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The fly connectome reveals a path to the 
effectome

Dean A. Pospisil1,5 ✉, Max J. Aragon1,5 ✉, Sven Dorkenwald1,2, Arie Matsliah1, Amy R. Sterling1, 
Philipp Schlegel3,4, Szi-chieh Yu1, Claire E. McKellar1, Marta Costa4, Katharina Eichler4, 
Gregory S. X. E. Jefferis3,4, Mala Murthy1 & Jonathan W. Pillow1

A goal of neuroscience is to obtain a causal model of the nervous system. The recently 
reported whole-brain fly connectome1–3 specifies the synaptic paths by which neurons 
can affect each other, but not how strongly they do affect each other in vivo. To 
overcome this limitation, we introduce a combined experimental and statistical 
strategy for efficiently learning a causal model of the fly brain, which we refer to as the 
‘effectome’. Specifically, we propose an estimator for a linear dynamical model of the 
fly brain that uses stochastic optogenetic perturbation data to estimate causal effects 
and the connectome as a prior to greatly improve estimation efficiency. We validate 
our estimator in connectome-based linear simulations and show that it recovers a 
linear approximation to the nonlinear dynamics of more biophysically realistic 
simulations. We then analyse the connectome to propose circuits that dominate the 
dynamics of the fly nervous system. We discover that the dominant circuits involve 
only relatively small populations of neurons—thus, neuron-level imaging, stimulation 
and identification are feasible. This approach also re-discovers known circuits and 
generates testable hypotheses about their dynamics. Overall, we provide evidence 
that fly whole-brain dynamics are generated by a large collection of small circuits that 
operate largely independently of each other. This implies that a causal model of a 
brain can be feasibly obtained in the fly.

A fundamental barrier to resolving a causal model of the nervous system 
is that causal relationships in the brain cannot be inferred solely from 
passive measurements of neural activity4,5. Direct perturbation of neural 
activity (for example, optogenetic stimulation) confronts this problem 
and has therefore been an area of intense methodological research and 
resulting progress. However, a clear approach for how to use these 
tools to obtain a causal model of neural activity has not emerged. Here 
we introduce a combined statistical and experimental strategy and 
demonstrate that it can efficiently learn a causal model of the fly brain.

We adapt a technique known in the statistical literature as ‘instru-
mental variables’6 (IVs). This technique was developed to estimate 
causal relationships in observational data in which direct experimental 
control is unfeasible. It relies critically on the stringent requirements of 
an IV: that it only directly affects an observed variable that putatively 
affects the outcome of interest—in the absence of that effect, the IV 
is independent of all variables. The observed relationship between 
the IV and the outcome is then strictly a result of the causal effect of  
interest. Yet, despite the stringency of these requirements, optogenetic 
stimulation plausibly meets them7,8. Optogenetic stimulation affects 
neural activity, is independent of neural activity because it is controlled 
by the experimenter, and acts on the brain only through neurons that 
express opsins. Thus, the IV approach could in principle be used to 
estimate causal effects between neurons.

However, there are two fundamental problems with the IV approach 
applied to the entire nervous system of the fly. First, naively estimating 
effects between every pair of neurons in the fly (approximately (105)2 
pairs) would require intractable amounts of data. This problem is an 
even more insurmountable barrier to learning causal models of organ-
isms with larger numbers of neurons (for example, (108)2 potential 
effects for mice9). Second, it would be unfeasible in the fly—and in most 
organisms—to independently stimulate and record from all neurons 
at once. The effectome would thus need to be gradually constrained 
across experiments on small sub-populations. It is unclear how to order 
experiments such that insights into whole-brain dynamics are achieved 
efficiently. Here we show that the Flywire connectome1–3 provides a 
feasible path to surmounting both barriers in the fly.

First, a principled approach to improving the data efficiency of an 
estimator is to place priors on the parameters being estimated. The 
fly connectome can be used as a prior on effects between neurons in 
the fly brain: neurons with no synaptic contacts are unlikely to directly 
affect each other. The connectome of the fly is exceedingly sparse 
(around 0.01% of neuron pairs form a synaptic contact10): thus, a strong 
prior can be placed on the vast majority of interactions in the effec-
tome. Furthermore, with synaptic counts and synapse-level electron 
microscopy-based neurotransmitter predictions provided by the Fly-
wire connectome11 (see Methods, ‘Construction of fly connectome 
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matrix’), plausible priors can be placed on the sign and magnitude 
of effects between the neurons that are connected (the confidence 
of those predictions can naturally be incorporated into the strength 
of the prior).

Second, because the connectome is a complete connectivity map of 
the fly brain, it is uniquely suited to guide efficient estimation of the 
effectome. Neuroscientists tend to study a given neural circuit because 
it has been studied previously. A data-driven approach to proposing 
neural circuits of interest could reveal important computations that 
had not yet been considered. Ideally such a method would discover 
independent neural circuits and rank them by their total effect on the 
brain. To predict which neural interactions contribute most strongly 
to whole-brain dynamics, we analyse the eigenmode decomposition 
of the connectome. The eigenvectors of the connectome, ordered by 
the magnitude of their eigenvalues, provide sets of neurons, and pat-
terns of neural activity therein, that under our ‘connectome prior’ are 
predicted to have the greatest total effect on the brain.

We thus provide an experimentally tractable paradigm for learning 
a complete causal model of the fly brain that is uniquely enabled by 
the properties of the whole-brain connectome. Specifically, we show 
that the sparse connectivity between neurons markedly improves the 
efficiency of estimating causal effects. We also show that that small 
populations of neurons underlie dominant dynamical modes, sug-
gesting that whole-brain dynamics can be constrained with a series of 
highly targeted—and thus feasible—experiments.

Here we first lay out an experimental setup and associated statistical 
model of neural activity in the fly. Next, we outline how to use optoge-
netic perturbation as an IV to infer the direct causal effects between 

neurons in the context of a linear dynamical system. We then show 
how, in the presence of confounds, the classic regression estimator 
will return biased results, whereas the IV approach gives a consistent 
estimator. Using a simulation of whole-brain neural activity based 
on the connectome, we demonstrate that the IV approach provides 
consistent estimates of ground truth neural connectivity. We find that 
because there is a massive number of potential downstream neurons 
from any given neuron, the standard IV regression estimator converges 
very slowly. This motivates use of the connectome to formulate a prior 
on the IV weights so that the estimator remains consistent (that is, even 
if the prior is wrong, the estimator will converge to ground truth with 
enough data) but orders of magnitude more efficient—to the degree 
that the prior is correct. Finally, we analyse our ‘connectome prior’ to 
reveal thousands of proposed circuits ranked by their predicted total 
effect on the brain. We analyse two of these circuits and find that one 
recapitulates a proposed circuit for computing opponent motion and 
the other provides a dynamical mechanism for visual spatial selectivity.

Our motivating setting is an optogenetic experiment in the fly 
(Fig. 1a): the activity of a population of ‘target’ neurons is observed, 
a subset of these are ‘source’ neurons that express opsin driven by nl 
independent lasers, and the remaining neurons remain unobserved—
these can also be unobserved non-neuronal processes recurrently 
interacting with the observed neurons.

The graphical model that we associate with this setup identifies the 
lasers as the IVs that independently drive the source population (X) via 
a linear transformation (α), the source population drives the target 
population (Y) via β (the effect), and both receive common inputs from 
unobserved confounders Z (Fig. 1b). The fundamental difficulty of fit-
ting neural models to observed data is that even if β = 0, Z can induce 
spurious dependence between the source and target population.

IVs are robust to unobserved variables
The principal challenge to inferring causal effects solely through pas-
sive observation of neural activity is the possibility of unobserved con-
founding inputs. There are many potential unobserved confounders 
in the fly. Typically, a small subset of the nervous system is imaged 
at a time: thus, input from unobserved neurons could confound the 
observed neurons. Whole-brain imaging is possible in the fly12,13, but 
resolving single-neuron dynamics remains a challenge owing to the 
density of the neuropil. Even if single neuron activity could be resolved, 
afferent activity from the peripheral nervous system and ventral nerve 
cord could potentially be a source of common variability. Moreover, 
neuropeptide signalling cannot be inferred from calcium imaging data 
alone14,15. Finally, measurement error, including physiological artifacts 
such as brain movement16, can act as a source of common variability. 
Collectively, there is a high probability of unknown confounding vari-
ables preventing valid causal inference during passive observation of 
neural activity in the fly brain.

A simple case that demonstrates the effect of confounding variables 
is one in which two neurons X and Y have no causal effect on each other 
(β = 0 between X and Y; Fig. 1b), but there is a common unobserved input 
to both from Z (for example, an unobserved neuron). Even though 
there is no causal effect of X on Y (Fig. 1d, ground truth weight is 0), 
the least-squares estimate incorrectly converges on a positive weight, 
whereas the IV converges on 0 because there is no correlation between 
the laser and Y. Thus the IV, under our assumed model, is not corrupted 
by unknown, unobserved inputs.

IV accurately estimates fly effectome
To demonstrate that the IV can, in principle, estimate the fly effectome, 
we applied it to a simulation of the entire fly brain during stimulation 
of a single source neuron and a whole-brain recording (see Methods,  
‘Simulations to evaluate estimators’; for a graphical model, see 
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Fig. 1 | Schematic and simulation of effectome inference using IVs. a, Example 
of a single fly experiment. Some sets of neurons in the fly are observed (black 
circles within the field of view of the microscope), and a subset of these express 
opsin and are being stimulated (neurons under red light) with a white noise 
pattern (red trace). Another set of neurons may be unobserved. All neurons  
can have directed interactions via synapses (arrows), and only the effects of 
stimulated neurons can be estimated (black arrows connecting stimulated 
neurons to observed neurons). b, In this setup, the laser can be cast as an 
instrumental variable (IV) that directly affects only the opsin-expressing 
neurons (arrow labelled α from L to X). Stimulated neurons in turn have a direct 
effect on downstream observed neurons (arrow β from X to Y), but common 
unobserved inputs (Z) may corrupt attempts to estimate the direct relationship. 
The IV approach uses the joint relationship between the laser and downstream 
neurons to determine the direct effect of the stimulated neurons on 
postsynaptic neurons. c, Top, a simulated example of confounding effect Z, 
which is given by a slow drifting signal (smooth green trace). Raw, uncorrupted 
responses of neurons X and Y are independent (pink and brown traces, middle), 
meaning that there is no connection from X to Y. Bottom, observations X and Y 
after adding the confounding signal Z, resulting in substantial correlation.  
d, The least-squares estimate of the weight from X to Y (blue line; mean ± s.d.;  
n = 100 simulations) exhibits large bias regardless of sample size, whereas the 
IV estimate (orange line) converges to the true effectome weight of zero (black 
dashed line).
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Extended Data Fig. 1). We set our ground truth causal effect matrix 
entries to be proportional to the number of synapses multiplied by the 
‘sign’ of those synapses—whether they were inhibitory or excitatory 
(Fig. 2a). We found that the estimator on average was accurate (Fig. 2b, 
scatter centred around diagonal), but the bulk of error came from 
estimates of weights whose true value was zero. This was because the 
vast majority of weights are zero owing to the sparsity of the fly con-
nectome. Non-zero estimates of these weights were thus the dominant 
contribution to total estimation error.

The connectome as an effectome prior
The high variability of IV reflects a fundamental problem in fitting 
a model of the entire brain: the number of parameters is large. Yet, 
because the fly connectome is available and—critically—it happens 
to be highly sparse, we can markedly increase the efficiency of our 
model estimate by assuming that neurons with no synaptic contacts are 
unlikely to directly affect each other. We do so in a principled manner 
with an extension of our estimator to a Bayesian setting.

We took a Bayesian approach to reduce error by placing a Gaussian 
prior on the model weights (IV–Bayes). The Gaussian prior mean was 
proportional to the synaptic count and sign (positive for excitatory 
synapses and negative for inhibitory synapses) (Fig. 2d). The variance 
was equal to the absolute value of the mean plus a small constant. Thus, 
weights between non-anatomically connected neurons are strongly 
biased towards zero, whereas weights for connected neurons are weakly 
biased toward the scaled synapse count, allowing them to be zero if 

warranted by the data. We add a small constant to the prior variance 
so that the estimator remains consistent: even if the prior is wrong (for 
example, if a synapse exists where none was found in the connectome), 
the estimator will converge to ground truth with enough data.

We evaluated the IV–Bayes estimator using a simulated dataset gener-
ated with effectome weights set to a corrupted version of the ground 
truth connectome weights, thus creating a mismatch between the 
effectome weights and the prior mean (Methods, ‘Simulations to evalu-
ate estimators’). This corruption could, for example, reflect natural 
variation between flies’ connectomes. We note that the IV estimator 
is not meant to estimate the underlying connectome. Instead, the esti-
mator approximates the linear effects between neurons—these effects 
may have a weak relationship with the connectome, and will probably 
depend on the state of the nervous system (see Discussion, ‘A broader 
definition of the effectome’). We found that the IV–Bayes estimates  
outperformed the standard IV estimator, even though the prior mean 
was corrupted (Fig. 2c,e). In particular, the high variability of the IV 
estimate for zero weights was quenched in the IV–Bayes estimate. Intui-
tively, if the connectome provides information about the strength of 
causal interactions between neurons, it should outperform standard IV.

To quantify the relative efficiency of the naive IV approach and IV–
Bayes, we sampled effectome matrices as described above and then 
evaluated the average residual sum of squares (RSS) of the two esti-
mates as a function of the number of samples (for example, duration 
of experiment). As expected, we found that the RSS of both estimators 
decreased with increasing samples (Fig. 2f, blue and orange trace slope 
downwards). Yet, we found that the RSS of the IV estimator is at least an 
order of magnitude higher than that of the IV–Bayes estimator across 
number of samples (blue above orange). In terms of fraction of variance 
explained, IV–Bayes explains the vast majority of variance for the maxi-
mal number of time samples (orange trace below dotted line on right) 
but the raw IV estimator is still too noisy to achieve a positive quantity 
of fraction variance explained (blue trace above dashed line) (Fig. 2f). 
Thus, in simulation, IV–Bayes provides at least an order of magnitude 
improvement in converging to the ground truth causal effects.

Our simulations thus far have focused on the stimulation of a single 
neuron while the entire fly brain is observed. If every neuron in the fly 
brain was stimulated independently while every neuron was being 
observed, the entire fly effectome would be identifiable within a single 
experiment (Extended Data Fig. 2b; for multi-neuron simulations see 
Extended Data Figs. 3–6). However, it is unclear whether this approach 
is experimentally feasible, given the constraints of diffraction-limited 
optics, which makes independent stimulation and identification of 
every neuron in a whole-brain imaging setup challenging. A more fea-
sible approach would be to sparsely image and stimulate neurons to 
estimate the effectome across flies (Extended Data Fig. 2c). We now 
describe a data-driven strategy for systematically choosing subsets of 
neurons that account for disproportionate shares of neural dynamics.

The connectome reveals dominant circuits
Here we demonstrate a data-driven method for ranking sets of source 
neurons that are most likely to form circuits with a large effect on the fly 
nervous system. We propose that these circuits should be prioritized 
for interrogation by our estimator. Specifically, we consider a recurrent 
neural network model of whole-brain activity given by

W= , (1)t t+1r r

where rt is a vector denoting the activity of all neurons at time t and 
W is the effectome weight matrix, which (for these analyses) we set to 
the scaled, signed synaptic counts extracted from the connectome. 
To analyse the fly brain’s dynamical properties, we perform an eigen-
decomposition of the weight matrix W, which decomposes global 
dynamics into patterns of neural activation called eigenvectors with 
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Fig. 2 | Inferring the effectome using standard and Bayesian approaches on 
simulated data. a, We used the connectome to set the effectome weights for  
a whole-brain simulation using all 121,327 connected neurons (neurons with  
no incoming or outgoing connections, above a threshold of >5 synapses, were 
not included). b, Synaptic weights were set proportional to synapse count, with 
positive (negative) sign for excitatory (inhibitory) synapses. c, IV estimates  
of postsynaptic weights of a single example neuron. Most of the error falls 
along the vertical line where true weight equals 0 (which is the majority of the 
weights, owing to the sparsity of the fly connectome). d, Mean ± 2 s.d. of an 
independent Gaussian connectome prior on each weight in the effectome.  
We set the prior mean to be proportional to the signed synapse count of the 
connectome and variance equal to the absolute value of the mean plus a small 
constant, so that the prior width is non-zero between neurons with no known 
synapses. e, An IV–Bayes estimator shows smaller error than the raw IV 
estimator in b. f, The error of estimated weights (residual sum of squares, RSS) 
decreases with the number of samples for both estimators, but IV–Bayes gives 
several orders of magnitude faster convergence (orange below blue line; 
mean ± s.d.; n = 10 simulations). Mean squared error will decrease indefinitely 
for both estimators because they are consistent (that is, they converge to 
ground truth as the number of samples goes to infinity). Horizontal lines show 
error level where the R2 of the recovered weights is zero (long dash) and 0.9 
(short dash), respectively.
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simple two-dimensional rotational dynamics determined by an associ-
ated eigenvalue. Below, on the basis of this eigendecomposition, we 
provide testable hypotheses pertaining to both global properties of 
fly neuronal dynamics and highly specific circuits.

In the model we have proposed (equation (1)), the eigenvectors of the 
effectome describe the dominant modes or patterns of neural activ-
ity that will grow or decay over time, each governed by its associated 
eigenvalue. For example, if the activity of the brain at time 0 is set to 
the ith eigenvector vi (whose eigenvalue is λi), then the brain’s activity 
pattern at time step t is given by

λ= . (2)t i
t

ir v

Thus, the magnitude of the eigenvalue precisely determines the mag-
nitude and duration of the effect of this pattern of activity. The eigen-
vectors with the largest eigenvalues are therefore plausibly associated 
with neural dynamics that have the largest total effects on the fly brain. 
The neurons associated with the significant coefficients, or ‘loadings’, 
in an eigenvector indicate the sub-population of neurons whose con-
nectivity principally sustains these dynamics, forming an ‘eigencircuit’.

There are two critical properties of the eigendecomposition that 
determine the rate at which neural dynamics can be constrained by 
the estimated effectome. The first is the sparsity of eigenvectors. If 
the pattern of activity specified by the eigenvector includes only a 
few neurons with non-zero loadings, then only the effectome of those 

neurons needs to be learned to specify that dynamical mode. By con-
trast, if each eigenvector significantly involves all neurons, the entire 
effectome would need to be learned to explain even one dynamical 
mode. The second critical property is the relative magnitude of the 
eigenvalues. If the eigenvalue associated with a sparse eigenvector 
was much larger than all the others, then the majority of variation in 
global dynamics could be explained with the effectome of a handful  
of neurons.

Global dynamics of putative effectome
We first examined the relative magnitude of the eigenvalues and found 
they decayed slowly. For example, the 1,000th eigenvalue has approxi-
mately 1/10 of the magnitude of the largest (Fig. 3a). This implies that: 
(1) the choice of which early modes to analyse is somewhat arbitrary, 
because they have similar magnitudes; and (2) many dynamical modes 
could be required to explain neural dynamics in the fly brain (that is, 
fly neural dynamics are high-dimensional). We note that the dimen-
sionality of neural dynamics depends on the input distribution. This 
analysis implicitly assumes private white noise inputs to each neuron 
where all eigenvectors are equally likely to be driven—intuitively, this 
may correspond to a resting state with each neuron stochastically fir-
ing at a similar rate.

We explored the range of timescales for predicted dynamics by 
examining the eigenvalues in the complex plane (Fig. 3b). Complex 
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eigenvector loadings for the first (top) and 50th (bottom) eigenvector.  
f, Concentration of eigenvector loadings, quantified by the number of neurons 
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eigenvalues are associated with a complex eigenvector whose real 
and imaginary parts define a plane of rotational dynamics for neural 
activity. If a pattern of activity is induced within this plane, then neural 
activity will continue to evolve solely within the plane—that is, it will 
transition over time between mixtures of the real and imaginary part 
of the eigenvector. The angle from the positive real axis determines the 
speed of these rotational dynamics. At 0°, the eigenvalue is real positive 
and there are no oscillatory dynamics but a simple monotonic decay. A 
non-zero angle is exactly the angular step size of rotational dynamics 
at each time step, so small angles imply slow rotational dynamics, and 
a negative real eigenvalue (180°) implies the fastest possible rotational 
dynamics (flipping sign at each time step). We find there is a broad 
distribution of timescales of rotational dynamics. The distribution of 
angles had modes at 0°, 90° and 180°, implying a preponderance of 
monotonically decaying modes, rapid transitions between distinct 
populations and the fastest possible timescale, respectively.

We then investigated whether dynamical modes tended to be inde-
pendent of each other. When eigenvectors are orthogonal to each 
other, the dynamics associated with each eigenvector are independ-
ent (under assumed white noise inputs). Conversely, if two eigenvec-
tors are highly correlated, then these dynamics are more likely to 
co-occur. Thus, by examining the correlation between eigenvectors 
we can test which dynamical motifs will tend to be enlisted simultane-
ously—potentially because they are involved in similar computations. 
Examining the correlation matrix of the first 100 eigenvectors (treat-
ing the real and complex parts as separate eigenvectors), we found on 
average correlation was weak with sparsely distributed higher values 
(Fig. 3c). We observed that early eigenvectors tended to have lower 
correlation to others (first ten rows and columns dark). Aggregating 
the correlation of each of the top 1,000 eigenvectors to all others, we 
found a clear trend in which both the max and average correlation 
increased with eigenvalue rank (Fig. 3d). Roughly speaking, the top 
ten dynamical modes will occur independently of each other, whereas 
the rest will tend to co-occur with at least one other mode. Thus, we 
predict that dynamical modes will typically operate independently 
of each other, which bodes well for the project of examining these 
circuits individually.

Experimental limitations dictate that only sparse populations of 
neurons can be simultaneously identified with the connectome and 
independently stimulated. Thus, here we analysed whether the popula-
tions involved in these eigenmodes are in fact sparse. Plotting the first 
eigenvector, we found that the loadings across neurons were indeed 
extremely sparse, with most loadings near zero and only several devi-
ating significantly from zero (Fig. 3e, top). These loadings were of the 
same sign, indicating that all neurons significantly involved in this mode 
oscillate in sync. We found that later modes were also sparse, but less 
so (Fig. 3e, bottom). We measured the number of neurons required to 
account for 75% of power across loadings for the first 1,000 modes, 
and found that this number never exceeded more than 10% of the fly 
brain (Fig. 3f). The dominant modes tended to be the sparsest, sug-
gesting that the dominant dynamics of the fly brain can be explained 
by estimating only a small fraction of the effectome. On average, for 
the top 10 eigenvectors, around 50 neurons were needed (less than 
0.05% of all neurons), for the 10th to 100th eigenvectors, around 500 
neurons were needed (less than 0.5% of all neurons), and for the 100th 
to 1,000th eigenvector, around 1,500 neurons were needed (less than 
1.25% of all neurons). These findings suggest that the dynamics of the 
dominant modes in the fly brain can be explained by estimating a small 
fraction of the effectome.

Finally, we characterized the anatomical properties of these puta-
tive circuits. We visualized up to 100 neurons that together comprise 
75% of loading power within their respective eigenvector loadings and 
colour-coded the top 12 (the remaining neurons are in grey; by contrast, 
all results in Fig. 3a–e are for all neurons). To provide a broad sampling 
of circuits, we organized eigenvectors into three groups on the basis of 

anatomical location: visual, olfactory and motor/navigational (Fig. 3g, 
left, middle and right columns, respectively). In general, we found that 
the highly sparse top eigenvectors that we previously characterized 
were also anatomically localized. For example, the top visual eigenvec-
tors contained neurons that were confined to the lobula plate in the 
left hemisphere (row 1) and right hemisphere (row 2) (Fig. 3g). These 
eigenvectors recapitulate a hypothesized neural circuit for opponent 
motion computation (Fig. 4a–f). The top olfactory eigenvectors were 
also anatomically localized and contained mushroom body neurons 
(row 1) and projection neurons from the antennal lobe to the lateral horn 
(row 2). Multiple motor/navigational eigenvectors also showed con-
finement to the ellipsoid body (rows 1 and 2). For all three anatomical 
categories, we observed that eigenvectors with lower sparsity tended 
to incorporate diverse cell types distributed across multiple neuropils 
(rows 3 and 4). In general, we found that neurons with high loadings 
in early eigenvectors were often anatomically localized in accordance 
with the classical approach of studying the nervous system region by 
region. Conversely, many circuits were not anatomically localized and 
merit further investigation (for examples, see Extended Data Fig. 7).

We observed that anatomically localized eigencircuits were in the 
minority (10% of the top 1,000 eigencircuits), and non-localized circuits 
were often among the most dominant (Extended Data Fig. 8e,f). We 
considered whether modest amounts of biological variability, measure-
ment error or saturation would change these results (Extended Data 
Fig. 9), and found that in general the early eigencircuits were quite 
robust, and the later ones less so. The non-local circuits tended to be 
less robust to perturbation, but we did find many robust examples 
(Extended Data Fig. 9b). We also determined that the high dimensional-
ity of the connectome was not simply a result of the sparsity of the con-
nectome, nor was it sensitive to the aformentioned factors (Extended 
Data Fig. 10).

We found that the top eigenvectors of the connectome prior are 
highly sparse. This property facilitates learning the effectome because 
it is easier to identify, image and stimulate sparse populations. Given 
the thousands of existing genetic driver lines accessible to the fly com-
munity17 and tools for automatically screening these lines for neurons 
of interest18, it may be possible to identify reasonably sparse genetic 
lines that contain a subset of each eigencircuit’s dominant neurons 
(see Supplementary Information, ‘Sparse expression’). Altogether, 
owing to the distinct properties of the fly connectome—namely the 
sparsity of connections, eigenvector loadings and interaction between 
eigenmodes—there exists a plausible path forward to systematically and 
efficiently explain whole fly brain dynamics in terms of direct causal 
interactions between neurons.

Dominant circuits are interpretable
Our decomposition of the putative effectome revealed sparse eigen-
vector loadings, which makes them amenable to further analysis. We 
tested whether these vectors correspond to identifiable circuits and 
interpretable dynamics in the fly brain (see Methods, ‘Simulations to 
analyse eigencircuits’).

We found that the first eigenvector localized to the lobula plate 
(Fig. 4a) and was highly sparse (Fig. 4b). We quantified the anatomi-
cal localization as the fraction of synapses in a single neuropil. For this 
eigencircuit, 75% of synapses were localized to the lobula plate, whereas 
the rest were confined to the inferior posterior slope. The associated 
real eigenvalue was negative: thus, for linear dynamics we expect rapid 
oscillation, but in the more realistic case where activity is thresholded 
(see Methods, ‘Simulations to analyse eigencircuits’), these neurons 
will inactivate rapidly following activation (Fig. 4c). The top four neu-
rons in this eigenvector were VCH, DCH, LPi15 and Am119. All putative 
effects between these neurons are inhibitory, but there is a complex 
mix of mutual and directed inhibition (Fig. 4d, partial symmetry across 
diagonal of weight matrix). Notably, VCH and DCH do not inhibit each 
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other, but are inhibited by Am1 and LPi15, but Am1 receives recurrent 
inhibition from VCH and DCH, whereas LPi15 does not (Fig. 4e).

Concretely determining the computation that this visual circuit 
may perform requires an assumption about how visual features drive 
these neurons. It is known that VCH and DCH receive major input 
from H2 from the contralateral eye, which responds to back-to-front 
(BTF) motion20, whereas LPi15 and Am1 receive major inputs from 
T4b and T5b, which are driven by ipsilateral BTF motion21. We probed 
the functional properties of this circuit by simulating BTF visual input 
(see Methods) to either the right eye (contralateral input) or the left and 
right eyes together (bilateral input). When provided with contralateral 
BTF input only, we observe that VCH and DCH activity remained high 
throughout the stimulation period, whereas LPi15 and Am1 activity 
were suppressed because they were not directly stimulated and because 
Am1 is strongly inhibited by VCH and DCH (Fig. 4f, solid trace brown 
and yellow above blue and green). Conversely, bilateral BTF stimula-
tion resulted in suppression of VCH and DCH. Overall, this putative 
circuit is well-suited to compute opponent motion across the fly eyes.

Notably, this circuit was analysed in a very recent small-scale con-
nectomic analysis of the optic lobe21, whereas it was ‘rediscovered’ 
with our data-driven approach. This suggests, anecdotally, that the 
eigendecomposition of the connectome can reveal scientifically inter-
esting sub-circuits.

Inspired by our findings with the first eigenvector of the connectome 
prior, we next sought to identify additional circuits with a putative role 
in stimulus selection. We found that eigenvector 45 contained high load-
ings for GABAergic (γ-aminobutyric acid-producing) R4d ring neurons 
in the ellipsoid body (Fig. 4g). For this eigencircuit, 99% of synapses 
were localized to the ellipsoid body, and the remainder were in the 
fan-shaped body and mushroom body medial lobe. R4d ring neurons 
have spatial receptive fields that retinotopically tile the visual field and 
exhibit directional and orientation tuning22. This eigenvector has sparse 
and bimodal loading (Fig. 4h, majority of scatter near 0 but subset 
near 0.2). Its associated eigenvalue, similar to the first eigenvector, is 
negative real, leading to rapid oscillatory linear dynamics and inactiva-
tion for rectified dynamics (Fig. 4i). Despite the similar dynamics, the 
synaptic weight matrix revealed complete mutual inhibition between 
R4d ring neurons (Fig. 4j, off-diagonal blue). This connectivity pattern 
has been identified in prior work23, but its functional relevance remains 
incompletely understood.

One possible computation consistent with this connectivity pattern 
is a winner-take-all (WTA) computation with respect to visual features 
distributed across space. In a WTA circuit, the most strongly activated 
neuron strongly suppresses all other neurons, thereby preventing its 
own inhibition. To test this prediction, we simulated uniform visual 
drive to the R4d inhibitory sub-network while providing one neuron 
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Fig. 4 | Example eigencircuits. a, Neurons with top five loadings on 
eigenvector 1. b, First eigenvector of the fly effectome. c, Linear and rectified 
dynamics upon stimulation by first eigenvector (a.u., arbitrary units).  
d, Synaptic count and sign between neurons. e, Circuit diagram representation 
of synaptic weight and sign. f, Visual stimulation simulation. VCH and DCH are 
given sustained stimulation for 150 ms, simulating BTF motion on the right  
side of the fly (fly on the left; solid brown and yellow, high sustained response). 
All neurons were given sustained stimulation for 150 ms, simulating BTF motion 
on both sides of the fly, which leads to inhibited responses of VCH and DCH  
(fly on the right; dashed brown and yellow below solid). g, Neurons with top 

four loadings on eigenvector 45. h, All loadings for eigenvector 45. i, Linear and 
rectified dynamics (left) upon stimulation by eigenvector 45 (right). j, Synaptic 
count and sign between nine neurons with top loadings on eigenvector 45.  
k, Simulation of visual stimulation. Left, simulation of a 0° visual stimulus,  
with strong input to the 0°-preferring neuron (light blue trace) and sustained 
background input to all other neurons. The network response exhibits WTA 
dynamics, in which all neurons respond transiently to stimulus onset, but  
only the neuron with maximal response remains active for the entire stimulus 
duration. Right, similar results for a 90° stimulus and 90°-preferring neuron 
(green trace).
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with higher input (Fig. 4k, left and Methods). We found that the neuron 
with a stronger input indeed had a robust sustained response, whereas 
the other neurons’ responses quickly decayed near to baseline (Fig. 4k). 
We confirmed that this WTA property is not specific to a single neuron 
by providing different neurons with biased input (Fig. 4k, right). Indeed, 
these dynamics persisted, which supports the idea that a WTA computa-
tion is a robust property of this circuit. On the basis of these findings, 
the R4d inhibitory sub-network appears well-poised to implement WTA 
dynamics and thus to select individual visual spatial channels as primary 
inputs to the central complex. We note that global mutual inhibition 
within ring neurons such as the R4d cell type has been characterized24 
and predicted to potentially drive WTA, but here we demonstrate that a 
mechanism predicted directly from anatomical parameters generates 
this computation.

We have analysed two of the hundreds of sparse eigenvectors 
revealed by an eigendecomposition of the fly connectome. We empha-
size that these eigenvectors should not be interpreted as the ‘true’ 
effectome eigenvectors; rather, they provide a principled approach 
for generating and testing falsifiable hypotheses about causal relation-
ships between neurons and the computations they may support. Our 
analyses served to demonstrate how neurons may be systematically 
chosen for causal perturbation experiments, and how—once the true 
effectome weights are learned for this subset of neurons—one might 
generate hypotheses about neural function than can be tested in vivo. 
Crucially, the dynamical mechanisms of the computations indicated by 
our simulations remain untested and require estimating the effectome 
between these neurons.

Discussion
We developed a combined experimental and statistical approach to 
estimate a causal model of the fly central nervous system—its effec-
tome. In simulation, we demonstrated that the approach provides 
consistent estimates of the ground truth effectome. We found that 
the huge number of parameters of a whole-brain model made this 
estimation unfeasible, motivating us to use the connectome as a prior 
to markedly increase the efficiency of our estimator. We analysed 
our connectome prior to reveal thousands of small putative circuits 
operating largely independently of each other. This indicates that 
whole-brain dynamics may be efficiently explained with sparse imag-
ing and perturbation, which is far more feasible than dense imaging 
and perturbation. We analysed two of these circuits to find that one 
recapitulates a proposed circuit for computing spatial opponent 
motion, and the other provides an explicit mechanism for visual spa-
tial selectivity in the ellipsoid body.

Related IVs work
IVs has been an area of intense interest outside of the neurosciences 
but was only recently recognized as a useful tool for neural perturba-
tion analysis4,5,25,26. Non-parametric approaches that estimate average 
functional effects4,26 do not provide an explicit model of neural dynam-
ics or differentiate between direct versus indirect synaptic effects. Yet, 
these non-parametric estimates are naturally more robust and could 
be used to validate model-based predictions. To our knowledge, our 
work is the first to provide a consistent estimator of a neural dynamics 
model in the challenging but nearly universal experimental condi-
tions where there are potential unobserved confounders (for example, 
unobserved neurons).

An extension of this approach to higher order auto-regressive models 
would relax the restriction that the timescale of interaction is known 
and fixed (1 ms in our simulations); thus, slower effects (potentially 
through extra-synaptic paths such as peptide signalling pathways) 
could be detected. There has been recent progress in this direction27, 
but it does not currently allow recurrent interaction between observed 
and unobserved populations, which is typical in neuroscience settings.

Related connectomic work
There has been sustained interest in the analysis of large-scale ana-
tomic information10,28–30. A linear systems analysis of the worm30 made 
several findings that are qualitatively similar to ours: they ‘rediscov-
ered’ several known circuits, found a preponderance of fast oscillatory 
and monotonic decaying modes, and identified sparse eigencircuits  
(see fig. 8 in ref. 30).

Graph-based fly connectome analyses14,29 find that the fly brain is 
a small-world network with short paths between almost any pair of 
neurons, which could imply highly effective global communication. 
By contrast, we find that neural dynamics are best described by small, 
independent subsets of neurons: stimulating one eigencircuit has little 
effect on neurons outside of that circuit. Future perturbative work is 
required to determine the efficacy of global information propagation 
across the fly brain.

Along a similar line, a clustering algorithm has been applied to the 
fly hemibrain connectome28,29. It also recovered well-studied circuits, 
indicating its promise. Yet, the dynamics models under which the 
recovered circuits do in fact sustain distinct computations is unclear.

Anatomical information has been used to constrain mechanistic 
whole-brain models of the worm fit to neural data31, and a similar model 
could be applied to the fly. A critical distinction of our approach is that 
it provides consistent estimates under unobserved confounders. Even 
for whole-brain recordings (which are now possible in the worm), where 
one might assume there are no unobserved variables, it is impossible to 
directly test this assumption. Yet this prior work directly demonstrates 
that connectomic constraints can improve the efficiency of model 
estimation—as we show in simulation.

In an alternative connectome-based approach applied to the visual 
system of the fly32, parameters were not constrained to neural activity 
but were instead optimized to perform discrimination of visual motion. 
By sharing parameters across circuits that are thought to perform 
similar functions, the efficiency of estimation was greatly increased. 
In a similar approach, IV–Bayes could be extended to a hierarchical 
Bayesian model that borrows statistical power across circuits and cell 
types that are hypothesized to have similar functional properties.

We were able to recapitulate experiments on the visual system by 
directly stimulating model neurons in the central nervous system 
(Fig. 4), but this required prior knowledge of how specific sets of stimuli 
affect the central nervous system. Incorporating the effects of stimuli 
on early sensory neurons (for example, ommatidia) is a critical direction 
for utilizing effectome estimates to predict sensory computations for 
novel stimuli (for example, in refs. 32,33). Linking estimated internal 
dynamics models to behaviour—a central goal of systems neurosci-
ence—will require integration with models of how descending motor 
neurons actuate the body34–36.

A broader definition of the effectome
The method that we introduce here is a consistent estimator of a linear 
dynamical system, yet the fly nervous system is a highly nonlinear 
system. To provide a concrete interpretation of linear model estimates 
applied to nonlinear neural dynamics, we analysed our estimator in 
the context of a conductance-based model of neural dynamics. This 
model includes both a spiking nonlinearity and nonlinear synaptic 
integration. We find that the IV estimate converges to the Jacobian 
(matrix of partial derivatives with respect to voltage of each neuron) 
of the underlying neural dynamics equation, evaluated at the voltages 
of the neurons in the population (Extended Data Fig. 3 and Supple-
mentary Information, ‘Conductance-based neural dynamics model’). 
This result is entirely consistent with our notion of the effectome—the 
Jacobian captures the effect of a small perturbation of one neuron 
on any other neuron. Our linear simulation (equation (1)) is a special 
case in which the Jacobian is exactly the connectome. In the conduct-
ance model, the effect of a perturbation varies with the state of the 
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network and the Jacobian captures this notion because it varies with 
respect to neuronal voltage. This also provides motivation to titrate 
optogenetic stimulation to the minimal amount possible—for larger 
deviations, the estimate of the Jacobian becomes less precise and aver-
ages over more states. The Jacobian is also a foundational quantity 
in the study of stochastic differential equations. It is classically uti-
lized in a linear dynamical system that approximates nonlinear and 
non-stationary dynamics along an estimated trajectory. For example, in 
the case of neural data, independent IV estimates can be formed across 
a stimulus-triggered average. More generally, extensions to our esti-
mator can utilize estimated trajectories within repeated experimental 
conditions, stereotyped behaviour or inferred latent states37. The latter 
may be critical if the emerging observation that the bulk of variation in 
global brain dynamics is unrelated to stimuli or behaviour holds in the 
fly38–40. Ultimately, we interpret effectome estimates as capturing local 
interactions between neurons in a particular state (for example, at a 
set of membrane voltages). Further research is needed to understand 
how to use these local estimates to learn about changes in state (such 
as synaptic plasticity).

Our interpretation of our estimator as providing the Jacobian of 
neural dynamics further clarifies the utility of the connectome prior. We 
show analytically in our conductance model that the Jacobian between 
unconnected neurons will always be zero (Supplementary Informa-
tion, equation 6). Thus, the connectome prior mean will be wrong for 
only 0.01% of the effectome parameters, because only 0.01% of pairs of 
neurons form a synapse in the fly brain. Thus, even with misspecified 
non-zero weights IV–Bayes provides a large gain in statistical efficiency 
(Extended Data Fig. 4). In general, most neurons in the fly brain do not 
directly affect each other, and this is where the majority of our gains in 
statistical efficiency are achieved. This in combination with weak priors 
on the small subset of neurons that plausibly directly affect each other 
allows our estimator the flexibility to efficiently estimate the effectome. 
We also confirm that even with a completely misspecified prior (for 
example, there may be extra-synaptic effects through peptide signal-
ling pathways41), our estimator, with enough data, converges to the 
Jacobian—that is, the weight matrix that provides a linear description 
of the effect of each neuron on any other in the system’s current state 
(Extended Data Fig. 5).

The connection of the effectome to the Jacobian of conductance 
model also provides a concrete interpretation of the connectome 
(matrix of signed synaptic counts) as a linear dynamics matrix. It is in 
only a narrow set of situations that the best linear approximation to 
these nonlinear neural dynamics would be proportional to the con-
nectome. Variation in neural voltage across neurons, synaptic rever-
sal potentials, synaptic conductance, membrane time constants and 
more can all corrupt proportionality (Supplementary Information, 
equation 6). Thus, a biophysical interpretation of our results is that 
the eigencircuits decompose the best linear approximation to neu-
ral dynamics under the assumption that there is a small amount of 
variation across these neuronal properties. A mild confirmation of this 
untested assumption is that we do in fact recover known functional 
sub-circuits of the fly nervous system from an eigendecomposition 
of the connectome (Fig. 4).

In general, the form of dynamics in the fly brain even for our simpli-
fied conductance model is highly under-constrained—the parameters 
needed to evaluate the Jacobian are not available (including average 
voltage, membrane time constants, postsynaptic currents associated 
with different synapse types and morphologies). It is beyond the scope 
of this work to identify biophysically realistic models of neural dynam-
ics from the connectome and measured neural activity. Our estimate of 
the effectome represents a first-order approximation to these underly-
ing dynamics, which will depend on the state of the nervous system. 
Future work could focus on how sets of these first-order estimates can 
be used to infer the appropriate models and parameters of nonlinear 
neural dynamics equations.

Sufficient experimental setting
Here we specify the sufficient, feasible, experimental setting to ‘learn’ 
the effectome. We mean feasible in that the technologies to perform 
these experiments exist but have yet to be simultaneously integrated 
into the fly. In Supplementary Information, ‘Experimental approach’, 
we discuss how to achieve this ideal setting, including practical steps 
for generating a fly line specific to estimating an eigencircuit.

We note that these requirements are sufficient but that there could 
certainly be alternative approaches to satisfying the requirements 
of our estimator. In general, we expect that it would be unfeasible to 
estimate a large fraction of the effectome in a single experiment. Thus, 
our proposed strategy is to estimate eigenvectors of the effectome 
piecemeal, with sparse subsets across genetically identical flies in the 
same experimental conditions (Supplementary Information, ‘Experi-
mental approach’).

There are four main technical requirements to estimate the effec-
tome in such a manner. (1) The ability to select a sparse subset of 
neurons within a population of interest to image and stimulate (Sup-
plementary Information, ‘Sparse expression’). (2) The ability to record 
the intracellular voltage of a population of neurons (Supplementary 
Information, ‘Voltage imaging’). (3) Simultaneous independent direct 
stimulation of neurons in the population (Supplementary Informa-
tion, ‘Holographic stimulation’). Both the recording and stimulation 
must be at the timescale of neuronal interaction. (4) Identification of 
imaged and stimulated cells with the connectome (Supplementary 
Information, ‘Identification pipeline’).

This ideal experimental setting is challenging to achieve. None-
theless, if it is achieved, it provides a principled approach to accu-
rately estimate a causal account of local neuronal dynamics. A 
complete nonlinear dynamical account of brain dynamics would nec-
essarily recapitulate local dynamics; thus, the effectome will serve 
to rigorously constrain and test a mechanistic model of the nervous  
system.
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Methods

Statistical model of fly brain
Here we approximate fly brain dynamics as a first-order vector auto- 
regressive model (VAR(1)),

W W L ϵ= + + . (3)t t l x t t−1 ,r r

where rt is the D × 1 vector of responses from all neurons on time step 
t, W is the full D × D dynamics matrix, Lt is the random Dl × 1 vector of 
stimulation power (for example, voltage), Wl,x is the matrix specifying 
the effect of stimulation, and ϵt is additive noise with arbitrary bounded 
covariance (for graphical model, see Extended Data Fig. 1). The raw IV 
estimator that we outline below requires no distributional assump-
tions on the random variables (Lt, ϵt). Furthermore, the noise (ϵt) can 
take on any correlation structure over time and across neurons, so our 
estimator applied to dynamics of this form will converge to the true 
effectome W, regardless of confounding inputs (so long as the noise is 
independent of the stimulation Lt). We note that for nonlinear dynam-
ics, further assumptions are required (see Supplementary Informa-
tion, ‘IV estimator applied to nonlinear dynamics’).

For our derivations below we define three subsets of neurons in rt, 
we will call the vector of neurons that are observed in a given experi-
ment, target neurons, at time point t, Yt, the neurons that are both 
stimulated by the laser and observed Xt, source neurons, and finally 
neurons that are neither observed nor stimulated Zt (for graphical 
model, see Extended Data Fig. 1). Note that source neurons are a subset 
of target neurons.

Simulations
Simulations to analyse eigencircuits. To evaluate neural dynamics 
associated with eigencircuits (see ‘Dominant circuits are interpretable’)  
in continuous time, we restricted our analyses to neurons with the 
highest eigenvector loadings that accounted for 75% of all eigenvector 
power. In the case of the opponent motion circuit, this was 5 neurons, 
and in the case of the ellipsoid body circuit, this was 21 neurons. We set 
the discrete time step to T = 10 ms, and a sampling period of Δ = 1 ms 
so that at each time step,

r r uW ΔT f= exp(log( ) ) ( + ) (4)t Δ t t+
−1

where W is the putative effectome of the subset of neurons being 
simulated, f(·) is a nonlinearity (here rectification), and ut is a vector 
of time-varying inputs.

We tuned the membrane time constant manually to 0.5 ms to reca-
pitulate the qualitative findings of prior work. The resulting W was 
scaled to have a maximum eigenvalue of 1. It is unknown what a good 
approximate scaling of synapse number to linear effect is in these 
regions but if the scaling was zero then this circuit would not perform 
a computation and if it was too large the dynamics would be unstable. 
The membrane time constant is often faster in sensory systems but 
depends on the voltage of the neuron42. Future work could consider 
other normative motivations for scaling weights and time constants 
(for example, ref. 32).

In both the ellipsoid and opponent motion simulations, inputs in 
Fig. 4 were simulated by adding in a step function input to the relevant 
neurons in our dynamics simulation. This step function was either at 0 or 
a hand tuned maximum. In the opponent motion circuit input maximum 
was 0.01 and for the ellipsoid body circuit the winner neuron receiving a 
larger input had input of 0.01 and other neurons had 0.006. In both cases 
stimulation lasted 150 ms. In the case of the opponent motion circuit, 
we used prior literature to determine which neurons to stimulate under 
unilateral and bilateral BTF motion20,21. In the case of the ellipsoid body 
circuit, the ordering of the neurons with respect to retinotopic input 
was arbitrarily set by their eigenvector loading magnitude.

Simulations to evaluate estimators. In all simulations to evaluate 
statistical estimators, ϵ N Σ~ (0, )t D ϵ  where Σ cI=ϵ D and L N lI~ (0, )t D D . To 
simulate misspecification of the connectome prior mean, we esti-
mated the accuracy of our estimator across many ‘ground truth’  
effectomes drawn from the connectome prior (except without a small 
constant added to the variance so that synaptic weights equal to 0 
remained 0), such that the connectome prior mean was never the same 
as the ‘ground truth’ effectome in a given simulation.

Given that there are a host of unknowns with respect to a real experi-
mental setting (such as imaging SNR, strength of laser effect or duration 
of recordings), we hand tuned these parameters to give reasonable 
rates of convergence. In our whole-brain IV simulations, signal-to-noise 
ratio (SNR) = 10 (laser power relative to noise power). We note that 
while we have simulated from a parameter regime in which our esti-
mator converges rapidly, there are many parameter settings where 
convergence is slow. We note that conditions of high noise and little 
effect of the laser are particularly challenging. Slow timescales are also 
challenging because they effectively filter out most of the power of 
the white noise perturbation (but for extension to correlated IVs, see  
ref. 27). Yet, we show analytically that our estimator is consistent and 
thus will converge with enough samples.

For clarity, in our example simulation we chose a single neuron to 
stimulate and estimate its downstream synaptic weights (Fig. 3). This 
neuron was chosen because it had a larger than typical number of 
downstream contacts. It is straightforward to estimate downstream 
weights for multiple neurons simultaneously (equation (7)), and we 
demonstrate this both for IV and IV–Bayes (Extended Data Figs. 4–6) 
and IV in a conductance-based model (Extended Data Figs. 3 and 4). We 
note that in our simulations, as the number of independent perturba-
tions increases (nl), there is effectively more noise overall both through 
second-order effects and in estimating the effect on a downstream 
neuron that itself is being perturbed. This is another pressure to keep 
the number of stimulated neurons low and the strength of perturbation 
minimal, but depends on the particularity of connectivity.

IV estimator for an LDS
We note that

X L WCov[ , ] = (5)t t l x,

because the stimulation is assumed to have identity covariance. Thus, 
by calculating the sample covariance between the laser and simulta-
neous activity in the stimulated neurons we can obtain an unbiased 
estimate of the linear weighting of laser drive on each neuron. Similarly, 
we can obtain an unbiased estimate of the linear effect of the laser on 
all target neurons at the next time step,

Y L W WCov[ , ] = , (6)t t x y l x+1 , ,

where Wx,y is the submatrix of W with postsynaptic effects of Xt on Yt + 1. 
We can then use equation (5) to identify Wx,y with

W W W W= ( ) , (7)x y x y l x l x, , , ,
+

where (Wl,x)+ is a pseudo inverse because we have not specified the rank 
of L. Only if nL ≥ nS is this a true inverse and Wl,x is invertible. An equiva-
lent but more intuitive approach is termed two-stage least-squares 
(2SLS), where in the first stage Lt is regressed on Xt to give X W Lˆ = ˆt l x t,  
and then X̂t  is regressed on Yt +1 to give Y W Xˆ = ˆ ˆt x y t+1 , . The IV estimator 
can also be extended to higher order AR processes by conditioning the 
estimator on multiple past time steps27.

We note that multi-synaptic effects can be derived from the estimated 
monosynaptic effects with powers of the effectome matrix. For exam-
ple, if we have the effectome matrix W and input r is an input vector of 
all zeros except for neuron i, then the nth order synaptic effect is exactly 



W nr (for example, n = 1 gives direct synaptic effects, n = 2 gives effects 
through up to two synapses, and so on).

The connectome prior
We use the 2SLS approach to motivate a consistent estimator from a 
Bayesian perspective. In short, we perform classical Bayesian regres-
sion for the second stage of regression using the connectome as a prior 
on the weights Wx,y. To be consistent with the most typical setting of 
Bayesian regression we first work out the case of multiple source neu-
rons and a single target neuron (that is, learning a set of weights in the 
same row of W ). We assume the conditional distribution of the output 
given the input is:

x w xN∣y σ~ ( , ), (8)t t t
T 2

where x y( , )t t  represents the input and output for sample t T∈ {1, …, }, 
and σ 2 is the variance of the observation noise in y.

Let us now suppose that μ provides the mean for a Gaussian prior 
over the linear weights w:

w N μ γ I~ ( , ). (9)2

Let μ = sc, where the hyperparameter s scales c, the connectome prior 
we set to be equal to the synaptic count and sign. Combining this prior 
with the likelihood defined above gives us the following posterior mean:

w wwP X Y θ

σ X X γ I σ X Y γ μ

X X σ γ I X Y γ σ X X I μ

ˆ = arg max ( | , , )

= (1/ + 1/ ) (1/ + 1/ )

= ( + / ) + ( / + ) ,

(10)

MAP

2 T 2 −1 2 T 2

T 2 2 −1 T 2 2 T −1

where θ σ γ c= { , , }2 2  denotes the hyperparameters. The second  
expression above (equation (10)) shows that the maximum a poste-
riori (MAP) estimate is the standard ‘ridge regression’ estimate, 

w  






X X I X Yˆ = + σ

γridge
T

−1
T

2

2
, plus a term that biases the estimate towards 

the anatomical connectome μ. Note that in the limit of small observa-
tion noise σ 2 or large prior variance γ 2, the MAP estimate converges to 
the maximum likelihood (ML) estimate, whereas in the limit of large 
σ 2 or small γ 2, it converges to μ.

In our simulations we choose the optimal hyperparameters 
beforehand but the hyperparameters could be learned via a standard 
cross-validation grid search. A more principled approach would be to 
use evidence optimization,

∣ ∣ ∣∫θ P Y X θ P Y X θ P θ dˆ= arg max ( , ) = arg max ( , , ) ( ) , (11)θ
θ

w w w

which would be straightforward given that the evidence is available in 
closed form for this model.

Construction of fly connectome matrix
The connectome is a reconstruction of the central nervous system of a 
seven-day-old adult female Drosophilia melanogaster. We use the most 
recent version of the connectome v783. Details of the reconstruction 
are provided in the original publications of the connectome dataset1.

Each entry in the connectome matrix W, the main object of study 
in our analyses, was the number of synapses multiplied by their 
inferred sign based on predicted neurotransmitter type11. Specifically,  
neurons with neurotransmitters acetylcholine and dopamine had  
positive weights on their downstream neurons and neurons with GABA, 

serotonin, glutamate and octopamine had negative weights. The neu-
rotransmitter type was predicted directly from electron microscopy 
images trained on synapses with known neurotransmitter types. The 
matrix W scaled for stability was used as the connectome prior mean 
in estimator simulations (Fig. 2) and our eigendecomposition analy-
sis (equation (2); Figs. 3 and 4). A threshold was set on the synapse 
count such that any connections with less than five synapses were 
set to zero. This choice followed the reasoning of other analyses of 
the connectome10 that this would minimize the impact of spurious 
synapses—manual proofreading did not extend to connections with 
fewer than five synapses.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data used in this study can be downloaded from https://codex.flywire.
ai/api/download. FlyWire data can be accessed online through Codex 
(Connectome Data Explorer) at https://codex.flywire.ai. Codex pro-
vides neuron annotations, neurotransmitter information, and compact 
data downloads. All eigencircuits’ loadings and additional plots of 
eigencircuits are available at https://github.com/dp4846/conn2eff.

Code availability
All code to analyse data and generate figures is available at https://
github.com/dp4846/conn2eff.
 

42.	 Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford 
Univ. Press, 2004).
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Lasers
Source

population
Target

population
Unobserved
confounders

Extended Data Fig. 1 | Graphical model associated with VAR(1) estimation. 
Lt is IID stimulation at time step t, effect on source population is immediate  
and mediated by linear transformation Wl x, . Effect of Xt−1 on Xt and Yt (target, 
unstimulated population) is mediated respectively by linear transformation  
Wx and Wx y, . Interacting unobserved confounds can add arbitrary correlated  
noise (Zt).
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Extended Data Fig. 2 | Schematic of perturbation experiment types.  
(a) (left) Single fly experiment with whole-brain observation (microscope FOV 
encompasses all postsynaptic neurons), single neuron stimulation (laser drives 
filled red neuron), and total rank of stimulation is 1 (only one laser). As a result, 
all postsynaptic weights from the stimulated neuron are identifiable (blue 
column of weight matrix filled). (middle) To learn all other effectome weights  
in this setup would require as many flies as neurons, as each individual neuron 
is stimulated. (b) Single fly experiment in which all weights are identifiable: 
whole-brain observation, whole-brain stimulation, and rank of stimulation is 
equal to the number of neurons in the brain (same number of lasers as neurons). 
(c) (left) Single fly experiment with partial brain observation (FOV encompasses 

half of neurons), partial brain stimulation (two neurons red filled), and rank of 
stimulation is equal to that of the source (2). (middle) To identify all weights of 
source neurons the experiment is repeated in another fly but with different 
target neurons. All effectome weights can be identified piecemeal in this 
manner. (d) Convergence rate to full identifiability of the fly effectome as a 
function of the fraction of number of experiments over the total number of 
neurons. Different traces reflect different experimental settings. Columns in 
legend are three primary ways experiments can vary. Source is the number of 
neurons that are being stimulated. Target is the number of neurons observed, 
we assume the source neurons are also observed. Perturbation rank is the 
dimensionality of the perturbation method. D is the total number of neurons.
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Extended Data Fig. 3 | Instrumental variables estimator converges to the 
Jacobian of membrane voltage equation. (a) Conductance matrix, W0, of 
conductance simulation where off-diagonals were set randomly according  
to a uniform distribution between 0.01 and 0.02. The reversal potential of  
all synapses is 0 mV; thus all synapses are typically excitatory. Membrane 
constant τ = 10 ms, membrane resistance R = 1, input noise is SD = 2 mV, laser 
perturbation SD = 2 mV, inputs were hand chosen to induce two conditions  
of similar vs different average voltages, and the conductance equation is 
integrated using Euler’s method with Δ = 1 ms with noise and laser perturbation 
added at each time step. (b) The firing rate as a function of membrane voltage is 
sigmoidal. (c) (top) Example traces of firing rate over time for neurons with 

similar average voltage. Different colors represent the five different neurons. 
(c) (bottom left) Relationship between IV estimates and the Jacobian evaluated 
at the average voltage, with a high correlation (r = 0.972 ) and a linear fit with 
slope near 1 indicating IV converges to the Jacobian of neural dynamics.  
(c) (bottom right) Relationship between the Jacobian and conductances (W0), 
with a strong correlation (r = 0.872 ) and slope deviating from one indicating 
that approximately J W∝ . (d) (top) Example traces of firing rate over time  
for neurons with different average voltages. (d) (bottom left) IV estimates 
converge to the Jacobian again. (d) (bottom right) In contrast, Jacobian and 
conductance matrix are not proportional to each other when average voltages 
vary widely.
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estimation in the conductance model. (a) (left) Example of sparse synaptic 
connectivity matrix W0 used for conductance simulations, where off-diagonals 
were set randomly according to a uniform distribution between 0.01 and  
0.02, then on average 90% of these were set to 0. (a) (right) Example firing  
rate traces across 10 neurons. (b) Comparison of IV and IV-Bayes estimate  
of Jacobian. (c) Comparison of R 2 values for IV and IV-Bayes estimators as a 
function of the number of samples. The plot shows that the IV-Bayes estimator 
achieves higher average R 2 values with fewer samples compared to the IV 
estimator. Error bars show standard deviations across 5 simulations (a different 
W0 chosen for each simulation but all other parameters remain the same).
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Extended Data Fig. 5 | IV-Bayes is a consistent estimator even with incorrect 
prior. (a) (left) Example ground truth simulated effectome for linear simulations 
(off-diagonal weights drawn from uniform distribution ([0.1,0.2]), then on 
average 9- % are set to 0 and diagonal is set to 0.1) (a) (center) In ‘Correct prior’ 
condition prior mean is set to the true effectome. (a) (right) In ‘Incorrect prior’ 
condition prior mean is set to independent effectome (without diagonal).  

(b) Simulations of IV-Bayes estimator with correct (blue) and incorrect  
prior (orange) and the raw IV estimator (green) across number of samples  
(i.e., duration of recording) and resamplings of effectomes (mean ± s.d.;  
n = 10 simulations). Variance of prior mean has a constant (see Fig. 2c legend)  
of increasing size added to it (increasing left to right). R2 is measured between 
the estimate of the effectome and ground truth .
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Extended Data Fig. 6 | IV converges to first order effects in a higher order 
AR model. (a) (left) Example VAR(1) IV estimate from data drawn from VAR(4). 
(a) (right) Example VAR(4) process weights drawn from an IID standard normal 
then scaled for stability. Note estimate and W1 are nearly identical. (b) Accuracy 
of recovery of the first order effects (W1) as a function of the number of time 
samples (mean ± s.d.; n = 50 simulations).
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Extended Data Fig. 7 | Examples of non-localized eigencircuits. Top: Circuit 
with neurons in the optic lobes and central complex. Middle: Circuit with 
neurons in the antennal lobes, lateral horn, and lateral accessory lobe. Bottom: 
Circuit with neurons in the optic lobe and pre-motor regions.
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Extended Data Fig. 8 | Summary statistics of time scales, locality, and 
synapse properties. (a) Angle in complex plane of eigenvalues associated  
with eigencircuits plotted as a function of eigencircuit rank (w.r.t. eigenvalue 
magnitude). The angle 0 implies the slowest possible dynamics where 
eigencircuit monotonically decays. The angle 180 implies the fastest possible 
dynamics where the sign of the eigencircuit flips at every discrete time step.  
(b) Histogram of angles. (c) Average synapse count of excitatory neurons that 

form synapses in the top 75% of eigenvector loading (red), average for 
inhibitory (blue), and across both (black). (d) Plot of the fraction of excitatory 
synapses of all synapses formed in the top 75% of eigenvector loading of each 
eigencircuit as a function of time scale (eigenvalue angle). (e) Locality index, 
fraction of synapses in one neuronpil for the top 75% of eigenvector loadings of 
eigenvector loading of each eigencircuit. (f) Cumulative distribution of (E).
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Extended Data Fig. 9 | Robustness of eigencircuits. (a) Robustness to 
measurement error. Maximum absolute correlation between each original 
eigencircuit and all eigencircuits from the connectome with Gaussian noise 
added. For complex eigenvectors, we regressed the real and imaginary 
components onto those of another then calculated the r-value of this two- 
parameter linear fit. Measure was taken for three levels of noise (SNR = 100 
σ μ= 0.012  black, SNR = 10 σ μ= 0.12  grey, and SNR = 1 σ μ=2  red where μ is the 
synapse count). (b) Non-anatomically localized eigencircuits tend to be less 
robust to measurement error. Robustness of eigencircuits measured as 
maximum absolute correlation with eigencircuits from noisy connectome 

(SNR = 1, see Extended Data Fig. 9 red trace) plotted against locality index, 
fraction of synapses in one neuropil for top 75% of eigenvector loading of  
each eigencircuit. (c) Robustness of eigencircuits to hyperbolic tangent 
transformation (tanh) of connectome weights scaled by half the max synapse 
count (c = 2). (d) Plot of maximum absolute correlation of original vs transformed 
connectomes (see A) versus rank of original eigencircuit, split across real and 
complex unique eigencircuits of top 250 eigencircuits. (e) Robustness of 
non-localized eigencircuits to choices in loading threshold. (left) Localization 
index computed across different inclusion criteria. (right) Number of neurons 
within each eigencircuit for multiple loading thresholds.
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Extended Data Fig. 10 | Effect of nonlinearity and measurement error 
applied to connectome on dimensionality. For reference, the original 
eigenvalues of the connectome (scaled by the largest magnitude eigenvalue) 
are plotted (black). Non-linearity of increasing degree via hyperbolic tangent 
applied to connectome weights scaled relative to their maximum (larger scaling, 
stronger effect of nonlinearity) shows a small increase in dimensionality (pink, 
orange, red above black). In an extremal case, the connectome weights were set 
to their sign so that all entries were either +1, 0, or −1, and dimensionality was 
similar (cyan overlaps black). A shuffle control, where the index of count entries 
was shuffled without replacement, was used to determine if dimensionality 
was the result of marginal connectome statistics (e.g., sparsity). This showed  
a large increase in dimensionality (n = 5 independent shuffles, dotted lines  
well above black). Simulated measurement error was added with draws  
from Poisson distributions with means equal to the original synapse count  
and sign was drawn from a binomial distribution with probability set by the 
neurotransmitter type prediction confidence (n = 5 simulations, dashed line).
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