Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Layered hybrid superlattices as designable quantum solids

Abstract

Crystalline solids typically show robust long-range structural ordering, vital for their remarkable electronic properties and use in functional electronics, albeit with limited customization space. By contrast, synthetic molecular systems provide highly tunable structural topologies and versatile functionalities but are often too delicate for scalable electronic integration. Combining these two systems could harness the strengths of both, yet realizing this integration is challenging owing to distinct chemical bonding structures and processing conditions. Two-dimensional atomic crystals comprise crystalline atomic layers separated by non-bonding van der Waals gaps, allowing diverse atomic or molecular intercalants to be inserted without disrupting existing covalent bonds. This enables the creation of a diverse set of layered hybrid superlattices (LHSLs) composed of alternating crystalline atomic layers of variable electronic properties and self-assembled atomic or molecular interlayers featuring customizable chemical compositions and structural motifs. Here we outline strategies to prepare LHSLs and discuss emergent properties. With the versatile molecular design strategies and modular assembly processes, LHSLs offer vast flexibility for weaving distinct chemical constituents and quantum properties into monolithic artificial solids with a designable three-dimensional potential landscape. This opens unprecedented opportunities to tailor charge correlations, quantum properties and topological phases, thereby defining a rich material platform for advancing quantum information science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for preparing superlattice structures.
Fig. 2: The versatile LHSL.
Fig. 3: Designable physical properties in LHSLs.
Fig. 4: Emerging physical properties in LHSLs.
Fig. 5: 3D artificial potential landscape in LHSLs.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available on request.

References

  1. Alferov, Z. I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 73, 767–782 (2001).

    Article  ADS  CAS  Google Scholar 

  2. Ni, Y. et al. Influence of the carbon-doping location on the material and electrical properties of a AlGaN/GaN heterostructure on Si substrate. Semicond. Sci. Technol. 30, 105037 (2015).

    Article  ADS  Google Scholar 

  3. Williams, R. E. Modern GaAs Processing Methods (Artech House Publishers, 1990).

  4. Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. J. Cryst. Growth 27, 118–125 (1974).

    ADS  CAS  Google Scholar 

  5. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  CAS  Google Scholar 

  6. Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Frolov, S. M., Manfra, M. J. & Sau, J. D. Topological superconductivity in hybrid devices. Nat. Phys. 16, 718–724 (2020).

    Article  CAS  Google Scholar 

  9. Biswas, S., Li, Y., Winter, S. M., Knolle, J. & Valentí, R. Electronic properties of α–RuCl3 in proximity to graphene. Phys. Rev. Lett. 123, 237201 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Jin, H.-K. & Knolle, J. Flat and correlated plasmon bands in graphene/α–RuCl3 heterostructures. Phys. Rev. B 104, 045140 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Li, Z. et al. Multiferroicity in manganite/titanate superlattices determined by oxygen pressure-mediated cation defects. J. Appl. Phys. 113, 164302 (2013).

    Article  ADS  Google Scholar 

  14. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  ADS  CAS  Google Scholar 

  17. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017). This paper presented the assembly of large-scale vdW superlattices through layer-by-layer stacking 2D atomic layers grown by chemical vapour deposition.

    Article  ADS  PubMed  Google Scholar 

  19. Jin, G. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16, 1092–1098 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021). This study first demonstrated multidimensional higher-order vdW superlattices constructed by rolling up vdW heterostructures.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Basu, S. et al. Synthesis and properties of lithium-graphite intercalation compounds. Mater. Sci. Eng. 38, 275–283 (1979).

    Article  CAS  Google Scholar 

  23. Ohzuku, T., Iwakoshi, Y. & Sawai, K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). This study reported the first LHSL used in a spin-tunnelling junction, showing excellent spin polarization ratio.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). This study demonstrated the first bulk monolayer semiconductor prepared with electrochemical intercalation.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wan, Z. et al. Unconventional superconductivity in chiral molecule–TaS2 hybrid superlattices. Nature 632, 69–74 (2024). This work presented the first observation of field-free superconducting diode effect in chiral-molecule-intercalated superconducting LHSLs.

  27. Hamaue, Y. & Aoki, R. Effects of organic intercalation on lattice vibrations and superconducting properties of 2H-NbS2. J. Phys. Soc. Jpn. 55, 1327–1335 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Shi, M. Z. et al. FeSe-based superconductors with a superconducting transition temperature of 50 K. New J. Phys. 20, 123007 (2018).

    Article  ADS  CAS  Google Scholar 

  29. Wu, H. et al. Spacing dependent and cation doping independent superconductivity in intercalated 1T 2D SnSe2. 2D Mater. 6, 045048 (2019).

    Article  CAS  Google Scholar 

  30. Zhang, H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).

    Article  CAS  Google Scholar 

  31. Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Zheng, G. et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 125, 47202 (2020).

    Article  ADS  CAS  Google Scholar 

  33. Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022). This paper represents a critical report of introducing magnetic ordering in LHSLs.

    Article  PubMed  Google Scholar 

  35. Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).

    Article  CAS  Google Scholar 

  36. Zhang, J., Sun, J., Li, Y., Shi, F. & Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 17, 1741–1747 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Pereira, J. M. et al. Percolating superconductivity in air‐stable organic‐ion intercalated MoS2. Adv. Funct. Mater. 32, 2208761 (2022).

    Article  CAS  Google Scholar 

  38. Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017). This paper first reported the signature of coexistence of superconductivity and magnetism in LHSLs.

    Article  CAS  PubMed  Google Scholar 

  39. Tezze, D. et al. Tuning the magnetic properties of NiPS3 through organic-ion intercalation. Nanoscale 14, 1165–1173 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).

    Article  CAS  Google Scholar 

  41. Zhou, J. et al. Modular assembly of a library of hybrid superlattices and artificial quantum solids. Matter 7, 1131–1145 (2024). The above two studies first used the exfoliation and co-assembly method to prepare various LHSLs that are difficult to access using chemical and electrochemical intercalation.

    Article  Google Scholar 

  42. Chen, X. et al. Stage-1 cationic C60 intercalated graphene oxide films. Carbon 175, 131–140 (2021).

    Article  CAS  Google Scholar 

  43. Zhao, Y. et al. Aggregation‐induced emission luminogens for direct exfoliation of 2D layered materials in ethanol. Adv. Mater. Interfaces 7, 2000795 (2020).

    Article  CAS  Google Scholar 

  44. Pinkard, A., Champsaur, A. M. & Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 51, 919–929 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, W., Tan, P. H., Liu, J. & Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys. Mater. 3, 042006 (2020).

    Article  CAS  Google Scholar 

  47. Zhang, H. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 18, 1425–1430 (2022). This study reports 2D Ising superconductivity in LHSLs.

    Article  CAS  Google Scholar 

  48. Zhou, B. et al. A chemical-dedoping strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2. Nat. Synth. 3, 67–75 (2023).

    Article  ADS  Google Scholar 

  49. Zhou, B. et al. Giant second harmonic generation in bulk monolayer MoS2 thin films. Matter 7, 2448–2459 (2024).

    Article  CAS  Google Scholar 

  50. Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Medina, E., González-Arraga, L. A., Finkelstein-Shapiro, D., Berche, B. & Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142, 194308 (2015).

    Article  ADS  PubMed  Google Scholar 

  53. Dalum, S. & Hedegård, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Bian, Z. et al. Hybrid chiral MoS2 layers for spin-polarized charge transport and spin-dependent electrocatalytic applications. Adv. Sci. 9, 2201063 (2022).

    Article  CAS  Google Scholar 

  55. Bian, Z. et al. Chiral van der Waals superlattices for enhanced spin‐selective transport and spin‐dependent electrocatalytic performance. Adv. Mater. 35, 2306061 (2023).

    Article  CAS  Google Scholar 

  56. Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Shen, B., Kim, Y. & Lee, M. Supramolecular chiral 2D materials and emerging functions. Adv. Mater. 32, 1905669 (2020).

    Article  CAS  Google Scholar 

  58. Gamble, F. R., DiSalvo, F. J., Klemm, R. A. & Geballe, T. H. Superconductivity in layered structure organometallic crystals. Science 168, 568–570 (1970). This is one of the earliest studies on tailored superconductivity in LHSLs.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Gamble, F. R., Osiecki, J. H. & DiSalvo, F. J. Some superconducting intercalation complexes of TaS2 and substituted pyridines. J. Chem. Phys. 55, 3525–3530 (1971).

    Article  ADS  CAS  Google Scholar 

  60. Woollam, J. A. & Somoano, R. B. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2. Phys. Rev. B 13, 3843–3853 (1976).

    Article  ADS  CAS  Google Scholar 

  61. Koike, Y., Tanuma, S., Suematsu, H. & Higuchi, K. Superconductivity in the graphite-potassium intercalation compound C8K. J. Phys. Chem. Solids 41, 1111–1118 (1980).

    Article  ADS  CAS  Google Scholar 

  62. Zhao, D. et al. Evidence of finite-momentum pairing in a centrosymmetric bilayer. Nat. Phys. 19, 1599–1604 (2023).

    Article  CAS  Google Scholar 

  63. Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite-momentum superconductors. Proc. Natl Acad. Sci. 119, e2119548119 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  CAS  Google Scholar 

  66. Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Hsu, Y.-T., Vaezi, A., Fischer, M. H. & Kim, E.-A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 8, 14985 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Wu, Y., Li, D., Wu, C. L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2023).

    Article  ADS  Google Scholar 

  71. Ryu, Y. K., Frisenda, R. & Castellanos-Gomez, A. Superlattices based on van der Waals 2D materials. Chem. Commun. 55, 11498–11510 (2019).

    Article  CAS  Google Scholar 

  72. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  73. Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Pereira, J. M., Tezze, D., Ormaza, M., Hueso, L. E. & Gobbi, M. Engineering magnetism and superconductivity in van der Waals materials via organic‐ion intercalation. Adv. Phys. Res. 2, 2200084 (2023).

    Article  Google Scholar 

  75. Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B 81, 041203 (2010).

    Article  ADS  Google Scholar 

  76. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  77. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  ADS  CAS  Google Scholar 

  79. Wu, Y. et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 11, 3860 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  80. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Chen, J. et al. Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator heterostructures. Nano Lett. 19, 6144–6151 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Zhang, C. et al. Chiral helimagnetism and one-dimensional magnetic solitons in a Cr-intercalated transition metal dichalcogenide. Adv. Mater. 33, 2101131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Du, K. et al. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc. Natl Acad. Sci. 118, e2023337118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liebmann, M. et al. Giant Rashba-type spin splitting in ferroelectric GeTe(111). Adv. Mater. 28, 560–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Rinaldi, C. et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 18, 2751–2758 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Djani, H. et al. Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides. npj Quantum Mater. 4, 51 (2019).

    Article  ADS  Google Scholar 

  87. Yao, Q.-F. et al. Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Phys. Rev. B 95, 165401 (2017).

    Article  ADS  Google Scholar 

  88. Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).

    Article  ADS  Google Scholar 

  89. Picozzi, S. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials. Front. Phys. 2, 10 (2014).

    Article  Google Scholar 

  90. Yang, H., Yang, S. H., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nat. Mater. 9, 586–593 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 439, 825–827 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Bulaevskii, L. N., Kuzii, V. V. & Sobyanin, A. A. Superconducting system with weak coupling to the current in the ground state. JETP Lett. 25, 290–294 (1977).

    ADS  Google Scholar 

  93. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Long-range proximity effects in superconductor-ferromagnet structures. Phys. Rev. Lett. 86, 4096–4099 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Hikino, S., Takahashi, S., Mori, M. & Maekawa, S. Proximity effects in a superconductor/ferromagnet junction. J. Phys. Chem. Solids 69, 3257–3260 (2008).

    Article  ADS  CAS  Google Scholar 

  95. Cai, R. et al. Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface. Nat. Commun. 12, 6725 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Article  CAS  Google Scholar 

  97. Sanchez-Manzano, D. et al. Extremely long-range, high-temperature Josephson coupling across a half-metallic ferromagnet. Nat. Mater. 21, 188–194 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Feofanov, A. K. et al. Implementation of superconductor/ferromagnet/superconductor π-shifters in superconducting digital and quantum circuits. Nat. Phys. 6, 593–597 (2010).

    Article  CAS  Google Scholar 

  99. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Ren, M. Q. et al. Direct observation of full-gap superconductivity and pseudogap in two-dimensional fullerides. Phys. Rev. Lett. 124, 187001 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Wang, J. I. J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Van der Donck, M. et al. Three-dimensional electron-hole superfluidity in a superlattice close to room temperature. Phys. Rev. B 102, 060503 (2020).

    Article  Google Scholar 

  103. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Zarenia, M., Hamilton, A. R., Peeters, F. M. & Neilson, D. Multiband mechanism for the sign reversal of Coulomb drag observed in double bilayer graphene heterostructures. Phys. Rev. Lett. 121, 36601 (2018).

    Article  ADS  CAS  Google Scholar 

  106. Anton-Solanas, C. et al. Bosonic condensation of exciton–polaritons in an atomically thin crystal. Nat. Mater. 20, 1233–1239 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  110. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Huang, D., Choi, J., Shih, C. K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Fujita, M., Washizu, S., Ogura, K. & Kwon, Y. J. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994).

    Article  CAS  Google Scholar 

  117. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  ADS  PubMed  Google Scholar 

  118. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Cook, T. R., Zheng, Y. R. & Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113, 734–777 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Xie, Y. F., Ding, S. Y., Liu, J. M., Wang, W. & Zheng, Q. Y. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J. Mater. Chem. C 3, 10066–10069 (2015).

    Article  CAS  Google Scholar 

  121. Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    Article  ADS  CAS  Google Scholar 

  122. Zhou, Z.-B. et al. Toward azo-linked covalent organic frameworks by developing linkage chemistry via linker exchange. Nat. Commun. 13, 2180 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Qian, C. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat. Rev. Chem. 6, 881–898 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Shuku, Y., Suizu, R., Nakano, S., Tsuchiizu, M. & Awaga, K. Engineering Dirac cones and topological flat bands with organic molecules. Phys. Rev. B 107, 155123 (2023).

    Article  ADS  CAS  Google Scholar 

  125. Liu, C. et al. Controllable van der Waals gaps by water adsorption. Nat. Nanotechnol. 19, 448–454 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Li, B. et al. Twisted bilayer graphene induced by intercalation. Nano Lett. 23, 5475–5481 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article  ADS  CAS  Google Scholar 

  128. Black, C. T., Murray, C. B., Sandstrom, R. L. & Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–1134 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Dalapati, S. et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat. Commun. 6, 7786 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Kelley, E. G. et al. Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway. Nat. Commun. 5, 3599 (2014).

    Article  ADS  PubMed  Google Scholar 

  132. Kaleeswaran, D., Vishnoi, P. & Murugavel, R. [3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C 3, 7159–7171 (2015).

    Article  CAS  Google Scholar 

  133. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Zhang, Z. M. et al. Self-intercalated 1T-FeSe2 as an effective kagome lattice. Nano Lett. 23, 954–961 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Du, L., Chen, Q., Barr, A. D., Barr, A. R. & Fiete, G. A. Floquet Hofstadter butterfly on the kagome and triangular lattices. Phys. Rev. B 98, 245145 (2018).

    Article  ADS  CAS  Google Scholar 

  136. Liu, Y. et al. Room-temperature long-range ferromagnetic order in a confined molecular monolayer. Nat. Phys. 20, 281–286 (2024). This study resolves a highly ordered molecular layer self-assembled on 2DACs.

    Article  CAS  Google Scholar 

  137. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  138. Dines, M. B. Isocyanide intercalation complexes of titanium and tantalum disulfide. Inorg. Chem. 17, 762–763 (1978).

    Article  CAS  Google Scholar 

  139. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

X.D. acknowledges support from the Office of Naval Research through grant no. N00014-22-1-2631. Q.Q. is supported by the National Natural Science Foundation of China (NSFC; grant 12404096), the University Development Fund (UDF010003467) from The Chinese University of Hong Kong, Shenzhen and Guangdong Basic Research Center of Excellence for Aggregate Science.

Author information

Authors and Affiliations

Authors

Contributions

X.D. conceived the Perspective. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Marco Gobbi, Masayuki Suda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Z., Qian, Q., Huang, Y. et al. Layered hybrid superlattices as designable quantum solids. Nature 635, 49–60 (2024). https://doi.org/10.1038/s41586-024-07858-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07858-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing