloud is at a high angle to the predicted isotope fractionation trend. For example, for our highest measured 20Ne/22Ne of 13.03 ± 0.04 (2σ) to be a result of mass fractionation, the measured 38Ar/36Ar should be 0.1847 (b). However, the measured 38Ar/36Ar of 0.1885 ± 0.0014 (2σ) is identical to the atmospheric value and similar to other determinations of 38Ar/36Ar ratios in plumes and MORBs. Given this, we conclude that mass-dependent isotope fractionation during bubble formation is not responsible for generating the highest 20Ne/22Ne ratios determined in these studies.

Back to article page