Extended Data Fig. 7: Monolayer MoS2 transistors with very high ION. | Nature

Extended Data Fig. 7: Monolayer MoS2 transistors with very high ION.

From: Ultralow contact resistance between semimetal and monolayer semiconductors

Extended Data Fig. 7

a, Transfer characteristics of a 35-nm LCH Bi–MoS2 FET. bc, Transfer and output characteristics of a 50-nm LCH Bi–MoS2 FET. d, Output characteristics of a 120-nm LCH Bi–MoS2 FET. The excellent current-delivery capacities represent, to our knowledge, new records for monolayer MoS2 at these device dimensions, outperform thicker TMD devices, and are comparable to three-dimensional semiconductor devices such as 90-nm node-strained Si and AlGaAs/InGaAs HEMT transistors with similar channel lengths39,40,46. Note that the required drain voltage for the ohmic Bi–monolayer MoS2 FET to achieve a high ION is relatively small compared to previously reported high-performance TMD transistors (that is, typically VDS > 2 V with a thicker channel thickness)18,22,30,31,32,33,34,42,43,44,45. Inset, optical microscopic image of the device. e, Semi-logarithmic plot of the transfer characteristic of a different Bi–MoS2 FET showing an excellent ION/IOFF ratio of 108. Insets, SEM image of a representative 150-nm LCH Bi-contacted monolayer MoS2 FET on 100-nm-thick SiNx and its channel region. f, Output characteristics of the same Bi–MoS2 transistor as in e. The drain current saturates at a VDS of ~1.5 V and scales linearly with the gate voltage, which suggests that the electrons travelling in the monolayer MoS2 channel reach its saturation velocity. The gate dielectrics of devices presented in this figure are 100-nm SiNx.

Back to article page