Fig. 3: Inhibition of de novo sphingolipid biosynthesis decelerates the kinetics of serine-associated peripheral neuropathy.
From: Insulin-regulated serine and lipid metabolism drive peripheral neuropathy

a, Thermal latency in mice fed with LFD plus vehicle (veh) (n = 10), LFD plus 0.3 mg kg−1 myriocin (myr) (n = 10), −SG LFD plus vehicle (n = 10), −SG LFD plus myriocin (n = 9), HFD plus vehicle (n = 10), HFD plus myriocin (n = 10), −SG HFD plus vehicle (n = 10) or −SG HFD plus myriocin (n = 9). b, Stack plot of liver deoxyDHCer in mice fed with LFD plus vehicle (n = 10), LFD plus myriocin (n = 10), −SG LFD plus vehicle (n = 10), −SG LFD plus myriocin (n = 9), HFD plus vehicle (n = 10), HFD plus myriocin (n = 10), −SG HFD plus vehicle (n = 10) or −SG HFD plus myriocin (n = 9). c, Thermal latency time course in mice fed with LFD plus vehicle (n = 12), HFD plus vehicle (n = 12), −SG HFD plus vehicle (n = 12) or −SG HFD plus myriocin (n = 11). d, IENF density in mice fed with LFD plus vehicle (n = 10), HFD plus vehicle (n = 7), −SG HFD plus vehicle (n = 12) or −SG HFD plus myriocin (n = 8). e, Paw skin deoxyDHCer distribution in mice fed with LFD plus vehicle (n = 12), HFD plus vehicle (n = 12), −SG HFD plus vehicle (n = 12) or −SG HFD plus myriocin (n = 11). Data are mean ± s.e.m., and were analysed using one-way ANOVA with Fisher’s least significant difference post hoc test (a,b,d,e) or two-way ANOVA with Fisher’s least significant difference post hoc test (c). Statistical analyses in b,e were performed using summed deoxyDHCer abundances.