Extended Data Fig. 2: Detailed schematic of loader and chip function in CARMEN. | Nature

Extended Data Fig. 2: Detailed schematic of loader and chip function in CARMEN.

From: Massively multiplexed nucleic acid detection with Cas13

Extended Data Fig. 2

Step 1, samples are amplified, colour coded and emulsified. In parallel, detection mixes are assembled, colour coded, and emulsified. Step 2, droplets from each emulsion are pooled into a single tube and mixed by pipetting. The pooling step is rapid to minimize small molecule exchange between droplets (see Supplementary Discussion 4). Step 3, the droplets are loaded into the chip in a single pipetting step. Side view, the droplets are deposited through the loading slot into the flow space between the chip and glass. Tilting the loader moves the pool of droplets around the flow space, allowing the droplets to float up into the microwells. Step 4, the chip is clamped against glass, isolating the contents of each microwell, and imaged by fluorescence microscopy to identify the colour code and position of each droplet. Step 5, droplets are merged, initiating the detection reaction. Step 6, the detection reactions in each microwell are monitored over time (a few minutes to 3 h) by fluorescence microscopy.

Back to article page