Extended Data Fig. 2: Composition of microbial communities associated with P. oceanica plant tissues and seagrass sediment. | Nature

Extended Data Fig. 2: Composition of microbial communities associated with P. oceanica plant tissues and seagrass sediment.

From: Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium

Extended Data Fig. 2

((a)–(c)) 16S rRNA gene-based community composition of the top ten taxa on domain-level (a), class-level (only Bacteria) (b), and families within the order Alteromonadales (c) in metagenomes associated with P. oceanica plant tissues (Leaf, Rhizome, Root 1, Root 2) and the sediment within the P. oceanica seagrass meadow (replicate cores C2, C3, C6; 2-10 cm depth horizon). Note that while reads associated with Alteromonadales were detected in all samples, reads assigned to Celerinatantimonadaceae were only detected in plant-associated samples (mainly roots and rhizome). Reads taxonomically assigned to either mitochondria, chloroplasts or Eukarya were not included in the analysis. (d) Read recruitment to Ca. C. neptuna from metagenomes sampled from different P. oceanica plant tissues and seagrass bed sediment. Metagenomic reads mapped onto the genome of Ca. C. neptuna and the number of mapped reads normalized to one million total reads is shown above each bar. Reads mapping to rRNA genes were not counted in this analysis. (e) Non-metric multidimensional scaling (NMDS) ordination plot showing changes in the prokaryotic community composition (Class-level) associated with different P. oceanica plant tissues and seagrass bed sediment. Community composition on Class-level (see panel b) was derived from metagenomic 16S rRNA gene sequences sampled from P. oceanica plant tissues (Leaf, Rhizome, Root 1, Root 2) and the sediment within the P. oceanica seagrass meadow (replicate cores C2, C3, C6; 2-10 cm depth horizon). Ordinations are based on Bray-Curtis dissimilarity.

Source Data

Back to article page