Extended Data Fig. 2: Biological mechanism specific-energy data. | Nature

Extended Data Fig. 2: Biological mechanism specific-energy data.

From: Engineered jumpers overcome biological limits via work multiplication

Extended Data Fig. 2

The model (Fig. 2a–c) predicts an upper limit to specific energy for all biological jumping mechanisms, regardless of transmission type, at approximately 200 J kg−1 (dash-dot green). Across scales found in nature, this limit holds. Note that the energy utilization was estimated at 15%, similar to previous biological work26,27. However, variation likely occurs, with jumpers with higher take-off velocities likely having more mass dedicated to jumping muscles, and thus having a higher energy utilization efficiency. A higher utilization efficiency, for example, 30%, would result in a lower mechanism specific energy than shown here. The model also predicts a limit due to motor specific power. Direct-drive jumpers fall on or below this limit (dashed blue). Non-latched spring-actuated jumpers can exceed this limit, and latched spring-actuated jumpers can exceed it by even greater amounts (distance from blue dashed line). However, all still fall below. See Extended Data Table 1 for data.

Back to article page