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Observing the two-dimensional Bose glass in 
an optical quasicrystal

Jr-Chiun Yu1,2, Shaurya Bhave1, Lee Reeve1, Bo Song1,3 ✉ & Ulrich Schneider1 ✉

The presence of disorder substantially influences the behaviour of physical systems. 
It can give rise to slow or glassy dynamics, or to a complete suppression of transport 
as in Anderson insulators1, where normally extended wavefunctions such as light 
fields or electronic Bloch waves become exponentially localized. The combined 
effect of disorder and interactions is central to the richness of condensed-matter 
physics2. In bosonic systems, it can also lead to additional quantum states such as 
the Bose glass3,4—an insulating but compressible state without long-range phase 
coherence that emerges in disordered bosonic systems and is distinct from the 
well-known superfluid and Mott insulating ground states of interacting bosons. 
Here we report the experimental realization of the two-dimensional Bose glass  
using ultracold atoms in an eight-fold symmetric quasicrystalline optical lattice5.  
By probing the coherence properties of the system, we observe a Bose-glass-to- 
superfluid transition and map out the phase diagram in the weakly interacting 
regime. We furthermore demonstrate that it is not possible to adiabatically traverse 
the Bose glass on typical experimental timescales by examining the capability  
to restore coherence and discuss the connection to the expected non-ergodicity  
of the Bose glass. Our observations are in good agreement with recent quantum 
Monte Carlo predictions6 and pave the way for experimentally testing the 
connection between the Bose glass, many-body localization and glassy dynamics 
more generally7,8.

The interplay between disorder and interaction is central to the richness 
of condensed-matter physics as any real-life material will inevitably 
contain a certain degree of impurities and defects, and interparticle 
interactions are almost always present. While disorder tends to localize 
non-interacting particles, leading to Anderson localization1, interac-
tions can counteract this, resulting in conducting ergodic states. More 
generally, the combination of disorder and interactions gives rise to 
rich physics governed by reduced or absent relaxation and transport, 
such as glassy dynamics or non-ergodic many-body localized systems, 
and forms one of the central topics in quantum statistical physics dur-
ing the past decade2.

In bosonic systems, a hallmark of this interplay is the emergence 
of an additional ground-state phase called Bose glass. The Bose glass 
is an insulating but compressible phase without long-range phase 
coherence3,4. It was originally discussed purely as a ground state at 
zero temperature, but has been shown to extend to finite energy9–12. 
In the weakly interacting regime, the Bose glass can be understood by 
starting from a non-interacting Anderson insulator, where in the ground 
state all bosons localize at the lowest potential minimum (Fig. 1c). Add-
ing small repulsive interactions to such systems will lead to bosons 
spilling over into other low-lying orbitals to minimize the interaction 
energy. This regime has also been referred to as an Anderson glass or 
Lifshitz glass13,14. With increasing interactions or density, and thereby 
increasing chemical potential, these originally isolated orbitals will 

form local superfluid puddles that will eventually merge into a global 
superfluid phase.

As the lowest-lying minima are typically located arbitrarily far away 
from each other, any changes or relaxation processes that require redis-
tribution of particles between these distant minima may, in localized 
phases, require arbitrarily long times. In the non-interacting Anderson 
limit, orbitals localized at different local minima can indeed possess 
arbitrarily close energies while having only exponentially weak cou-
plings15, thus resulting in many almost degenerate levels. This absence 
of level repulsion is a hallmark of non-ergodic phases16,17. As a conse-
quence of these exponentially small gaps, even rather slow parameter 
changes within the Bose glass could be expected to take the system 
out of equilibrium.

In fact, although local changes within a localized system can induce 
changes over distances that are large compared with the localiza-
tion length, the characteristic distance could be shown to increase 
only logarithmically with time and thus directly leads to exponen-
tially large timescales in large systems18. Therefore, the thermody-
namic notion of quasistatic or adiabatic changes, where the system 
remains in thermal equilibrium at all times and the process is isen-
tropic, may not apply. This is reminiscent of many-body localization 
(MBL)2 and opens the question to which degree the Bose glass can 
be seen as the low-energy limit of a more general potential bosonic  
MBL phase.
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Disordered interacting bosons have been studied for instance 
using helium-4 in porous media19, Cooper pairs in superconduct-
ing films20 and disordered quantum magnets21. In the context of 
ultracold atoms, the Bose glass has been extensively studied using 
various numerical methods22–30. Previous experiments in one dimen-
sion have shown the loss of coherence but were strongly affected 
by finite-temperature effects31–35 and experiments in three dimen-
sions using speckle disorder studied momentum and quench  
responses36,37.

In this work, we investigate the low-energy states of a weakly interact-
ing Bose gas in a two-dimensional (2D) eight-fold rotationally symmetric 
quasicrystalline optical lattice5. By analysing the momentum distri-
bution of the system, we observe the Bose-glass-to-superfluid phase 
transition, and map out the phase diagram in the weakly interacting 
regime. Furthermore, our work experimentally establishes the non- 
adiabatic nature of the Bose glass, thereby highlighting its continuous  
connection to potential bosonic MBL phases at finite energy density7,8.

A 2D quasicrystalline optical lattice
Quasicrystals are long-range ordered yet not periodic38,39 and thereby 
represent a fascinating middle ground between order and disorder. 
In contrast to purely random potentials, where in one and two dimen-
sions all single-particle eigenstates are localized for any non-vanishing 
disorder40, quasiperiodic potentials support a phase transition from 
extended to exponentially localized states at a finite potential depth41,42, 
thus providing an ideal platform for studying disorder-induced phe-
nomena.

In our experiment, we load a degenerate Bose gas of about 1.2 × 105 
potassium 39K atoms without discernible thermal fraction into a 2D 
quasicrystalline optical lattice using a 45-ms-long exponential ramp 
(Methods). The optical quasicrystal is formed by superimposing four 
independent blue-detuned one-dimensional (1D) lattices in the x–y 
plane at 45° angles, as depicted schematically in Fig. 1a. Each of these 
lattices is a 1D standing wave created by a retro-reflected laser beam at 
wavelength λlat = 725.4 nm. In addition, a deep lattice along the direc-
tion perpendicular to the plane (z axis) effectively slices the system 
into an array of 2D layers (see the grey disks in Fig. 1a). The resulting 
potential is given by
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where V0 and Vz denote the lattice depths, and ki and kz are the res
pective wavevectors ( k k λ| | = = = 2π/i z lat latk ) of the four 1D lattices in 
the x–y plane and the z lattice. The phase offsets ϕi are central to 
describe phasonic degrees of freedom and topological pumping in 
these potentials, but have no significant role in localization in large 
systems43.

Throughout this work, the depths of the horizontal lattices are var-
ied in the range of V0 = 1–4 Erec and the z lattice is kept at Vz = 20 Erec, 
where E ħ k m= /(2 )rec

2
lat
2  is the recoil energy, ħ is the reduced Planck 

constant and m is the atomic mass. The deep z lattice provides a suf-
ficiently strong vertical confinement so that interlayer tunnelling is 
negligible. As a consequence, atoms loaded into the lattice will be 
tightly confined to individual quasi-2D systems that show an eight- 
fold symmetric quasicrystalline structure, as depicted in Fig. 1b.  
A red-detuned dipole trap (Methods) provides an overall harmonic 
confinement and gives rise to an inhomogeneous density distribution 
(Fig. 2c).

Even though the lattice depths used for the 2D quasicrystalline lat-
tice are rather low, the physics of the system is nonetheless captured 
by a dedicated quasiperiodic Bose–Hubbard (QBH) model43, which in 
second quantization reads
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Here ̂ai
† (aî) is the bosonic creation (annihilation) operator on the 

ith lattice site, and ̂ ̂ ̂n a a=i i i
†  is the corresponding number operator. 

The Hamiltonian HQBH
̂  is characterized by three site-dependent para

meters, namely, on-site energies ϵi (neglecting the harmonic confine-
ment), tunnelling energies Jij and on-site interactions Ui ∝ a, whose 
scale can be independently controlled by tuning the atomic s-wave 
scattering length a by means of a Feshbach resonance (Methods).  
We set ≔ϵ ϵmin = 0i0  and use Δ ϵmax i≔  as an intuitive measure of 
‘disorder strength’, even though the modulation in Jij and Ui also  
influences the physics.

In the weakly interacting regime, systems described by the Hamil-
tonian ̂HQBH host a phase transition from Bose glass to superfluid, as 
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Fig. 1 | Lattice potential and sketch of possible phases. a, The 2D 
quasicrystalline optical lattice is generated by superimposing four independent 
1D lattices in the x–y plane, marked by small arrows. A deep z lattice (large arrows) 
divides the system into a series of independent quasi-2D layers. b, Exemplary 
potential in a single layer. c, Repulsive interactions can delocalize an originally 
localized disordered system. From top to bottom, the sketches show the 
transition of the system’s ground state with increasing chemical potential μ, 
starting from the Anderson insulator (AI) in the non-interacting limit (μ = ϵ0 = 0), 
where the disorder strength Δ is above the critical disorder strength for 
localization Δc, over the localized but compressible Bose glass (BG) for weak 
repulsive interactions where bosons spill over into other low-lying minima 
and form local superfluid puddles, into the superfluid (SF) when the chemical 
potential is comparable to or larger than the disorder strength Δ.
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illustrated in Fig. 1c. At strong interactions with U ≫ J, they furthermore 
host commensurate Mott insulators6,43; however, this regime is not 
probed in the current paper (Methods). In this strongly interacting 
regime, the term Bose glass was introduced to describe the phase 
emerging when the charge order of the Mott insulator vanishes for 
strong enough disorder Δ ≈ U (refs. 25,29). This regime shows the same 
phenomenology as the weakly interacting Bose glass, namely being 
a compressible, gapless, insulating phase without long-range coher-
ence, and hence they both belong to the Bose glass phase.

Phase diagram
Our main observable to distinguish superfluid and localized states is 
the momentum distribution detected using time-of-flight (TOF) imag-
ing, that is, by releasing the atomic cloud from all trapping potentials 
and imaging its density distribution after 9 ms of free expansion. This 
can be understood as a matter-wave diffraction experiment where 
waves originating on different lattice sites expand, overlap and then 
interfere. Analogous to diffraction experiments in optics and in peri-
odic lattices44,45, the coherence length, which quantifies the range of 
spatial coherence between lattice sites, determines the width of the 
matter-wave interference peaks. A high-contrast interference pattern 
composed of sharp peaks indicates the presence of long-range phase 
coherence, the signature of the superfluid phase. Localized states with 
only short-range coherence, however, result in an incoherent broad 
momentum distribution.

Figure 2a shows a series of TOF images recorded for different scat-
tering lengths at a fixed lattice depth of V0 = 2.8 Erec. At this lattice 
depth, the single-particle ground state is strongly localized46, and 
the measured momentum distribution at vanishing scattering length 
(top-left panel) correspondingly shows the broad momentum profile 

of a localized Anderson insulator. With increasing interactions, how-
ever, we observe the emergence of initially faint but sharp interference 
peaks, signalling the phase transition from the incoherent Bose glass 
to a superfluid in the high-density core of the cloud. The remaining 
broad background corresponds to the incoherent Bose glass at lower 
densities, where the critical lattice depth is lower and approaches the 
non-interacting limit.

To quantitatively study this transition at the high-density centre 
of the cloud, we choose an observable that can detect the presence 
of even a small superfluid component, namely, the full-width at 
half-maximum (FWHM) of the central peak. The FWHM, extracted from 
2D Gaussian fits, provides an almost binary signature: if there exists 
a superfluid component, the FWHM corresponds to the width of the 
superfluid peak, which is dominated by the in situ cloud size47 (Meth-
ods). Only when the superfluid completely vanishes, the FWHM jumps 
to the width of the incoherent background (Methods and Extended 
Data Fig. 3).

The resulting phase diagram for the centre of the trap is shown in 
Fig. 2b and clearly reveals two distinct phases: the coherent superfluid 
at shallow lattices (light blue) turns relatively abruptly into the incoher-
ent Bose glass (dark blue) at an interaction-dependent critical lattice 
depth V a

loc
( ). At vanishing scattering length, the observed V loc

(0) coin
cides with the known single-particle localization point at around 
V E= 1.78(2)loc

(0)
rec  (refs. 41,46) up to minor corrections (≲1a0, where  

a0 denotes Bohr's radius) stemming from the presence of weak residual 
interactions due to small dipole–dipole interactions48 and calibration 
uncertainties (Methods). With increasing scattering lengths, the crit-
ical lattice depth V a

loc
( ) indicated by the dashed line shifts considerably 

towards deeper lattices, directly demonstrating that even weak repul-
sive interactions can significantly counteract localization. The observed 
transition agrees well with the recent quantum Monte Carlo (QMC) 
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Fig. 2 | Bose-glass-to-superfluid transition. a, TOF images (9 ms TOF,  
5 shots averaged) for different scattering lengths a at a fixed lattice depth  
of V0 = 2.8 Erec. Although the system is localized in the non-interacting and  
very weakly interacting cases, the appearance of sharp interference peaks for 
stronger interactions signals the emergence of long-range phase coherence, 
characteristic for the superfluid. b, Width of the central peak, distinguishing 
the coherent superfluid (light blue) from the incoherent Bose glass (dark blue). 
The dashed line is a guide to the eye indicating the detected phase boundary  
in the centre of the cloud V a

loc
( ) . It is identical to the line shown in the inset and in 

Fig. 3d. White points and error bars denote the QMC prediction from ref. 6 

(Methods). Images in a correspond to the parameters marked by red diamonds. 
The inset shows the condensate fraction fc extracted from the same set of 
images, highlighting the coexistence of the two phases. c, Phase transition in 
an inhomogeneous system. The shaded Gaussian denotes the in-trap atomic 
density and the parabola represents the external trapping potential. For shallow 
lattices, the ground state is purely superfluid (left). At the non-interacting 
critical depth V loc

(0), the Bose glass starts to appear at the low-density edge of  
the cloud where interaction effects are small (middle). With increasing lattice 
depth, the phase boundary gradually moves inwards until the entire cloud 
enters the Bose glass phase at V a

loc
( )  (right).
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simulations for the ground state reported in ref. 6. These low localiza-
tion thresholds also imply large tunnelling energies43 and hence a high 
resilience to temperature. Therefore, the expected effects11 of the finite 
experimental temperature (<20 nK; Methods) would be at most on the 
order of the QMC error bars.

As a complementary observable that highlights the inhomogeneous 
nature of the system, the inset of Fig. 2b shows the same phase diagram 
analysed in terms of the condensate fraction ≔ N Nf /c coh , that is, the 
number of atoms in the sharp interference peaks Ncoh divided by the 
total atom number = +coh incohN N N , where Nincoh represents the pop-
ulation of the incoherent background (see Methods for details). The 
condensate fraction is high for shallow lattices and begins to slowly 
decrease after the lattice depth exceeds the non-interacting critical 
depth V loc

(0) (see also Fig. 3e). This initially small downwards trend grad-
ually becomes stronger, and the condensate fraction eventually reaches 
zero at the same critical depth V a

loc
( ) extracted from the FWHM measure-

ment (dashed line).
The gradual decrease in the condensate fraction is consistent with 

the expected coexistence of superfluid and Bose glass in the system. 
This is the result of the inhomogeneous atomic density caused by the 
background harmonic dipole trap, as illustrated in Fig. 2c: when atoms 
are loaded into the lattice, the low-density edge of the cloud, where 
interaction effects vanish, will start to localize at the critical depth for 
non-interacting atoms V loc

(0) (ref. 37). As we further increase the lattice 
depth, the phase boundary that separates the Bose glass from the 
superfluid core will slowly move towards higher densities until all atoms 
are ultimately in the Bose glass phase.

Absence of adiabaticity at the Bose glass transition
In typical quantum phase transitions between ergodic phases, for exam-
ple, from superfluid to Mott insulator45, an important experimental 
check is whether the phase transition was crossed adiabatically, and 
thereby reversibly, or whether the observed loss of coherence results 
from irreversible heating, due to, for instance, rapid non-adiabatic 
changes that generate entropy. In the present case, however, the situ-
ation is potentially rather different, as the Bose glass is expected to be 
non-ergodic such that the thermodynamic notion of adiabatic changes 
may not apply.

To investigate this, we first study in Fig. 3a the effect of different 
lattice loading durations on the resulting condensate fraction. A too- 
rapid lattice ramp (15 ms) gives rise to considerable heating already in 
the superfluid regime, leading to lower condensate fractions compared 
with slower ramps. Once the loading duration exceeds 30 ms, it however 
becomes irrelevant and the condensate fraction is independent of the 
loading rate, demonstrating adiabaticity within the superfluid and 
consistent critical lattice depths V a

loc
( ).

To study whether the phase transition was crossed adiabatically, 
we next try to restore superfluid coherence. Here we first load the 
atoms into the 2D quasicrystalline lattice in 45 ms, and then continu-
ously transform the non-periodic lattice into a periodic simple-cubic 
three-dimensional (3D) lattice. This transformation is carried out by 
linearly ramping the depth of the x, y and z lattices to 8Erec over various 
durations τ while simultaneously reducing the depth of the remaining 
two diagonal lattices (Fig. 1a) to zero. The 3D cubic lattice was chosen 
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Fig. 3 | Non-adiabaticity of the Bose glass. a, Condensate fraction in the 2D 
quasicrystal (normalized within each plot) as a function of lattice depth for 
different loading durations and scattering lengths. Although 15-ms ramps result 
in consistently lower condensate fractions, there is no consistent difference 
between 30 ms and longer ramps. b, FWHM of the central peak (wr) after a linear 
ramp of duration τ from the 2D quasicrystal into a regular 3D cubic lattice, where 
the ground state is a superfluid. The coloured circles correspond to different 
depths of the quasicrystalline potential V0 for a fixed scattering length of a = 10a0.  
For V V<0 loc

(10) (blue circles), the initial state in the quasicrystal is superfluid and 
the final states show strong superfluid order for all explored ramp times.  
For a deep Bose glass at V V>0 loc

(10) (red circles), in contrast, there is no initial 
coherence and only a very limited degree of phase coherence can be restored, 
demonstrating the absence of adiabatic evolution into and out of the Bose 
glass. c, An equivalent measurement for a Mott insulator in a regular 3D cubic 

lattice (Vx,y,z = 16 Erec, a = 150a0). Although the initial state also lacks coherence, 
it can be rapidly restored by ramping down the lattice depth in τ ≳ 2 ms. Insets in 
b and c show TOF images and OD denotes the optical density. d, Phase diagram 
showing wr for a slow ramp with τ = 15 ms highlighting three different regimes:  
a pure superfluid (light blue), an intermediate regime where superfluid and 
Bose glass coexist in the trap, and finally the pure Bose glass (darker blues).  
The transition into the pure Bose glass is consistent with the phase boundary 
extracted in Fig. 2b (dashed line). e, Comparing condensate fraction fc in  
the quasicrystal with wr for a = 23a0, demonstrating the consistency of all 
observations. The dashed line denotes the critical lattice depth V loc

(23) extracted 
from the main diagram of Fig. 2b and the grey area indicates the intermediate 
regime where superfluid and Bose glass coexist. The solid lines in b, c and e are 
guides to the eye.
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as in this lattice the ground state is a superfluid with a finite critical 
temperature for condensation for all studied parameters49.

Figure 3b shows the FWHM of the central peak, wr, in the final periodic 
lattice for different ramp times τ at a fixed scattering length (a = 10a0), 
and the outcome highlights the fundamentally distinct behaviours of 
the superfluid and Bose glass phases. For V V<0 loc

(10) (blue circles), the 
system remained superfluid during the entire sequence, and the ground 
state can adapt rapidly from a quasiperiodic extended wave to a peri-
odic Bloch wave, as indicated by the sharp and narrow diffraction peaks 
for all ramp durations. For V V>0 loc

(10) (red circles), however, where the 
system has entered the Bose glass regime, the initial state contains only 
very short-range coherence and hence results in a high wr. Furthermore, 
the measured wr remains significantly above that of the superfluid even 
for the slowest ramps explored in this measurement. This demonstrates 
that the system in this regime can restore only a very limited degree of 
phase coherence and thereby directly highlights the significant entropy 
production arising from traversing, that is, entering, ramping through 
and exiting the Bose glass. In combination, the above measurements 
demonstrate that despite the loading duration becoming irrelevant 
for sufficiently slow ramps, it remains impossible to traverse the Bose 
glass isentropically, that is, in a thermodynamically adiabatic fashion.

To show that the reduced coherence is not solely caused by dynami-
cal effects such as Kibble–Zurek-type dynamics47 during too-fast final 
ramps, Fig. 3c shows an equivalent measurement starting from a Mott 
insulator in a deep 3D simple-cubic lattice, where phase coherence is 
recovered by reducing the lattice potential to the same final depth as 
in the previous case. In this case, sharp interference patterns can be 
recovered already within 2 ms of ramp-down time, consistent with 
previous observations45,47. This contrast not only experimentally con-
firms that the incoherent localized phase we observe in the optical 
quasicrystal is distinct from a Mott insulator but also highlights that 
the inability to traverse the Bose glass adiabatically is rather distinct 
from the critical slowing down expected at conventional continuous 
phase transitions46,47. It is consistent with glassy dynamics in general 
and the expected non-ergodic nature of the Bose glass in particular.

Figure 3d shows the FWHM of the central peak (wr) after a slow final 
ramp of τ = 15 ms and demonstrates that the observed breakdown of 
adiabaticity indeed coincides with the transition into the Bose glass. 
This is further corroborated by the cuts shown in Fig. 3e: as more and 
more atoms localize and enter the Bose glass, not only does the con-
densate fraction decrease but also the coherence cannot be restored.

Conclusion
In this work, we experimentally study the 2D Bose glass in an optical 
quasicrystal with eight-fold rotational symmetry by probing the coher-
ence properties of the system. We directly observe the phase transition 
between the Bose glass and the superfluid, in good agreement with QMC 
simulations6. In addition, we study the possibility to traverse the Bose 
glass adiabatically and always find significant entropy increases that are 
consistent with the expected non-ergodic character of the Bose glass. 
This paves the way for testing the connection between the Bose glass, 
MBL and glassy dynamics more generally. Quasicrystalline and quasi-
periodic lattices offer a unique route to study MBL, as their long-range 
ordered nature can exclude conventional ergodic rare regions41,50 that 
are expected to destabilize MBL by seeding thermalization avalanches 
in real random systems51,52.
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Methods

Experimental sequence
The experimental sequence begins with loading an almost pure  
Bose–Einstein condensate of about 1.2 × 105 39K atoms without discern-
ible thermal fraction from a red-detuned crossed optical dipole trap  
(λdip = 1,064 nm, with trap frequencies (ωx, ωy, ωz) = 2π × (55, 43, 330) Hz) 
into a blue-detuned 2D quasiperiodic optical lattice (λlat = 725.4 nm). 
The initial temperature is bounded from above by Ti < 20 nK due to a 
conservative lower bound on the observed condensate fraction. Even 
neglecting that temperatures for weakly interacting bosons typically 
decrease when loading into a lattice, the resulting change in critical 
chemical potential Δμ due to the finite temperature is small according 
to ref. 11, that is, Δμ/μ < 2.5% or, equivalently, Δμ/(μ − ϵ0) < 20%, where 

≔ϵ ϵmin i0 . During the loading, the individual lattice depths are 
increased in 45 ms from 0 to their target values using exponential ramps 
with a time constant of 10 ms. The used target depths for the four 
horizontal lattices range within V0 = 1–4Erec while a fixed depth of  
Vz = 20Erec for the vertical z lattice ensures the formation of well-defined 
quasi-2D systems. After this ramp, the atoms are held in the quasicrys-
tal for 10 ms. For imaging, we apply a short ‘booster stage’53 before we 
switch off all trapping potentials and record the matter-wave interfer-
ence pattern by taking an absorption image after 9 ms TOF.

The booster stage consists of linearly increasing the potential depth 
of the horizontal lattices in 40 μs to a final depth of Vfinal = 6Erec. This 
stage is sufficiently short to not change the coherence properties of the 
system while providing a tighter on-site confinement and thereby not 
only enhancing the brightness of high-order diffraction peaks but also 
significantly reducing the heavy saturation on the central momentum 
peak (Extended Data Fig. 1a,b).

The interaction strengths Ui ∝ a are independently controlled by 
tuning the atomic s-wave scattering length (a) using the Feshbach 
resonance close to 403 G of the F m= 1, = 1⟩F  state in 39K (refs. 54,55). 
Here F denotes the total angular momentum and mF denotes the mag-
netic quantum number of the state. To ensure broadly comparable 
density distributions, the scattering length is initially prepared at a 
common finite value of a = 12a0 before the lattice loading starts and is 
then changed using a 20 ms linear current ramp to the desired value 
within a = 0–30a0 starting after the first 5 ms of the lattice ramp. Sub-
sequently, the scattering length remains constant until being suddenly 
switched to a = 0a0 at the beginning of the TOF.

A periodic cubic 3D lattice can be produced by using only two orthog-
onal 1D lattices (x, y) out of the four in-plane 1D lattices indicated in Fig. 1 
as well as the perpendicular z lattice. This was used as the final lattice 
in the attempt to restore superfluid coherence. For the final lattice 
depths in Fig. 3b–e, the ground state in the cubic lattice is a superfluid 
for all studied interactions. Although the cubic lattice is a priori only 
one of several possible choices, ramping into a periodic 3D lattice has 
the advantage that it results in an ergodic system where long-range 
coherence emerges below a finite critical temperature49.

Furthermore, the same cubic lattice geometry was also used for pre-
paring the initial Mott insulating state in Fig. 3c, where the restoration 
of phase coherence is then carried out by employing a 16–8Erec linear 
ramp on all the three lattice axes simultaneously.

Coherence length and extraction of condensate fraction
In the TOF images, the width of the sharp diffraction peaks of the super-
fluid is dominated by the finite initial cloud size, which in combination 
with the finite TOF acts as an effective resolution limit for the measured 
momentum distribution47. Therefore, no significant broadening is 
expected as long as the coherence lengths in the superfluid part remains 
above 3– 5λlat (ref. 47). In the inhomogeneous system, the FWHM of the 
central peak (compare Fig. 2b) corresponds to this resolution-limited 
width as long as the k ≈ 0 peak of the superfluid remains visible atop 
the incoherent background of localized atoms. The FWHM jumps to 

the background width once the interference peaks have completely 
merged into the background, thereby giving rise to the sharp signature 
shown in Fig. 2b. This jump hence stems from the combination of the 
inhomogeneous system with the effective resolution limit imposed 
by the finite TOF and would not be present in a homogeneous system.

The condensate fraction fc is a complimentary observable that meas-
ures the fraction of coherent atoms and is evaluated for every shot 
according to f = /c cohN N , where Ncoh is the population in the sharp 
interference peaks, and = +coh incohN N N  is the total atom number  
with Nincoh being the number of atoms in the incoherent background.

To extract N n= ∑k kcoh  from the TOF images, we first identify the 
most pronounced 81 diffraction peaks within the first six diffraction 
orders5 and then extract their populations nk by fitting independent 
2D Gaussian profiles to each peak. To prevent counting spurious pop-
ulations from weakly populated peaks, we exclude fitted populations 
nk below 0.12% of the total atom number. Extended Data Fig. 1c illus-
trates the extracted populations.

The atom number in the incoherent background, Nincoh, is acquired 
by performing an additional 2D Gaussian fit to the whole cloud (region 
of interest ħk3.3 × 3.3 ( )lat

2), where all detected diffraction peaks were 
masked during the fitting.

Parameter calibration
The two main experimental parameters are the lattice depth and the 
scattering length between atoms. The lattice depth is calibrated to 
within 0.1Erec by analysing the dynamics of Kapitza–Dirac diffraction 
for each 1D lattice individually; see the supplementary material of  
ref. 5 for details.

The scattering length is calibrated by observing the prominent 
atom-loss features corresponding to the zero-crossing of the scatter-
ing length, where the in situ density is highest, and the Feshbach reso-
nance, where the loss coefficient is maximal. We then interpolate the 
scattering length between them using the common functional form55,56. 
As an independent cross-check, the magnetic field is calibrated using 
radio-frequency spectroscopy of the F m= 1, = − 1⟩F  to F m= 1, = 0⟩F  
transition in 87Rb and converted to a scattering length using literature 
values for the parameters of the Feshbach resonance55,56. The two 
approaches agree to ≲1a0.

Comparing with QMC simulations
The QMC calculations reported in ref. 6 were performed as a function 
of the density n in a homogeneous system at fixed interaction strength 
g. As the main panel of Fig. 2b focuses on the phase transition in the 
centre of the trap, we extract the experimental central density n0 from 
in situ absorption images using the known aspect ratio of the trap. 
To minimize statistical noise, we measure n0 at different scattering 
lengths (a = 0–30a0) and constant lattice depth (V0 = 1Erec) and find a 
mild interaction dependence n0(30a0) ≈ 1/2 n0(0a0) for the used lattice 
ramp (Extended Data Fig. 2). In addition, we relate the 2D interaction 
coupling constant g used in ref. 6 back to the 3D scattering length a via

g
ℏ
m

g g g
a a

a l
l
a

= , ≈ =
2π

ln( / )
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= 2.092 exp −
π
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Here alat = λlat/2 and l ħ mω= /⊥ ⊥ is the characteristic confining length 
given by the strong z lattice with a trapping frequency of ω⊥ = 2π × 
87 kHz.

Excluding Mott insulators
To investigate the possibility of Mott insulators in our experiment,  
we numerically compute the Bose–Hubbard parameters of the quasi-
periodic potential using the results from ref. 43. We calculate the 



site-dependent ratio between on-site interactions and tunnelling ener-
gies U J/ ∑i j ij∣ ∣, where the sum runs over all significant tunnelling ele-
ments linking site i to other adjacent sites. Within the explored 
parameter regime, this ratio reaches a maximum of ∣ ∣U Jmax( / ∑ ) ≈ 1.4i j ij  
for the case of a = 30a0 and V0 = 4.0Erec. This is significantly below the 
critical interaction strength for forming a Mott insulator in a 2D square 
lattice (U/zJ)c ≈ 4.385 (ref. 57), where z = 4 represents the number of 
nearest neighbours. Furthermore, the studied parameter range lies 
within the weakly interacting regime of ref. 11, and Mott insulators can 
hence be excluded in this experiment.

Data availability
The data shown in this paper are available from https://doi.org/10.17863/
CAM.111477.
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Extended Data Fig. 1 | Effect of booster stage (V0 = 2 Erec, a = 10 a0) and an 
example of the population extraction. a, In the absence of the booster, the 
majority of condensed atoms remain in the central diffraction peak, with only  
a small fraction occupying the satellite peaks. The high atomic density of the 
central peak causes almost all the imaging light around this central area to be 
fully absorbed, leading to significant imaging saturation at k = 0. b, the booster 
stage promotes condensed atoms to higher diffraction orders, thus facilitating 

the fitting. c, Simulated diffraction pattern for the first 6 diffraction orders. 
The 81 peaks considered in the population count are coloured in blue, with 
their radius indicating the extracted population nk. Gray dots represent the 
peaks that can also be observed but are not included in the population count 
due to their low populations. Images in (a,b) are averaged over 30 experimental 
shots in order to visually emphasise the signal from very weakly populated 
high-order diffraction peaks.



Extended Data Fig. 2 | Extraction of central density. a, Central density as  
a function of scattering length. b, Fit to in-situ column density distribution 
used to extract the effective cloud width for calculating the central density.  

The employed absorption imaging starts to saturate for OD ≳ 2.5, hence, data 
points above this value (grey) have been excluded from the fit.
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Extended Data Fig. 3 | Width of central peak. a, FWHM of central peak for  
a = 11a0, data taken from Fig. 2b. b, Normalised cuts through the density 
distribution observed after time-of-flight (analogous to cuts through Fig. 2a). 
The red line in a indicates the measured in-situ cloud size, demonstrating that 
the observed peak width is dominated by the in-situ size. Both the FWHM and 

the absence of thermal components around the peaks in b demonstrate that 
the momentum distribution is compatible with T = 0 up to very close to the 
phase transition. Red dots in upper panel indicate the lattice depths used in the 
lower panel.
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