Extended Data Fig. 8: Energy dependence of the quasiparticle interference (QPI) near Fermi level.
From: Cascade of correlated electron states in the kagome superconductor CsV3Sb5

(a-g) Two-fold symmetrized Fourier transforms (FTs) of differential conductance (dI/dV(r, V)) maps acquired over the same field-of-view on an Sb-terminated surface of sample 1. The dispersive QPI stripes are denoted by magenta (along qa) and blue (along qb,c) rectangles. At bias lower than 12 mV, the stripe features along qa are clearly visible (solid magenta rectangles), while the equivalent features along qb and qc are absent (dashed blue rectangles). The trend is reversed at a bias higher than 12 mV. Green circles denote the atomic Bragg peaks. For visual purposes, noise streaks in (c-e) along ~45 degree direction with respect to the horizontal are removed by subtracting a polynomial from each row of the raw dI/dV map before the map is rotated, FT is performed and the FT is two-fold symmetrized. (h,i) Linecuts in FTs of dI/dV(r, V) maps as a function of bias along the magenta and blue dashed lines in (d). Orange curves in (h,i) are visual guides showing the dispersion of QPI wave vectors. STM setup condition: (a) Vsample = 18 mV, Iset = 90 pA, Vexc = 1 mV; (b) Vsample = 16 mV, Iset = 200 pA, Vexc = 1 mV; (c)Vsample = 14 mV, Iset = 100 pA, Vexc = 1 mV; (d)Vsample = 12 mV, Iset = 90 pA, Vexc = 1 mV; (e)Vsample = 10 mV, Iset = 70 pA, Vexc = 1 mV; (f)Vsample = 5 mV, Iset = 60 pA, Vexc = 1 mV; (g)Vsample = −5 mV, Iset = 60 pA, Vexc = 1 mV; T = 4.5 K.