Extended Data Fig. 6: MST experiments for BAM proteins in the presence of Tetran. | Nature

Extended Data Fig. 6: MST experiments for BAM proteins in the presence of Tetran.

From: Peptidoglycan maturation controls outer membrane protein assembly

Extended Data Fig. 6

(A) Generation of Tetran by enzymatic digestion of sacculi from BW25113Δ6LDT. The DD-endopeptidase MepM cleaves the DD-cross-links, generating soluble Tetran chains of variable length. (B) HPLC analysis of sacculi from BW25113Δ6LDT (top) and of Tetran (bottom), after digestion with the muramidase cellosyl to produce the disaccharide peptide subunits (muropeptides). Schematic representations of the chemical structures of muropeptides are shown on the right side. (C) MST experiment for BamA P1,2 and Tetran. Fig. 2f shows that BamA P1,2 does not interact with Tetran. Here, the right graph shows the lack of MST response in the control sample (mock PG digest without Tetran). (D) MST experiment as in C but with BamA P3,4. BamA P3,4 interacts with Tetran (Fig. 2f). (E) MST experiment as in C but with BamA P4,5. BamA P4,5 interacts with Tetran (Fig. 2f). Further MST experiments were performed in the presence or absence of Tetran or mock PG digests for BamB (F), BamC (G), BamE (H), BamCD (I) and BamCDE (J). (K) Control experiments performed with fluorescent-labelled BSA or BamCD in the presence of Tetran, showing that proteins do not generally bind to Tetran in MST experiments. (L) Control experiments performed with free fluorescent Red-NHS dye and no protein in the presence of Tetran, showing that the fluorescent dye does not bind to Tetran. Values shown in panels C-L are mean ± SD of three independent experiments. For source data see Supplementary Table 6.

Back to article page