Extended Data Fig. 5: Model calculation for partial waves at d-wave resonance.
From: Pseudogap in a crystalline insulator doped by disordered metals

A series of Ul, δl, Re(Δk) and Im(Δk) is calculated as described in Methods for the partial waves from l = 0 (top row) to l = 3 (bottom row). The depth of potential V0 is set to 16.4 eV, which corresponds to d-wave resonance at kr = 0.36 Å−1, as shown in Fig. 4a. The d-wave resonance can be identified by δ2 passing through π/2, which is accompanied by Re(Δk) and Im(Δk) taking the form of sin(2δl)/k2 and sin2(δl)/k2, respectively. For l = 0, there is no potential well, in which electron waves can be trapped, and it is impossible to have s-wave resonance.