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The quantum transition of the 
two-dimensional Ising spin glass

Massimo Bernaschi1, Isidoro González-Adalid Pemartín2 ✉, Víctor Martín-Mayor2 & 
Giorgio Parisi3,4

Quantum annealers are commercial devices that aim to solve very hard computational 
problems1, typically those involving spin glasses2,3. Just as in metallurgic annealing,  
in which a ferrous metal is slowly cooled4, quantum annealers seek good solutions  
by slowly removing the transverse magnetic field at the lowest possible temperature. 
Removing the field diminishes the quantum fluctuations but forces the system to 
traverse the critical point that separates the disordered phase (at large fields) from the 
spin-glass phase (at small fields). A full understanding of this phase transition is still 
missing. A debated, crucial question regards the closing of the energy gap separating 
the ground state from the first excited state. All hopes of achieving an exponential 
speed-up, compared to classical computers, rest on the assumption that the gap will 
close algebraically with the number of spins5–9. However, renormalization group 
calculations predict instead that there is an infinite-randomness fixed point10. Here  
we solve this debate through extreme-scale numerical simulations, finding that both 
parties have grasped parts of the truth. Although the closing of the gap at the critical 
point is indeed super-algebraic, it remains algebraic if one restricts the symmetry of 
possible excitations. As this symmetry restriction is experimentally achievable (at least 
nominally), there is still hope for the quantum annealing paradigm11–13.

Optimization problems are ubiquitous in everyday life (think, for 
instance, of deciding the best delivery route or scheduling jobs for the 
different tools in a factory). These problems can be mathematically 
formalized: N entities (for example, jobs queuing for their appropri-
ate tools) compete as they try to satisfy their mutually contradictory 
goals. The overall frustration produced by a particular solution is 
quantified through a cost function, which one attempts to minimize. 
This task is best solved with the help of a computer, even for quite 
small N. Research into computational complexity studies how the 
computational resources (memory, computing time and so on) grow 
with N (ref. 14). If, for all known algorithms, the necessary resources 
grow faster with N than any polynomial, for example, like N!, the 
problem is considered hard. A small subset of these problems, named 
NP-complete, is of particular interest: if an efficient algorithm (with 
resources scaling polynomially in N) were discovered for any of the 
NP-complete problems, then a vast family of hard optimization 
problems in this subset would become easy. For physicists, the most 
familiar example of an NP-complete problem is finding the minimal 
energy state—the ground state—of an Ising spin-glass Hamiltonian 
on a non-planar graph15,16. This explains the surge of hardware spe-
cifically designed for minimizing a spin-glass Hamiltonian through 
a variety of algorithms and physical principles (see, for example, 
refs. 17–22).

Specifically, the strategy that concerns us here is quantum annealing. 
Both in the original formulation11, and also in its hardware implemen-
tation1,20, the aim is to solve the situation for spin glasses. In particular, 

D-wave chips solve Ising spin glass in D = 2 spatial dimensions (D′ > 2 
can be coded over a D-wave’s D = 2 graph23; see pages 13 and 49 in  
ref. 24 for more on the definition of D).

Spin glass is the paradigmatic statistical model for quenched disor-
der25. In a transverse field, the Hamiltonian for S = 1/2 spins is
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where Jx,y are the random couplings that define the problem instance 
under consideration, Γ is the transverse field and σ x

X  and σ x
Z are, respec-

tively, the first and third Pauli matrices acting on the spin at site x. The 
phase diagram for a two-dimensional interaction matrix Jx,y is sketched 
in Fig. 1a. For Γ = ∞, in the ground state, all spins are as much aligned 
with the transverse field as quantum mechanics allows them to be. 
(Paradoxically, from the point of view of the computational basis that 
diagonalizes the σ x

Z  matrices, this ground state seems to be a totally 
random statistical mixture). As Γ is diminished at zero temperature, 
the ground state varies. In particular, at Γ = 0, the ground state encodes 
the solution of the optimization problem we are interested in. At some 
point during the annealing, Γ goes through the critical value Γc that 
separates the disordered ground state from the spin-glass ground 
state, which has a glassy order in the computational basis. This is not 
just theoretical daydreaming. In a recent experiment conducted on a 
D-wave chip23, some 5,000 qubits displayed coherent quantum dynam-
ics as Γ went through Γc, for annealings lasting several nanoseconds.
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A strong theoretical command of the phase transition at Γc is clearly 
necessary. A very powerful tool in the analytical study of phase transi-
tions is the renormalization group, which helps to clarify which proper-
ties of the critical point are not modified by the different microscopic 
details of different experiments. Only very broad features, such as 
symmetries, matter (making it possible to classify problems into uni-
versality classes). In fact, the study of disordered systems was one of 
the early applications of the renormalization group (see, for example,  
refs. 26–28), a strategy that is firmly established for D = 2 (ref. 29). Yet, it 
has taken considerable time and effort to show that the renormalization 
group—and the accompanying universality—also applies to disordered 
systems for D > 2 (refs. 30–34; even for D = 2, this was a hard endeavour 
for spin glasses35). Unfortunately, the study of the quantum spin-glass 
transition at finite D is considerably behind its thermal counterpart. 
Essentially, only the D = 1 case is well understood36–39.

The second-simplest problem to analyse, a spin glass with D = 2, 
poses quite a challenge. Indeed, different approaches have produced 
mutually contradictory predictions for the crucial physical quantity 
that ultimately determines whether the quantum computational com-
plexity of the problem to be considered is smaller than its classical 
counterpart. We are referring to the energy gap Δ that separates the 
ground state from the first excited state of the Hamiltonian (1). Indeed, 
the required annealing time grows with 1/Δ2 (ref. 40). In a spin glass with 
N ∝ L2 quantum spins at Γ = Γc, where L is the linear size of the system, 
Δ ∝ L−z, where z is the so-called dynamic critical exponent. Early Monte 
Carlo simulations5,6,8 and a series-expansion study9 found finite values 
of z (for example, z ≈ 1.5 for D = 2 spin glasses5). A finite z is also a crucial 
assumption of the droplet model for the quantum spin-glass transi-
tion41. On the other hand, a real-space renormalization group analysis 
concluded that z = ∞ for D = 2 or 3 spatial dimensions10. (A Monte Carlo 
simulation too claimed that z = ∞ for D = 2 (ref. 42)).

The starting assumption of refs. 5,6,8,23 was a finite value of exponent 
z. Yet, to clarify the aforementioned controversy, our analysis is com-
pletely agnostic about z. Just as Rieger and Young pushed to the very 
limit the computational capabilities of the time using special hard
ware (transputers)5, we have performed unprecedented large-scale 
simulations on graphical processing units (GPUs) using highly tuned 
custom codes. A careful consideration of the global spin-flip symmetry, 
implemented by the parity operator ∏P σ= x x

X, turns out to be crucial. 
Although the gap for same-parity excitations scales algebraically in the 

number of spins, the gap for parity-changing excitations does close 
super-algebraically. The coexistence of these two qualitatively different 
scalings at the critical point is extremely unusual and is probably caused 
by Griffiths–McCoy singularities36–39,43. (In the spin-glass phase, instead, 
the spontaneously broken parity symmetry naturally generates an expo-
nentially small gap but only for parity-changing excitations.) Although 
Griffiths–McCoy singularities are strongly dependent on D, interest-
ingly, ref. 44 hinted at an algebraically scaling gap for same-parity exci-
tations at the quantum critical point of a three-regular graph (a D = ∞  
problem; parity-changing excitations were not studied in ref. 44).

The ground state
Our aim here is to study the phase transition as seen from the ground 
state (so that the spectra of excitations and, hence, exponent z do not 
play any role in the analysis in ‘The phase transition’). This entails tak-
ing the limit T → 0.

In the Trotter formulation that we use (‘The Trotter–Suzuki formula’ 
in Methods), the original quantum spins on an L × L lattice are replaced 
by classical spins on an L × L × Lτ lattice, Sx,τ = ±1. The extra dimension 
τ is named the Euclidean time. Γ is replaced by a new parameter k that 
grows as Γ decreases. The energy gap Δ translates into a correlation 
length η = 1/(kΔ) over Euclidean time. In this formulation, the limits 
T → 0 and Lτ → ∞ are equivalent.

Although our main results stem from Monte Carlo simulations, a 
complementary exact-diagonalization effort on small systems (‘Exact 
diagonalization’ in the next section and ‘More about exact diagonali-
zation’ in Methods) has been extremely useful, both in shaping our 
analysis and in providing an understanding for how the limit T → 0 is 
approached (‘At the limit of zero temperature’).

Exact diagonalization
The main lessons that exact diagonalization of systems with size L ≤ 6 
(‘More about exact diagonalization’ in Methods and Extended Data 
Figs. 1 and 3) have taught us are the following.

The parity operator P splits the spectrum of the Hamiltonian 
(equation (1)) into even energy levels (E0,e < E1,e < …) and odd levels 
(E0,o < E1,o < …). The ground state is even and its energy is EGS = E0,e.

The first excited state is E0,o. The minimal gap Δ = E0,o − E0,e displays 
dramatic fluctuations among samples, up to the point that a statistical 
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Fig. 1 | Phase diagram and critical scaling for the two-dimensional quantum 
spin glass. a, Phase diagram for a two-dimensional Ising spin glass in terms  
of temperature T and transverse field Γ. For all T > 0, the system is disordered 
when studied at large length scales, so that it is in the paramagnetic phase (PM). 
At T = 0, the ground state seems disordered for Γ > Γc (from the point of view of 
the computational basis). For Γ < Γc, we encounter the spin-glass phase (SG), 
which is different for every disorder realization (equation (1)). b, Our finite-size 
scaling analysis (see, for example, refs. 48,60) of the critical point at T = 0 and 

Γ = Γc, in terms of the parameter k that represents Γ in the Trotter–Suzuki 
formulation (‘The Trotter–Suzuki formula’ in Methods; k grows as Γ decreases). 
Left, correlation length ξ (3) in units of the lattice size L versus k. The curves  
for the different L’s intersect at the critical point kc ≈ 0.29. Right, data in the 
left-hand panel of b, when represented as a function of the scaling variable 
L1/ν(k − kc) with 1/ν = 0.7, converge to a limiting curve as L grows. Points in b are 
statistical averages, and errors are one standard deviation. Our data set is fully 
described in Extended Data Table 1.
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analysis should be conducted in terms of log Δ. Furthermore, log Δ var-
ies notably with k. By contrast, the sample-to-sample fluctuations of 
the same-parity gaps, Δe ≡ E1,e − E0,e and Δo ≡ E1,o − E0,o are very mild (also 
their k-dependence is mild). For all our samples, Δe and Δo are of similar 
magnitude and, unless Δ turns out to be inordinately large, Δe, Δo ≫ Δ.

Thermal expectation values of even operators (operators A such 
that P P=A A ) reach their T = 0 limit for surprisingly small values of Lτ. 
The reasons for this benign behaviour are understood (‘The limit of 
zero temperature’ in Methods).

The phase transition
We turn now to Monte Carlo simulations. The standard spin-glass 
correlation function, when computed for the ground state, is afflicted 
by a very large anomalous dimension that makes the spin-glass sus-
ceptibility χ(2) barely divergent at the critical point5. We have circum-
vented this problem by considering instead the correlation matrix M 
(equation (9) in Methods and refs. 45–47). From M, one can compute 
not only χ(2) but also a better behaved susceptibility χ(3). The corre-
sponding correlation length ξ(3) is suitable for a standard finite-size 
scaling study of the phase transition (see, for example, ref. 48), which 
is illustrated in Fig. 1b.

The analysis in ‘The critical point and critical exponents’ in Methods 
found that for the critical point kc, the correlation-length exponent ν 
and exponents γ(n) ( χ k L( ) ∝n γ ν( )

c
/n( )

; for a discussion see ‘One-time 
observables’ in Methods):

k
ν

= 0.2905(5),
1

= 0.71(24)(9), (2)c

γ
ν

γ
ν

= 0.27(8)(8), = 1.39(23)(11). (3)
(2) (3)

The first error estimate is statistical whereas the second error accounts 
for systematic effects. Note that the bound ν ≥ 2/D (ref. 49) is verified 

and that χ L∝(2) ≈0.3
γ

ν
(2)

, indeed, barely diverges5.

At the limit of zero temperature
The naive approach to the limit T → 0 would be to study a fixed set of 
samples for a sequence of growing Euclidean lengths Lτ and to check 
when the results become independent of Lτ (indeed, T > 0 effects die out 
as e L η− /τ ). However, according to ‘Exact diagonalization’ above, this is 
just wishful thinking. Indeed, some instances have an inordinately small 
gap (and, hence, a huge Euclidean correlation length η), and so e ≈ 1L η− /τ  
for all values of Lτ that we can simulate (one would like ≪e 1L η− /τ , instead).

Fortunately, considering simultaneously periodic boundary con-
ditions (PBCs) and antiperiodic boundary conditions (APBCs) over 
Euclidean time offers a way out. A detailed analysis (‘The limit of zero 
temperature’ in Methods) shows that the sequence of results for grow-
ing Lτ converges to T = 0 from opposite sides. As Lτ grows (Fig. 2c), the 
PBC sequence monotonically decreases, whereas the APBC sequence 
increases. Thus, the statistical compatibility of both types of boundary 
condition ensures that the zero-temperature limit has been reached 
(within our statistical errors).

Spectra of excitations at the transition
The main tool for investigating excitations is the τ dependence of the 
Euclidean correlation function of several operators (‘Two-times observ-
ables’ in Methods). It is crucial to distinguish even operators (such as 
P P =A A) from odd operators ( A AP P = − ). For even operators, the decay 
with τ is sensitive only to same-parity gaps (such as Δe and Δo defined 
in ‘Exact diagonalization’ above). Instead, odd operators feel the 
different-parity energy gap Δ.

For both symmetry sectors, the correlation functions computed for 
a sample decay exponentially (to zero for odd operators or, Fig. 2c, to 
a plateau for even operators). In both cases, the correlation lengths η 
and the energy gaps of appropriate symmetry are related as η = 1/(kΔ). 
Therefore, what the average over samples of an Euclidean correlation 
function really features is the probability distribution function (as 
computed over the different samples) of the correlation lengths η.
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Fig. 2 | Ensuring that the zero-temperature limit has been reached by 
comparing PBCs and APBCs over Euclidean time. a, Correlation length ξ (3) 
(‘One-time observables’ in Methods) versus k, as computed for our largest 
systems with L = 24 and Lτ = 2,048 and with both PBCs and APBCs for the same 
set of 1,280 samples. The statistical agreement for PBCs and APBCs indicates 
that the T → 0 limit has been effectively reached for this quantity. b, As a for  
the Binder cumulant (‘One-time observables’ in Methods). The dashed line 
represents the critical point, kc ≈ 0.29. c, The even correlation functions Q2(τ) 

(‘Two-times observables’ in Methods), as computed for a single sample of  
L = 20 at k = 0.29, rather quickly reach their large-τ plateau. The functions 
depend on both Lτ and the boundary conditions. The PBC plateau decreases 
upon increasing Lτ, whereas the APBC plateau notably increases. The reason 
behind the stronger sensitivity of Lτ for APBCs is understood (‘The limit of zero 
temperature’ in Methods). Points in a, b, and c are statistical averages, and 
errors are one standard deviation. Our data set is fully described in Extended 
Data Table 1.
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From now on, we focus on the critical point at kc ≈ 0.29. The uncer-
tainty δkc about the value of the critical point, approximately 5 × 10−4 
in our estimate, introduces systematic errors. However, finite-size 
scaling theory (see, for example, ref. 48) tells us that we can quantify 
these systematic effects by considering the scaling combination 
δk L ν

c max
1/  where L = 24max  is the largest lattice size we simulated. This 

scaling combination corresponds to a value of approximately 0.044. 
The smallness of this number and the smooth dependence of the 
scaling functions on the scaling variable k k L( − ) ν

c
1/  (see, for example, 

Fig. 1b, right) make it apparent that this source of errors is under con-
trol in our simulations. Furthermore, the excellent agreement 
between our results for same-parity excitations (see below) with a 
recent experiment (‘Conclusions and outlook’) reinforces this  
conclusion.

Even operators
This case is of utmost relevance because only even excited states can 
cause the system to leave its ground state in (ideal) quantum annealing 
for the Hamiltonian (equation (1)). Our approach is not entirely satisfy-
ing in this respect because, for a given sample, we obtain the smallest 
of the two same-parity gaps Δe and Δo (one would like to study only Δe). 
Fortunately, both gaps have similar magnitudes (Extended Data Fig. 3).

The first optimistic indication comes from the (subtracted) cor-
relation function in Fig. 3a, which goes to zero (within errors) for a 
moderate value of τ. Indeed, the empirical distribution function for 
the correlation length ηe in Fig. 3b indicates mild sample-to-sample 
fluctuations and a relatively weak dependence on L. In fact, as shown 
Fig. 3b, for all L > 12, the probability distribution function turns out to 
depend on the scaling variable

u
η η

L
η z=

−
, = 2.2(3), = 2.46(17). (4)

z
e e

0

e
0

ee

(Setting η = 0e
0 , the whole curve cannot be made to scale and the result-

ing estimate ze ≈ 1.7 is lower, see also the concluding paragraph  
of ‘Two-times observables’ in Methods). Thus, as anticipated, we 
conclude that the even symmetry sector shows algebraic scaling for 
its gap.

 
Odd operators
As would be expected from the exact results for D = 1 (refs. 36,38,39) 
and the approximate renormalization group study for D = 2 (ref. 10), 
the odd correlation function C τ( ) shown in Fig. 4a has, for L = 24, a 
power-law decay C τ τ( ) ∝ 1/ b

∼
 with b = 0.6

∼
. This implies that the magnetic 

susceptibility—the linear response to a magnetic field aligned with the 
z axis—diverges at the critical point. Indeed, the susceptibility diverges 
if 

∼
b < 1 (because it is twice the integral of C τ( ) for τ going from 0 to ∞).
Furthermore, 

∼
b < 1 also for k < kc (Extended Data Fig. 6). We, there-

fore, conclude that the susceptibility diverges in the paramagnetic 
phase. This is exactly the same behaviour encountered for D = 1. 
Accordingly, the probability distribution function of the Euclidean 
correlation length η (recall that η = 1/(kΔ)) has an extremely fat tail 
(Fig. 4b,c). This is the behaviour of a Lévy flight, which strongly sug-
gests that the scenario of an infinite-randomness fixed point10 is, 
indeed, realized for D = 2 Ising spin glass.

Conclusions and outlook
We have solved a decades-long controversy through an extreme-scale 
simulation on GPUs and a careful consideration of the main symmetries 
of the problem. Our main conclusion is very optimistic: there is no reason 
in principle why a quantum annealer cannot remain in the ground state 
while entering the spin-glass phase (Fig. 1a). However, as discussed below, 
this is not quite the same as solving our optimization problem. To adi-
abatically enter the spin-glass phase, the annealing time would just need 
to grow as a power law with the number of quantum spins (equation (4)), 
provided that parity-changing excitations are avoided (something that, 
at least nominally, is within the capabilities of current hardware). Let us 
emphasize that this protective mechanism is crucial for making it possible 
to study the dynamics at the quantum critical point, as done in recent 
experiments23,50. Entering the spin-glass phase adiabatically is also essen-
tial for getting good approximate solutions to optimization problems. 
Universality and the renormalization group suggest that our optimistic 
conclusion extends to a vast family of problems (all problems that share 
the spatial dimensions and the basic symmetries as our spin glass on a 
square lattice, which includes the interaction graph of D-wave devices).
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Fig. 3 | Studying the spectra of even excitations at the critical point.  
a, Sample-averaged subtracted correlation function Q2,s(τ) (‘Fitting process 
and estimating the Euclidean correlation length’ in Methods) becomes 
compatible with zero for moderate values of τ, for all our system sizes. b, Left, 
after computing the Euclidean correlation length η s

e
( ) for each sample, we 

computed for each L the empirical distribution function F(ηe), namely the 

probability F of finding a sample with η η< e
s

e
( )  (note the horizontal error bars). 

Right, the data in the left-hand panel of b, when plotted as a function of the 
scaling variable u (equation (4)) do not show any L residual L dependence other 
than for our smallest sizes L = 8 and 12. Points in a and b are statistical averages, 
and errors are one standard deviation. Our data set is fully described in 
Extended Data Table 1.
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One may worry that unavoidable experimental effects, for example, 
tiny but random longitudinal magnetic fields, could break the parity 
symmetry. Fortunately, the mechanism discussed in the previous 
paragraph still protects the annealer. Indeed, the gaps internal to 
the parity sectors, Δe and Δo, are similar and much larger than the 
parity-mixing gap Δ. Hence, undesired parity errors will mostly mix 
the ground states in the even and odd sectors (which are essentially 
equivalent, as far as the solution to the classical optimization problem 
is concerned).

We should mention as well that the combination of critical exponents 
zν has been measured in a very recent experiment50, which produced 
results in excellent agreement with those reported in this work.

However, our findings pose, as well, many questions. Let us list a few.
We have seen that entering the spin-glass phase with a quantum 

annealer should be doable with an effort polynomial in the number 
of qubits. However, to solve an optimization problem, one still needs 
to go adiabatically all the way from the critical point to Γ = 0. This is a 
difficult journey, at least for problems with D → ∞ spatial dimensions 
(refs. 44,51,52). However, it has been recently announced that an alge-
braic speed-up, compared to classical algorithms, is within reach23. As 
we said above, having a finite exponent z is a basic prerequisite also for 
an algebraic speed-up.

We know that D = 2 Ising glasses may be both hard and easy to solve 
on a classical computer. For instance, problems formulated for a square 
lattice with nearest-neighbour interactions can be solved quite effi-
ciently (see, for example, ref. 53). However, adding second-neighbour 
interactions results in an NP-complete problem. As far as we know, it 
is still unclear whether or not these two problems belong to the same 
(quantum) computational complexity class. As the second-neighbour 
interactions should play no role at Γc, differences between the two kind 
of problems (if any) should arise for transverse fields Γ < Γc.

In this work, we have chosen problem instances with uniform prob-
ability, but this is not a necessity. One could focus, instead, on samples 
that are particularly hard to solve with a classic digital computer54–56. It 
would be interesting to test whether the benign scaling in equation (4) 
remains unchanged under these challenging circumstances. We know 
that these classically hard problems are even harder to solve for a 

D-wave annealer57, but there are many possible explanations for this 
poor performance of quantum hardware (see, for example, refs. 58,59).

Another possible avenue of research is concerned with three- 
dimensional systems. A recent experiment conducted on D-wave hard-
ware suggests z ≈ 1.3 (ref. 23). Whether this finite dynamic exponent is 
for only even excitations (as would be the case in two dimensions) or it 
is unrestricted6 is, probably, worthy of investigation.
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Methods

Model and simulations
Our quantum spins occupy the nodes of a square lattice of side L, 
endowed with PBCs. The coupling matrix Jx,y in equation (1) is non- 
vanishing only for nearest lattice neighbours. A problem instance, or 
sample, is defined by the choice of the Jx,y matrix. The non-vanishing 
matrix elements, Jx,y = Jy,x are random, independent variables in our 
simulations. Specifically, we chose Jx,y = ± J0 with 50% probability. We 
chose energy units such that J0 = 1.

Given an observable A, we shall refer to its thermal expectation value 
in a given sample as A⟨ ⟩ (see equation (8) below; the temperature is as 
low as possible, ideally T = 0). Thermal expectation values are averaged 
over the choice of couplings (quenched disorder; see, for example,  
ref. 25). We shall denote the second average (over disorder) as A⟨ ⟩.

Crucial symmetries. The most prominent symmetries in this problem 
are the gauge and the parity symmetries. Both symmetries are exact for 
the Hamiltonian (equation (1)) and for its Trotter–Suzuki approxima-
tion (‘The Trotter–Suzuki formula’).

The parity symmetry P σ= ∏x x
X is a self-adjoint, unitary operator that 

commutes with the Hamiltonian (equation (1)), as well as with the exact 
(equation (7)) and approximate (equation (8)) transfer matrices. The 
Hilbert space is divided into two subspaces of the same dimension 
according to the parity eigenvalues, which are either +1 (even states) 
or −1 (odd states). We also classify operators as either even (P P =A A) 
or odd ( A AP P = − ). Matrix elements of even operators are non-vanishing 
only if the two states have the same parity (in contrast, the parity of the 
states should differ for odd operators). An oversimplified but enlight-
ening cartoon of the spectra in our problem is represented in Extended 
Data Fig. 1 (see below some exact-diagonalization results that support 
this view).

Parity symmetry is just a particular type of gauge transformation. 
Let us arbitrarily choose for each site nx = 0 or 1. The corresponding 
gauge operator G σ= ∏ ( )n x x

X n
{ }x

x  is self-adjoint and unitary. It trans
forms the Hamiltonian in equation (1) into a Hamiltonian of the same 
type but with modified couplings61: J J→ ( − 1) .x y x y

n n
, ,

+x y  The gauge sym-
metry is enforced by the process of taking the disorder average. Indeed, 
the gauge-transformed coupling matrix has the same probability as 
the original one. Hence, meaningful observables should be invariant 
under an arbitrary gauge transformation. The parity operator is 
obtained by setting nx = 1 for all sites, which does not modify Jx,y (hence, 
parity is a symmetry for a given problem instance not just a symmetry 
induced by the disorder average).

The Trotter–Suzuki formula. We follow the Trotter–Suzuki approxima-
tion62,63, which replaces the original quantum spins on an L × L lattice by 
classical spins on an L × L × Lτ lattice, Sx,τ = ±1. The extra dimension τ is 
named Euclidean time. We shall write S as a shorthand for the LDLτ spins 
in the system (D = 2, here). Instead, Sτ will refer to the LD spins at time τ. 
We take equal-strength couplings along the time and space directions 
(see, for example, ref. 5). The probability of S is given by

E
E∑p

Z
Z( ) =

e
, = e , (5)

k
k

− ( )

{ }

− ( )S
S

S

S

where Z is the partition function, and

∑ ∑ ∑J S S S S

Γ
k

k
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1
2

+ ,

= −
1

2
log tanh .

(6)τ
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S

Although we have not done so, note that one could use a different  
coupling over Euclidean time, kτ, which would relate k and Γ  

as Γ k= − log tanhk τ
1

2  or, equivalently, k kΓ= − log tanh( )τ
1
2  (the 

continuum-time limit at T = 0 would be reached by taking Lτ → ∞ first 
and, afterwards, k → 0). PBCs are assumed over Euclidean time. Below, 
we shall find it useful to consider as well APBCs along only the τ direc-
tion. Besides, as the reader may check, k is a monotonically decreasing 
function of Γ.

Possibly the most direct connection between the D + 1 classical  
spin system and the original quantum problem is provided by the trans-
fer matrix T͠  (refs. 64,65). Let us define H J σ σ= − ∑ x y x y x

Z
y
Z

0
1
2 , ,  and 

H ∑Γ σ= − x x
X

1 . The quantum thermal expectation value at temperature 
T = 1/(kLτ) is

⟨⟨ ⟩⟩ =
Tr

Tr
, = e . (7)

L

L
k− ( + )

τ

τ
0 1A

A T

T
T H H

͠
͠

͠

Now, for A xA σ= ({ })Z
cl , Acl being an arbitrary function, the Trotter–

Suzuki approximation amounts to substituting the true transfer matrix 
in equation (7) by its proxy T  ( ͠ k= + ( )3T T O ):

A
AT

T
T H H H⟨ ⟩ =

Tr
Tr

, = e e e . (8)
L

L
k k k− /2 − − /2

τ

τ
0 1 0

⟨ ⟩A  can be computed as well by averaging Acl(Sτ), evaluated over con-
figurations distributed according to equation (5). (The value of τ is 
arbitrary; hence, one may gain statistics by averaging over τ).

Finally, let us emphasize that both T  and T͠  are self-adjoint, positive- 
definite, transfer matrices that share the crucial symmetries discussed 
in ‘Crucial symmetries’.

Observables
The quantities defined in ‘One-time observables’ were aimed at prob-
ing the ground state as k (and, hence, Γ (equation (6))) varies. These 
quantities will always be averaged over disorder before we proceed 
with the analysis.

Instead, the time correlations in ‘Two-times observables’ will probe 
the excitations. These time correlations will be analysed individually for 
each sample (sample-to-sample fluctuations are considered in ‘Fitting 
process and estimating the Euclidean correlation length’).

One-time observables. We consider the LD × LD correlation matrices 
M and M̂  (refs. 45,46) with p = (2π/L, 0) or (0, 2π/L):

M σ σ M M= ⟨ ⟩, [ ] = e . (9)x y x
Z

y
Z

x y x y
x y

, , ,
i ⋅( − )̂ p

The n-body spin-glass susceptibilities at both zero and minimal 
momentum are

χ
M

L
F

L
MM=

Tr[ ]
, =

1
Tr[ ]. (10)n

n

D
n

D
n( ) ( ) −1̂

χ(n) and F (n) give us access to the second-moment correlation length 
(see, for example, ref. 48):

ξ
L

χ
F

=
1

2sin(π/ )
− 1 . (11)n

n

n
( )

( )

( )

As L grows, χ (n) and ξ (n) remain of order 1 in the paramagnetic phase, 
whereas, in the critical region, they diverge as χ L∝n γ ν( ) /n( )

 and ξ (n) ∝ L. 
In the spin-glass phase, χ(n) ∝ LD(n−1) (ξ (n) ∝ La with some unknown expo-
nent a > 1).

Our χ(n=2) and ξ (n=2) are just the standard quantities in the spin-glass lit-
erature66,67. In fact, in the simplest approximation (see ref. 47 for a more 
paused exposition) at criticality and for large separations r between x 
and y, Mx,y ∝ vxvy/ra with vx, vy of order 1 (so, γ(n)/ν = (n − 1)D − na in this 
approximation). Hence, if D > a, γ(n) grows with n. Indeed, n = 3 turns out 
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to be a good compromise between statistical errors, which grow with n, 
and a strong enough critical divergence of χ(n) (χ(n=2) barely diverges5).

Besides, we computed the Binder cumulant using Q2 = LDχ(n=2) as

∑B
Q

Q
Q σ σ σ σ= , = ⟨ ⟩ . (12)

x y z u
x
Z

y
Z

z
Z

u
Z4

2
2 4

, , ,

2

The Gaussian nature of the fluctuations in the paramagnetic phase 
causes B to approach 3 as L grows for fixed k < kc. B reaches different 
large-L limits for fixed k ≥ kc (for k > kc, different behaviours are possible, 
depending on the degree of replica symmetry breaking68).

Two-times observables. Let us start by defining the time-correlation 
function of an observable A (for simplicity, consider a product of σZ 
operators at some sites):

C τ( ) =
Tr

Tr
. (13)

τ L τ

L

−τ

τ

A T A T

TA

AC τ( ) can be computed from our spin configurations distributed  
according to the classical weight (equation  (5)) by averaging 

S S∑ A A L( ) ( )/τ
L

τ τ τ τ=0
−1

cl cl +
2τ

1 1 1
 (notation as in ‘The Trotter–Suzuki formula’).

Specifically, we have considered

C τ
C τ

L
Q τ

C τ

L
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∑ ( )
, ( ) =

∑ ( )
. (14)x σ

τ
D

x y σ σ

τ
D2

,

2
x
Z
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y
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Let us briefly recall some general results64,65 for AC τ( ) that follow from 
the spectral decomposition of the transfer matrix (to simplify the nota-
tion, let us first disregard the parity symmetry and consider PBCs).

The τ-dependence is given by the additive contribution of every pair 
of states En < Em (n = 0 is the ground state). Each pair generates an expo-
nentially decaying term B [e + e ]n m

τ η L τ η
,

− / −( − )/n m τ n m, ,  with correlation 
length ηn,m = 1/(kΔn,m), where Δn,m = (Em − En). The amplitude is 

∣ ∣ ∣ ∣ ̂B n A m Z= e ⟨ ⟩ /n m
L η

,
− / 2τ n0, , with ̂ ∑Z = 1 + en

L η
> 0

− /τ n0, . Hence if Lτ ≫ η0,n 
the contribution of this pair of states can be neglected. Besides, in the 
presence of parity symmetry, for even A we find Bn,m = 0 if the parity of 

n⟩∣  and ∣m⟩ differ (for odd operators, Bn,m = 0 if both parities are equal). 
This is why the largest correlation length for Q2(τ) is the maximum of 
ηe and ηo, whereas the relevant correlation length for C(τ) is η (Extended 
Data Fig. 1).

Moreover, for even operators, every state ∣n⟩ provides an additive 
contribution to a τ-independent term (namely, the plateau in Extended 
Data Fig. 2): ∣ ∣ ∣ ∣ ̂n A n Ze ⟨ ⟩ /L η− / 2τ n0, . Instead, for odd operators, ∣ ∣ ∣ ∣n A n⟨ ⟩ = 0 
(hence, odd operators lack a plateau). To manage a situation with 
APBCs, one just needs to add an extra parity operator as a final factor 
in both the numerator and the denominator of both equations (8) and 
(13). If parity is a symmetry, as is the case for our problem, Z  ̂is modified 
as ̂ ∑Z p= 1 + en n

L η
>0

− /τ n0,  (pn = ±1 is the parity of the state) and the con-
tribution to the APBC plateau gets an extra factor pn, as well.

One may wish to average over samples C τ( )A . The dominant time 
decay for a given sample will be approximately Be−τ/η. Hence, the time 
decay for the averaged AC τ( ) is an integral ∫dBdηρ(B, η)Be−τ/η, where 
ρ(B, η) is the corresponding probability density (over the samples). 
For simplicity, let us assume that fluctuations of the amplitude B are 
mild. Then, the scaling in equation (4) implies that, for large Lτ, the 
asymptotic time decay of AC τ( ) is a function of the scaled time τ/Lz, 
where z is a dynamic exponent that applies to the parity of A. One just 
needs to change the integration variable as u = η/Lz and recall the scal-
ing form ρ(η) ≈ f(η/Lz)/Lz, where f is a suitable scaling function.

The limit of zero temperature. We shall assume that we can reach Lτ 
large enough so that e , e 1L η L η− / − /τ τe o ≪  (the notation is explained in 
Extended Data Fig. 1). Moreover, we shall not assume that ϵ ≡ e L η− /τ  is 
small (in fact, for some samples, one could even have ϵ ≈ 1).

Now, consider an even operator A, and let us define ∣ ∣= ⟨0 0 ⟩e e eA A  
and A A= ⟨0 0 ⟩o o o∣ ∣  (the thermal expectation value at exactly T = 0  
is Ae). The plateau at τ ≫ ηe, ηo (Extended Data Fig. 2) is

≫C τ η η
ζϵ

ζϵ
( , ) = + [ − ]

1 +
, (15)e o e

2
o
2

e
2A A AA

where ζ = 1 for PBCs and ζ = −1 for APBCs. Thus, we get for the plateau 
of Q2(τ)

Q τ η η Q Q Q
ζϵ

ζϵ
( , ) = + [ − ]

1 +
, (16)2 e o 2,e 2,o 2,e≫

where Q2,e and Q2,o are, respectively, the average over all pairs (x, y) of 
Ae and Ao ( σ σ= x

Z
y
ZA ; recall equation (14)). Let us give a few hints about 

the derivation of equations (15) and (16). The contribution of state n⟩∣  
to the plateau is n A n p Ze ⟨ ⟩ /L η

n
− / 2τ n0, ∣ ∣ ∣ ∣ ̂ where pn = 1 for PBCs whereas, 

for APBCs, pn = 1 for even states and pn = −1 for odd states. As explained 
before, we just keep the states ∣0 ⟩e  and 0 ⟩o∣  when estimating the  
plateau.

To excellent numerical accuracy, the left-hand side of equation (16) 
is also the value one gets for M LTr / D2 2  (Extended Data Fig. 2). In fact, 
the difference between A⟨ ⟩2 and its plateau is A Aζϵ ζϵ( − ) /(1 + )e o

2 2  
(hence, quadratic in A A( − )e o  rather than linear, as in equation (15)).

Now, despite their simplicity, two important consequences follow 
from equations (15) and (16).

First, the limit T → 0 (or Lτ → ∞) is approached monotonically. Fur-
thermore, the systems with PBCs and APBCs (Extended Data Fig. 2) 
approach the limit from opposite sides. We have explicitly checked 
all our samples, finding no instance where the APBC plateau lies above 
the PBC one (it is intuitively natural to expect that the PBC system will 
be more ordered than the APBC one). Hence, we conclude that the 
samples with PBCs converge to T → 0 from above, whereas the APBC 
ones converge from below.

Second, as 0 < Q2(τ) < 1 also for APBCs, one has ≫Q τ η η0 < ( , )2
APBC

e o
Q< < 12,e . Thus, ∣ ≫ ∣Q τ η η Q( , ) − < 12

APBC
e o 2,e , and we conclude that 

∣Q2,o − Q2,e∣ < (1 − ϵ)/ϵ. Hence, quite paradoxically, the particularly dif-
ficult samples with ϵ ≈ 1 generate a very small finite-temperature bias 
in the PBC estimator (compare the Lτ dependence of the PBC and the 
APBC plateaus in Extended Data Fig. 2). This is why we are able to reach 
the T → 0 limit for the even operators, even if a fraction of our samples 
suffers from a large value of ϵ.

Simulation details. We followed two approaches: exact diagonalization 
of the transfer matrix (equation (8)) and Markov chain Monte Carlo 
simulations of the classical weight (equation (5)). GPUs were crucial 
for both. We provide here only the main details (the interested reader 
is referred to ref. 69).

Exact diagonalization is limited to small systems (up to L = 6 in our 
case). Indeed, the transfer matrix has a size 2 × 2L L2 2

. Parity symmetry 
has allowed us to represent T  as a direct sum of two submatrices of half 
that size69. Specifically, we computed the eigenvalues e kE− 0,e, e kE− 1,e, 
e kE− 0,o and e kE− 1,o, as well as the corresponding eigenvectors ∣0 ⟩e , ∣0 ⟩o , 
∣1 ⟩e  and 1 ⟩o∣ , for 1,280 samples of L = 6 at k = 0.31 and 0.305 (the same 
samples at both k values). We repeated the calculations for a subset of 
350 samples at k = 0.3 and 0.295. We managed to keep the computing 
time within an acceptable time frame of 20 min per diagonalization 
using 256 GPUs, thanks to a highly tuned custom matrix-vector prod-
uct69. These computations have proven to be invaluable in the process 
of taking the limit Lτ → ∞ (‘More about exact diagonalization’ in  
Methods).

Our Monte Carlo simulations used the parallel tempering algorithm70, 
implemented over the k parameter in equation (5), to ensure equilibra-
tion. We equilibrated 1,280 samples for each lattice size (Extended Data 
Table 1). As a rule, we estimated errors using the bootstrap method71, 
as applied to the disordered average.



We simulated six real replicas of every sample (six statistically 
independent simulations of the system), for several reasons. Replicas 
allowed us to implement the equilibration tests based on the tempering 
dynamics56. They also provided unbiased estimators of products of 
thermal averages (equation (10)). Finally, fluctuations between rep-
licas allowed us to estimate errors for the time-correlation functions 
(equation (14)), as computed in a single sample (‘Fitting process and 
estimating the Euclidean correlation length’).

The Monte Carlo code exploits a three-level parallelization (multispin 
coding, domain decomposition and parallel tempering), which kept 
the spin-update time below 0.5 ps (ref. 69), competitive with dedicated 
hardware22.

More about exact diagonalization
The schematic representation of the spectrum in Extended Data Fig. 1 
is based on the distribution functions in Extended Data Fig. 3 (we typi-
cally compute the inverse distribution function; see ‘Fitting process 
and estimating the Euclidean correlation length’ for details).

Indeed, the correlation length η displays very large sample-to-sample 
fluctuations (to the point that a logarithmic representation is advisable) 
and a very strong k-dependence (Extended Data Fig. 3, left). In contrast, ηe 
is always a number of order one in our L = 6 samples (Extended Data Fig. 3, 
middle). Furthermore, ηo/ηe ≈ 1 in all cases (Extended Data Fig. 3, right).

In fact, the distribution for η is a Lévy flight (Fig. 4c; for large η, 
F η B η( ) = 1 − / b ). The mechanism allowing exponent b to vary with k 
(hence, with transverse field (equation (6))) is sketched in Extended 
Data Fig. 4. Let us compare the value of η for the same sample at k1 and 
k2 (k1 < k2). With great accuracy, η k α η k( ) = [ ( )] β

2 1
1+ , where α and β are 

constants (for fixed k1 and k2) and β > 0. Thus, ordering samples accord-
ing to their η(k1) is the same as ordering by η(k2), because one is a mono-
tonically increasing function of the other. Hence, the same sample 
occupies percentile F in the distribution for both k1 and k2. It follows 
that b(k2) = b(k1)/(1 + β) for the exponent characterizing the Lévy flight. 
In other words, because b(k2) < b(k1), the tail at large η becomes heavier 
as k increases (see ‘On the magnetic susceptibilities’ for an extended 
discussion).

The critical point and critical exponents
After taking care of the Lτ → ∞ limit (within errors) in our study of the 
phase transition, we still need to cope with the finite spatial dimen-
sion L. We shall do so using finite-size scaling72–75 (Fig. 1c). The main 
questions we shall address are the computation of the critical expo-
nents and the estimation of the critical point. Our main tool will be the 
quotients method48,60,76, which, surprisingly, keeps our two questions 
somewhat separate.

The quotients method starts by comparing a dimensionless quantity 
at two sizes La < Lb (in our case, ξ (3)/L as a function of k). First, we located 
a coupling k*(La, Lb) such that the curves for La and Lb cross (Fig. 1b). 
Now, for dimensionful quantities A, scaling in the thermodynamic limit 
as ξ x ν/A , we consider the quotient Q A A= /A L La b

 at k*(La, Lb). Barring scal-
ing corrections, Q L L= ( / )A a b

x ν/A , which yields an effective estimate of 
xA/ν. Indeed, considering only the leading correction to the scaling 
exponent ω, we have for the effective exponent:

x
ν

x
ν L L

D L
D L

= +
1

log( / )
log

1 +
1 +

, (17)A

L L

A

b a

A b
ω

A a
ω

,

−

−
a b

where DA is an amplitude. Our estimates for the effective exponents 
can be found in Extended Data Table 2. Yet, effective exponents need 
to be extrapolated to the thermodynamic limit through equation (17). 
Unfortunately, we have not been able to estimate exponent ω, as there 
were two difficulties. First, the range of L values at our disposal was 
small. Second the analytic background48 for the r = 2 observables and 
for the Binder parameter (‘One-time observables’) compete with the L−ω 
corrections. Hence, we followed an alternative strategy. We fitted our 

effective exponents to equation (17) with fixed ω (the fitting parameters 
were the extrapolated xA/ν and the amplitude DA). To account for our 
ignorance about ω, we made it vary in a wide range 0.5 ≤ ω ≤ 2. The cen-
tral values in equations (2) and (3) were obtained with ω = 1, whereas the 
second error estimate accounts for the ω-dependence of xA/ν. Indeed, 
the first error estimate is the statistical error as computed for ω = 1, 
whereas the second error estimate is the semi-difference between the 
extrapolations to infinite size obtained with ω = 2.0 and ω = 0.5. To take 
into account the data correlation, we employed a bootstrap method77. 
We considered only the diagonal part of the covariance matrix in the 
fits and performed a new fit for every bootstrap realization. Errors were 
computed from the fluctuations of the fitting parameters. Fortunately, 
the systematic errors turned out to be comparable (for 1/ν smaller) 
with the statistical ones.

Like the critical point, we expected scaling corrections of the form 
k*(La, Lb) = kc + DkF(La, Lb), where Dk is an amplitude78:

( )F L L L
s

s
s

L
L

( , ) =
1 −

− 1
, = . (18)a b a

ω ν
ω

ν
b

a

− + 1 −

1/

Unfortunately, this result is not of much use without a ω estimate. 
Fortunately, see Extended Data Table 2 and Extended Data Fig. 5, the 
values of k*(La, Lb) obtained from ξ (3)/L seem not to depend on size. In 
fact, our estimate for kc in equation (2) is an interval that encompasses 
all our results (the shaded area in Extended Data Fig. 5). Furthermore, 
the crossing points for B and ξ (2)/L (Extended Data Fig. 5) seem also 
reasonably well represented by equation (18).

Fitting process and estimating the Euclidean correlation length
Our aim in this section is to determine the relevant correlation lengths 
for C(τ) and Q2(τ) at a fixed k, for our NS = 1,280 samples. The results are 
characterized through their empirical distribution function (Figs. 3  
and 4). Given that NS is large, we needed an automated approach.

The first step was estimating, for a given sample, C(τ) and Q2(τ), as 
well as their standard errors, by using our six replicas. Now, the analy-
sis of a noisy correlation function (such as C(τ) and Q2(τ); see, for exam-
ple, Extended Data Fig. 2) needs a fitting window79,80. We chose the 
window upper limit as ∣τ τ f τ σ≡ min{ ( ) = 3.5 }f

τ
f τw, ( ) , with f(τ) either C(τ) 

or Q2,s(τ) = Q2(τ) − Q2,pl, where Q2,pl is the plateau (Extended Data Fig. 2) 
and σf(τ) is the corresponding standard error. We faced two problems. 
First, for odd C(τ), some samples have τw,C ≥ Lτ/2. For these samples, 
η > Lτ, and hence, it was impossible to estimate them (Fig. 4b). Q2,s(τ) 
was not affected by this problem (Fig. 3). Second, we needed to estimate 
the plateau Q2,pl. To do so, we fitted Q2(τ) for τ ∈ [Lτ/4, Lτ/2] to a constant 
Q2,pl. In the few exceptions where this fit was not acceptable (as deter-
mined by its figure of merit χ2/degrees of freedom (dof) computed 
with the diagonal part of the covariance matrix), we proceeded as 
explained below (we used τ L= /2Q τw, 2

 in those cases).
We determined the correlation lengths through fits to C τ( ) =

B[e + e ]τ η τ L η− / ( − )/τ  and Q τ Q B B( ) = + e + eτ η τ η
2 2,pl e

− /
o

− /e o. The fitting para
meters were the amplitudes and the correlation lengths (and, for the 
above-mentioned exceptional samples, also Q2,pl). Actually, for Q2(τ) 
we considered fits with one and with two exponential terms, keeping 
the fit with the smallest χ2/dof, as we could not determine which of the 
two correlation lengths obtained in the fit corresponded to the even 
gap (Extended Data Fig. 1). Hereafter, ηe is the larger of the two. As for 
the lowest limit of the fitting window, we started from τ = 1Qmin, 2

 and 
τ τ= /10C Cmin, w, , and we kept increasing the corresponding τmin until  
χ2/dof went below 0.5 for Q2 (below 1 for C(τ)).

Finally, we determined the empirical distribution function for the 
correlation lengths. Let X be either ηlog  or ηe (see below for some sub-
tleties regarding η). We actually computed the inverse function X[F ] 
by sorting in increasing order the NS values of X and setting X F i N[ = / ]S  
as the ith item in the ordered list. We obtained X[F ] at the value of k of 
interest through linear interpolation of X[F ] computed at the two 
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nearest values of k in the parallel tempering grid. To estimate the errors 
in X[F ], we employed a bootstrap method with 10,000 as the resampling 
value. In each resampling, we randomly picked NS values of X. For the 
chosen sample, we extracted X from a normal distribution centred in 
X as obtained from the fit. The standard deviation was the fitting error 
for X.

For X η= log , we needed to cope with the problem that we could 
determine X for only NOK of our NS samples. We decided to determine 
X[F ] only up to F N N N N N N≡ ( − 4 ( − ) / )/safe OK S OK OK S S  (the maximum  
possible F minus four standard deviations). We imposed for every 
bootstrap resampling that X could be obtained in at least FsafeNS samples 
(this limitation was irrelevant in practice).

Let us conclude by mentioning that the estimates in equation (4) 
were obtained through a joint fit for ηe[F ], with F = 0.5, 0.6, 0.7, 0.8 
or 0.9. Errors were estimated as explained in ‘The critical point and 
critical exponents’.

On the magnetic susceptibilities
The sample-averaged linear susceptibility to an external magnetic field 
at T = 0, χ h

lin
( ), can diverge only if C τ( ) decays slowly for large τ (because 
∑χ C τ= 1 + 2 ( )h

τlin
( )

=1
∞

; Extended Data Fig. 6). Yet, the periodicity induced 
by the PBCs (Extended Data Fig. 6a) made it difficult to study the behav-
iour at large τ. Fortunately, representing C τ( ) as a function of 
∼τ τ L τ τ L= sin(π / ) = [1 + ( / )]

L
τ τπ

2 2τ O  greatly alleviated this problem 
(Extended Data Fig. 6b). Thus armed, we could study the long-time 

decay of C τ τ( ) ∝ 1/ b∼∼
 as a function of k (Extended Data Fig. 6c). Indeed, 

b
∼

 decreased as k increased. As C(τ) ≈ Be−τ/η for any sample, the mecha-
nism discussed in ‘More about exact diagonalization’ in Methods is 
clearly at play. The heavy tail of F(η) became heavier as k increased, 
which resulted in a decreasing exponent 

∼
b . In fact, the critical exponent ∼

b = 1 was encountered at k ≈ 0.285, well into the paramagnetic phase 
( χ = ∞h

lin
( )  if 

∼
b ≤ 1).

The Lévy-flight perspective provides a simple explanation for the 
results in refs. 6,41. In a single sample, the different susceptibilities 
to a magnetic field (linear, third-order and so on) are proportional to 
increasing powers of η. Hence, the existence of the disorder average 
of a given (generalized) susceptibility boils down to the existence of 
the corresponding moment of the distribution F(η). As soon as F(η) 
decays for large η as a power law, some disorder-averaged susceptibility 
will diverge (probably a higher-order one). Lower-order susceptibili-
ties diverge at larger values of k. Hence, it is not advisable to use this 
approach to locate the critical point.

Data availability
The data can be obtained from the corresponding author (I.G.-A.P.) 
upon request. Source data are provided with this paper.

Code availability
The authors have made their code publicly available in ref. 69.
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Extended Data Fig. 1 | Schematic representation of the energy spectrum. 
 As it is explained in the main text, the parity symmetry splits the spectra into 
even and odd sectors according to the parity of states. We shall name the even 
eigenvectors of the transfer matrix (8) as 0 ⟩e∣ , 1 ⟩e∣ , …, with corresponding 
eigenvalues e kE− GS, and e k E n− ( GS+Δ ,e) for n = 1, 2, 3, … [we use the shorthand 
Δe = Δ1,e]. For the odd sector, we have 0 ⟩o∣ , ∣1 ⟩o , … with eigenvalues e k E− ( GS+Δ), and 
e k E n− ( GS+Δ+Δ ,o) for n = 1, 2, 3, … [we use the shorthands Δ = E0,o − EGS, and Δo = Δ1,o]. 
Notice that expectation values at T  =  0 are determined solely by ∣0 ⟩e .
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Extended Data Fig. 2 | Quantifying the finite-temperature effects. Even 
correlation functions Q2(τ) defined in Eq. (14), as computed for a single sample 
of L = 20 at k = 0.29 ≈ kc. The corresponding Q2 value calculated from M LTr / D2 2  
is represented by a complementary colored horizontal line. Points are 
statistical averages, and errors are one standard deviation. Our data set is fully 
described in Extended Data Table 1.



Extended Data Fig. 3 | Sample dependence of the Euclidean correlation 
lengths. Empirical distribution function of the different Euclidean correlation 
lengths presented in the system, for different values of k. Data from the exact 

diagonalization of a L = 6 system. Data from k = 0.295, and k = 0.3 are calculated 
over 320 samples, instead of 1280.
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Extended Data Fig. 4 | Dependence on k of the odd correlation length η. 
 The figure shows that the logarithm of the ratio of η(k = 0.31) and η(k = 0.295) 
(computed for the same L = 6 sample through exact diagonalization) is very 
approximately a linear function of η klog ( = 0.295), with a positive slope. The 
figure shows data for the 350 samples that we have studied at both k = 0.295 and 
k = 0.31.



Extended Data Fig. 5 | Determination of the critical point. When studied  
as a function of k on two system sizes La < Lb, the curves for dimensionless 
quantities cross at a point k*(La, Lb), see Fig. 1-b. The figure shows k* (as 
computed for B, ξ (2)/L and ξ (3)/L) versus F(La, Lb) (18). We set 1/ν = 0.7 and ω = 1 to 
compute F(La, Lb). The curves should extrapolate linearly to kc as F(La, Lb) tends 
to zero. The shaded area encompass our uncertainty in the estimation of kc. 
Points are statistical averages, and errors are one standard deviation. Our data 
set is fully described in Extended Data Table 1.
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Extended Data Fig. 6 | The power-law decay with Euclidean time of the odd 
correlation functions. Sample-averaged Euclidean correlation function as a 
function of the Euclidean distance τ (left panel), ∼τ τ L= sin(π / )Lτ

τπ
 to avoid 

distortions due to the periodic boundary conditions (center and right panels). 
Left and center panels show the system size dependence for k = 0.29, despite 

the right panel shows the k-dependence for the bigger system, L = 24 and 
Lτ = 211. The dashed line in the right panel is a guide to the eye to show the 
critical exponent 

∼
b = 1 encountered for k = 0.285 (see Sect. 5.6). Points are 

statistical averages, and errors are one standard deviation. Our data set is fully 
described in Extended Data Table 1.



Extended Data Table 1 | Simulation parameters for the different system sizes

The k ranges have been chosen to ensure the critical point kc belonged to the range [see Eq (2)]. The N° values of k, ≤ ≤k k kmin max, are uniformly distributed. We also provide the number of 
Metropolis sweeps performed (an elementary step consisted of 30 full-lattice Metropolis sweeps, followed by a Parallel Tempering attempt of exchanging the k value).
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Extended Data Table 2 | Size-dependent estimates for the critical point and the critical exponents

Crossing points k*(La, Lb) obtained for ξ(3)/L and the size-dependent, effective critical exponents [see Eq. (17)] as estimated from χ(2) (γ(2)/ν), χ(3) (γ(3)/ν) and ∂kξ(3)/L (1/ν). Errors indicate one standard 
deviation and have been computed using a bootstrap method. Our data set is fully described in Extended Data Table 1.
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