Extended Data Fig. 8: PGO wave oscillation and discharge statistics across all experimental sessions and exemplary time courses. | Nature

Extended Data Fig. 8: PGO wave oscillation and discharge statistics across all experimental sessions and exemplary time courses.

From: Coupling of hippocampal theta and ripples with pontogeniculooccipital waves

Extended Data Fig. 8

a, Box plots illustrating the proportion of PGO-waves in each experimental session. The session marked in red (bottom subpanel) corresponds to the session in which PBn, LGN and hippocampus were recorded simultaneously (N = 29 experimental sessions; animals CM029, K13, F12, CM031; sessions with animals E10, A13, D11 and i09 produced virtually identical results). b, Box plots displaying the pooled statistic of the proportion of PGO waves (right) across all experimental sessions. About 30% of all pontine events are classified as PGO waves (N = 29 experimental sessions; animals CM029, K13, F12, CM031). c, Two-dimensional projection of type I and type II PGO waves (red and blue LFP traces, respectively) using Laplacian eigenmaps for one exemplary experimental session. The projection is computed using the peri-event MUA (801-2500 Hz). In this case, type I PGO waves are segregated to the left, whereas type II PGO waves are segregated to the right. d, Zoomed-in version of two patches enclosed by a dashed square in c. Type I PGO waves usually display one biphasic cycle, whereas type II PGO waves display more oscillatory behaviour. e, PGO-wave time course averages for the experimental session in c and d. f, Global (across-sessions) statistics of the number of oscillatory cycles displayed by PGO waves recorded in PBn (N = 24 experimental sessions, animals K13, F12 and CM031). The empirical distribution associated with type II PGO waves is consistently shifted to the right, indicating a larger number of oscillations. g, Analogous to f, but for SWR and theta events recorded in hippocampus. h, Peri-event time histogram of pontine multi-unit discharges (25-ms bins) during the occurrence of type I (left) and type II (centre) PGO waves, and P-waves (right). Shaded areas indicate SEM across experimental sessions. i, Multi-unit modulation associated with P-waves and PGO-wave subtypes. Note the stronger multi-unit modulation associated with type I and type II PGO waves. For panels hi, N = 24 experimental sessions, K13, F12 and CM031.

Back to article page