Extended Data Fig. 4: Agarose bead re-injection and sorting for single-cell detection of nucleic acid markers. | Nature

Extended Data Fig. 4: Agarose bead re-injection and sorting for single-cell detection of nucleic acid markers.

From: Identification of astrocyte regulators by nucleic acid cytometry

Extended Data Fig. 4

(a) Schematic of microfluidic for re-injection of agarose-captured genomes. (b) Microscope image of single agarose hydrogel beads inside droplets with measured size for each droplet and agarose sphere. (c) Optimization of droplet detection PCR to preserve cDNA quality during thermocycling. (d) Detection of a single-copy HIV genomic DNA target by FIND-seq in infected human JLat cells, but not in uninfected Jurkat control cells, as a proof-of-concept experiment testing FIND-seq sensitivity and specificity. The DNA target was amplified using TaqMan PCR in the FIND-seq workflow (Step 3 in Fig. 1d) followed by detection by droplet cytometry (Step 4 in Fig. 1f). (e) Schematic of microfluidic for droplet sorting using a concentric dielectrophoretic design. (f) Micrographs of droplet sorting. Top: time-lapse images from a droplet sorting video showing droplet deflection into the collection channel. Bottom: In the absence of FPGA sort-triggering, droplets are maintained, via bias oil flow, in the outer waste channel.

Back to article page