Extended Data Fig. 8: Recruitment of the Spo11 core complex to Rec114–Mei4–Mer2 condensates. | Nature

Extended Data Fig. 8: Recruitment of the Spo11 core complex to Rec114–Mei4–Mer2 condensates.

From: DNA-driven condensation assembles the meiotic DNA break machinery

Extended Data Fig. 8

a, Quantification of core complex signal within Rec114–Mei4 foci in the presence (100 nM) or absence of Mer2. The average intensity within 20 foci is plotted for each reaction. Shaded areas represent 95% confidence intervals (CI). b, Quantification of core complex signal within Mer2 foci in the presence (16 nM) or absence of Rec114–Mei4. Reactions contained 25 nM Mer2. The average intensity within 20 foci is plotted for each reaction. Shaded areas represent 95% CI. c, Effect of including 100 nM MBP–Rec102–Rec104–HisFlag competitor on the recruitment of the core complex to RMM condensates (16 nM Rec114–Mei4, 100 nM Mer2). The fraction of Rec114–Mei4–Mer2 foci that contain detectable core complex signal is plotted (mean + s.d. from ten fields of view). d, Intensity of core complex signal within Rec114–Mei4–Mer2 condensates in the absence or presence of Rec102–Rec104 competitor. The average core complex intensity within 20 foci is plotted for each reaction. Shaded areas represent 95% CI. e, Mapping regions of Rec114 required for interaction with Rec102 or Rec104 by Y2H analysis. β-Galactosidase units are measured for the interaction between truncated variants of Gal4AD–Rec114 and LexA–Rec102 or LexA–Rec104 (mean + s.d. from four replicates). The position of the HLS mutation within the Rec114 PH-fold is indicated. f, Effect of the HLS mutation on the formation of comingled RMM condensates. Mean ± s.d. from ten fields of view. g, Spore viability of wild-type and rec114HLS mutant strains. h, Immunoblot analysis of meiotic protein extracts from myc-tagged wild-type and rec114HLS mutant strains. Samples from two biological replicates are shown. For gel source data, see Supplementary Fig. 1.

Back to article page