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A goal of neuroscience is to obtain a causal model of the nervous system. The recently
reported whole-brain fly connectome' specifies the synaptic paths by which neurons
can affect each other, but not how strongly they do affect each other in vivo. To
overcome this limitation, we introduce a combined experimental and statistical
strategy for efficiently learning a causal model of the fly brain, which we refer to as the
‘effectome’. Specifically, we propose an estimator for a linear dynamical model of the
fly brain that uses stochastic optogenetic perturbation data to estimate causal effects

and the connectome as a prior to greatly improve estimation efficiency. We validate
our estimator in connectome-based linear simulations and show that it recovers a
linear approximation to the nonlinear dynamics of more biophysically realistic
simulations. We then analyse the connectome to propose circuits that dominate the
dynamics of the fly nervous system. We discover that the dominant circuits involve
onlyrelatively small populations of neurons—thus, neuron-level imaging, stimulation
and identification are feasible. This approach also re-discovers known circuits and
generates testable hypotheses about their dynamics. Overall, we provide evidence
that fly whole-brain dynamics are generated by a large collection of small circuits that
operate largely independently of each other. This implies that a causal model of a
brain can be feasibly obtained in the fly.

Afundamental barrier toresolving a causal model of the nervous system
is that causal relationships in the brain cannot be inferred solely from
passive measurements of neural activity*®. Direct perturbation of neural
activity (for example, optogenetic stimulation) confronts this problem
and hastherefore been an areaof intense methodological research and
resulting progress. However, a clear approach for how to use these
tools to obtain a causal model of neural activity has not emerged. Here
we introduce a combined statistical and experimental strategy and
demonstrate that it can efficiently learn a causal model of the fly brain.

We adapt a technique known in the statistical literature as ‘instru-
mental variables™ (IVs). This technique was developed to estimate
causalrelationships in observational datain which direct experimental
controlis unfeasible. It relies critically onthe stringent requirements of
anIV:thatit only directly affects an observed variable that putatively
affects the outcome of interest—in the absence of that effect, the IV
isindependent of all variables. The observed relationship between
the IV and the outcome is then strictly a result of the causal effect of
interest. Yet, despite the stringency of these requirements, optogenetic
stimulation plausibly meets them”®. Optogenetic stimulation affects
neural activity, isindependent of neural activity becauseitis controlled
by the experimenter, and acts on the brain only through neurons that
express opsins. Thus, the IV approach could in principle be used to
estimate causal effects between neurons.

However, there are two fundamental problems with the IV approach
applied to the entire nervous system of the fly. First, naively estimating
effects between every pair of neurons in the fly (approximately (10%)*
pairs) would require intractable amounts of data. This problem is an
evenmore insurmountable barrier to learning causal models of organ-
isms with larger numbers of neurons (for example, (10%)? potential
effects formice?). Second, it would be unfeasible in the fly—and in most
organisms—to independently stimulate and record from all neurons
at once. The effectome would thus need to be gradually constrained
across experiments on small sub-populations. Itis unclear how to order
experiments such thatinsightsintowhole-brain dynamics are achieved
efficiently. Here we show that the Flywire connectome! provides a
feasible path to surmounting both barriers in the fly.

First, a principled approach to improving the data efficiency of an
estimator is to place priors on the parameters being estimated. The
fly connectome can be used as a prior on effects between neurons in
the fly brain: neurons with no synaptic contacts are unlikely to directly
affect each other. The connectome of the fly is exceedingly sparse
(around 0.01% of neuron pairs form a synaptic contact'): thus, astrong
prior can be placed on the vast majority of interactions in the effec-
tome. Furthermore, with synaptic counts and synapse-level electron
microscopy-based neurotransmitter predictions provided by the Fly-
wire connectome!! (see Methods, ‘Construction of fly connectome
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Fig.1|Schematic and simulation of effectomeinference usinglIVs.a, Example
ofasingle fly experiment. Some sets of neuronsin the fly are observed (black
circles within the field of view of the microscope), and asubset of these express
opsinand arebeingstimulated (neurons under red light) with a white noise
pattern (red trace). Another set of neurons may be unobserved. All neurons
canhavedirectedinteractions viasynapses (arrows), and only the effects of
stimulated neurons canbe estimated (black arrows connecting stimulated
neurons to observed neurons). b, In this setup, thelaser canbe castasan
instrumental variable (IV) that directly affects only the opsin-expressing
neurons (arrow labelled a from L to X). Stimulated neuronsin turn have a direct
effectondownstream observed neurons (arrow Sfrom Xto Y), butcommon
unobservedinputs (Z) may corrupt attempts to estimate the direct relationship.
ThelVapproachusesthejoint relationship between the laser and downstream
neurons to determine the direct effect of the stimulated neuronson
postsynaptic neurons. ¢, Top, asimulated example of confounding effect Z,
whichis given by aslow drifting signal (smooth green trace). Raw, uncorrupted
responses of neurons Xand Yareindependent (pink and brown traces, middle),
meaningthat thereis noconnectionfromXto Y. Bottom, observations Xand Y
after adding the confounding signal Z, resulting in substantial correlation.
d, Theleast-squares estimate of the weight from Xto Y (blueline; mean +s.d.;
n=100simulations) exhibits large bias regardless of sample size, whereas the
IV estimate (orange line) converges to the true effectome weight of zero (black
dashedline).

matrix’), plausible priors can be placed on the sign and magnitude
of effects between the neurons that are connected (the confidence
of those predictions can naturally be incorporated into the strength
of the prior).

Second, because the connectomeisacomplete connectivity map of
the fly brain, it is uniquely suited to guide efficient estimation of the
effectome. Neuroscientists tend to study a given neural circuit because
it has been studied previously. A data-driven approach to proposing
neural circuits of interest could reveal important computations that
had not yet been considered. Ideally such a method would discover
independent neural circuits and rank them by their total effect on the
brain. To predict which neural interactions contribute most strongly
to whole-brain dynamics, we analyse the eigenmode decomposition
of the connectome. The eigenvectors of the connectome, ordered by
the magnitude of their eigenvalues, provide sets of neurons, and pat-
terns of neural activity therein, that under our ‘connectome prior’are
predicted to have the greatest total effect on the brain.

We thus provide an experimentally tractable paradigm for learning
a complete causal model of the fly brain that is uniquely enabled by
the properties of the whole-brain connectome. Specifically, we show
that the sparse connectivity between neurons markedly improves the
efficiency of estimating causal effects. We also show that that small
populations of neurons underlie dominant dynamical modes, sug-
gesting that whole-brain dynamics can be constrained with a series of
highly targeted—and thus feasible—experiments.

Here we firstlay out an experimental setup and associated statistical
model of neural activity in the fly. Next, we outline how to use optoge-
netic perturbation as an IV to infer the direct causal effects between

202 | Nature | Vol 634 | 3 October 2024

neurons in the context of a linear dynamical system. We then show
how, in the presence of confounds, the classic regression estimator
will return biased results, whereas the IV approach gives a consistent
estimator. Using a simulation of whole-brain neural activity based
on the connectome, we demonstrate that the IV approach provides
consistent estimates of ground truth neural connectivity. We find that
because there is a massive number of potential downstream neurons
fromany given neuron, the standard IV regression estimator converges
very slowly. This motivates use of the connectome to formulate a prior
onthelVweightsso that the estimator remains consistent (thatis, even
if the prior is wrong, the estimator will converge to ground truth with
enough data) but orders of magnitude more efficient—to the degree
that the prior is correct. Finally, we analyse our ‘connectome prior’ to
reveal thousands of proposed circuits ranked by their predicted total
effect on the brain. We analyse two of these circuits and find that one
recapitulates a proposed circuit for computing opponent motion and
the other provides a dynamical mechanismfor visual spatial selectivity.

Our motivating setting is an optogenetic experiment in the fly
(Fig. 1a): the activity of a population of ‘target’ neurons is observed,
asubset of these are ‘source’ neurons that express opsin driven by n,
independent lasers, and the remaining neurons remain unobserved—
these can also be unobserved non-neuronal processes recurrently
interacting with the observed neurons.

The graphical model that we associate with this setup identifies the
lasersas thelVs thatindependently drive the source population (X) via
alinear transformation (a), the source population drives the target
population (Y) via 8 (the effect), and both receive common inputs from
unobserved confounders Z (Fig. 1b). The fundamental difficulty of fit-
ting neural models to observed datais that evenif §= 0, Z can induce
spurious dependence between the source and target population.

IVs are robust to unobserved variables

The principal challenge to inferring causal effects solely through pas-
sive observation of neural activity is the possibility of unobserved con-
founding inputs. There are many potential unobserved confounders
in the fly. Typically, a small subset of the nervous system is imaged
at a time: thus, input from unobserved neurons could confound the
observed neurons. Whole-brain imaging is possible in the fly’>"3, but
resolving single-neuron dynamics remains a challenge owing to the
density of the neuropil. Evenif single neuron activity could be resolved,
afferentactivity fromthe peripheral nervous system and ventral nerve
cord could potentially be a source of common variability. Moreover,
neuropeptide signalling cannotbe inferred from calciumimaging data
alone'", Finally, measurement error, including physiological artifacts
such as brain movement’®, can act as a source of common variability.
Collectively, thereis a high probability of unknown confounding vari-
ables preventing valid causal inference during passive observation of
neural activity in the fly brain.

Asimple case that demonstrates the effect of confounding variables
isonein whichtwo neurons Xand Yhave no causal effect oneach other
(B=0betweenXand Y;Fig.1b), but thereisacommon unobserved input
to both from Z (for example, an unobserved neuron). Even though
there is no causal effect of X on Y (Fig. 1d, ground truth weight is 0),
theleast-squares estimate incorrectly converges on a positive weight,
whereas thelV converges on 0 because thereis no correlationbetween
thelaserand Y. Thusthe IV, under our assumed model, is not corrupted
by unknown, unobserved inputs.

IV accurately estimates fly effectome

Todemonstrate thattheVcan,in principle, estimate the fly effectome,
we applieditto asimulation of the entire fly brain during stimulation
of asingle source neuron and a whole-brain recording (see Methods,
‘Simulations to evaluate estimators’; for a graphical model, see
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Fig.2|Inferring the effectome using standard and Bayesian approaches on
simulated data. a, We used the connectome to set the effectome weights for
awhole-brainsimulationusingall 121,327 connected neurons (neurons with
noincomingoroutgoing connections, above a threshold of >5 synapses, were
notincluded).b, Synaptic weights were set proportional to synapse count, with
positive (negative) sign for excitatory (inhibitory) synapses. ¢, IV estimates

of postsynaptic weights of asingle example neuron. Most of the error falls
alongthe vertical line where true weight equals O (whichis the majority of the
weights, owing to the sparsity of the fly connectome).d, Mean + 2s.d. of an
independent Gaussian connectome prior on each weightin the effectome.
Weset the prior meantobe proportional to the signed synapse count of the
connectome and variance equal to the absolute value of the mean plus asmall
constant, so that the prior widthis non-zero between neurons with noknown
synapses. e, AnIV-Bayes estimator shows smaller error than theraw IV
estimatorinb.f, Theerror of estimated weights (residual sum of squares, RSS)
decreases with the number of samples for both estimators, but [IV-Bayes gives
several orders of magnitude faster convergence (orange below blueline;
mean +s.d.; n=10 simulations). Mean squared error will decrease indefinitely
forboth estimators because they are consistent (that is, they converge to
ground truth as the number of samples goes to infinity). Horizontal lines show
error level where the R? of the recovered weightsis zero (long dash) and 0.9
(shortdash), respectively.

Extended Data Fig. 1). We set our ground truth causal effect matrix
entries to be proportional to the number of synapses multiplied by the
‘sign’ of those synapses—whether they were inhibitory or excitatory
(Fig.2a). We found that the estimator on average was accurate (Fig. 2b,
scatter centred around diagonal), but the bulk of error came from
estimates of weights whose true value was zero. This was because the
vast majority of weights are zero owing to the sparsity of the fly con-
nectome. Non-zero estimates of these weights were thus the dominant
contribution to total estimation error.

The connectome as an effectome prior

The high variability of IV reflects a fundamental problem in fitting
amodel of the entire brain: the number of parameters is large. Yet,
because the fly connectome is available and—critically—it happens
to be highly sparse, we can markedly increase the efficiency of our
model estimate by assuming that neurons withno synaptic contacts are
unlikely to directly affect each other. We do so ina principled manner
with an extension of our estimator to a Bayesian setting.

We took a Bayesian approach to reduce error by placing a Gaussian
prior on the model weights (IV-Bayes). The Gaussian prior mean was
proportional to the synaptic count and sign (positive for excitatory
synapses and negative for inhibitory synapses) (Fig. 2d). The variance
was equal to the absolute value of the mean plus asmall constant. Thus,
weights between non-anatomically connected neurons are strongly
biased towards zero, whereas weights for connected neurons are weakly
biased toward the scaled synapse count, allowing them to be zero if

warranted by the data. We add a small constant to the prior variance
sothat the estimator remains consistent: evenif the prior is wrong (for
example, ifasynapse exists where none was found in the connectome),
the estimator will converge to ground truth with enough data.

Weevaluated the IV-Bayes estimator using a simulated dataset gener-
ated with effectome weights set to a corrupted version of the ground
truth connectome weights, thus creating a mismatch between the
effectome weights and the prior mean (Methods, ‘Simulations to evalu-
ate estimators’). This corruption could, for example, reflect natural
variation between flies’ connectomes. We note that the [V estimator
is not meant to estimate the underlying connectome. Instead, the esti-
mator approximates the linear effects between neurons—these effects
may have aweak relationship with the connectome, and will probably
depend onthe state of the nervous system (see Discussion, ‘Abroader
definition of the effectome’). We found that the IV-Bayes estimates
outperformed thestandard IV estimator, even though the prior mean
was corrupted (Fig. 2c,e). In particular, the high variability of the IV
estimate for zero weights was quenched in the IV-Bayes estimate. Intui-
tively, if the connectome provides information about the strength of
causalinteractions between neurons, it should outperform standardIV.

To quantify the relative efficiency of the naive IV approach and IV-
Bayes, we sampled effectome matrices as described above and then
evaluated the average residual sum of squares (RSS) of the two esti-
mates as a function of the number of samples (for example, duration
of experiment). As expected, we found that the RSS of both estimators
decreased withincreasing samples (Fig. 2f, blue and orange trace slope
downwards). Yet, we found that the RSS of the IV estimator is at least an
order of magnitude higher than that of the [IV-Bayes estimator across
number of samples (blue above orange). In terms of fraction of variance
explained, IV-Bayes explains the vast majority of variance for the maxi-
mal number of time samples (orange trace below dotted line on right)
butthe raw IV estimator is still too noisy to achieve a positive quantity
of fraction variance explained (blue trace above dashed line) (Fig. 2f).
Thus, insimulation, IV-Bayes provides at least an order of magnitude
improvement in converging to the ground truth causal effects.

Our simulations thus far have focused on the stimulation of asingle
neuron while the entire fly brainis observed. If every neuronin the fly
brain was stimulated independently while every neuron was being
observed, the entire fly effectome would be identifiable within asingle
experiment (Extended Data Fig. 2b; for multi-neuron simulations see
Extended Data Figs.3-6). However, it isunclear whether thisapproach
isexperimentally feasible, given the constraints of diffraction-limited
optics, which makes independent stimulation and identification of
every neuroninawhole-brainimaging setup challenging. A more fea-
sible approach would be to sparsely image and stimulate neurons to
estimate the effectome across flies (Extended Data Fig. 2c). We now
describe a data-driven strategy for systematically choosing subsets of
neurons thataccount for disproportionate shares of neural dynamics.

The connectome reveals dominant circuits

Here we demonstrate a data-driven method for ranking sets of source
neurons thatare mostlikely to formcircuits with alarge effect on the fly
nervous system. We propose that these circuits should be prioritized
forinterrogation by our estimator. Specifically, we consider arecurrent
neural network model of whole-brain activity given by

ra=Wr, ()

wherer,is a vector denoting the activity of all neurons at time ¢t and
Wis the effectome weight matrix, which (for these analyses) we set to
the scaled, signed synaptic counts extracted from the connectome.
To analyse the fly brain’s dynamical properties, we perform an eigen-
decomposition of the weight matrix W, which decomposes global
dynamics into patterns of neural activation called eigenvectors with
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Fig.3|Putative global dynamical properties of the fly central nervous
system. a, Magnitude of the top 1,000 eigenvalues of the putative effectome
(scaled matrix of signed synaptic counts extracted from the connectome) and
power-law fit. b, Eigenvalues plotted in the complex plane. ¢, Correlation of
eigenvectors sorted by associated eigenvalue magnitude. d, Median (black),
99th percentile (dark grey) and maximum (light grey) correlation between
eacheigenvectorandall other top1,000 eigenvectors, showing that the
first10-20 eigenvectors are nearly orthogonal to other eigenvectors and the

simple two-dimensional rotational dynamics determined by an associ-
ated eigenvalue. Below, on the basis of this eigendecomposition, we
provide testable hypotheses pertaining to both global properties of
fly neuronal dynamics and highly specific circuits.

Inthe model we have proposed (equation (1)), the eigenvectors of the
effectome describe the dominant modes or patterns of neural activ-
ity that will grow or decay over time, each governed by its associated
eigenvalue. For example, if the activity of the brain at time O is set to
the itheigenvector v,(whose eigenvalueis A;), then the brain’s activity
pattern at time step tis given by

r=Av. (2)
Thus, the magnitude of the eigenvalue precisely determines the mag-
nitude and duration of the effect of this pattern of activity. The eigen-
vectorswiththelargest eigenvalues are therefore plausibly associated
with neural dynamics that have the largest total effects on the fly brain.
The neurons associated with the significant coefficients, or ‘loadings’,
inan eigenvector indicate the sub-population of neurons whose con-
nectivity principally sustains these dynamics, forming an ‘eigencircuit’.

There are two critical properties of the eigendecomposition that
determine the rate at which neural dynamics can be constrained by
the estimated effectome. The first is the sparsity of eigenvectors. If
the pattern of activity specified by the eigenvector includes only a
few neurons with non-zero loadings, then only the effectome of those
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neurons needs to be learned to specify that dynamical mode. By con-
trast, if each eigenvector significantly involves all neurons, the entire
effectome would need to be learned to explain even one dynamical
mode. The second critical property is the relative magnitude of the
eigenvalues. If the eigenvalue associated with a sparse eigenvector
was much larger than all the others, then the majority of variation in
global dynamics could be explained with the effectome of a handful
of neurons.

Global dynamics of putative effectome

Wefirstexamined the relative magnitude of the eigenvalues and found
they decayed slowly. For example, the 1,000th eigenvalue has approxi-
mately1/10 of the magnitude of the largest (Fig. 3a). Thisimplies that:
(1) the choice of which early modes to analyse is somewhat arbitrary,
because they have similar magnitudes; and (2) many dynamical modes
could be required to explain neural dynamics in the fly brain (that is,
fly neural dynamics are high-dimensional). We note that the dimen-
sionality of neural dynamics depends on the input distribution. This
analysis implicitly assumes private white noise inputs to each neuron
where all eigenvectors are equally likely to be driven—intuitively, this
may correspond to aresting state with each neuron stochastically fir-
ingatasimilar rate.

We explored the range of timescales for predicted dynamics by
examining the eigenvalues in the complex plane (Fig. 3b). Complex



eigenvalues are associated with a complex eigenvector whose real
and imaginary parts define a plane of rotational dynamics for neural
activity. Ifa pattern of activity isinduced within this plane, then neural
activity will continue to evolve solely within the plane—that is, it will
transition over time between mixtures of the real and imaginary part
ofthe eigenvector. The angle from the positive real axis determines the
speed of theserotational dynamics. At 0°, the eigenvalue is real positive
andthere areno oscillatory dynamics but asimple monotonic decay. A
non-zero angle is exactly the angular step size of rotational dynamics
ateachtimestep, so small angles imply slow rotational dynamics, and
anegativereal eigenvalue (180°) implies the fastest possible rotational
dynamics (flipping sign at each time step). We find there is a broad
distribution of timescales of rotational dynamics. The distribution of
angles had modes at 0°, 90° and 180°, implying a preponderance of
monotonically decaying modes, rapid transitions between distinct
populations and the fastest possible timescale, respectively.

Wetheninvestigated whether dynamical modes tended to be inde-
pendent of each other. When eigenvectors are orthogonal to each
other, the dynamics associated with each eigenvector are independ-
ent (under assumed white noise inputs). Conversely, if two eigenvec-
tors are highly correlated, then these dynamics are more likely to
co-occur. Thus, by examining the correlation between eigenvectors
we can test which dynamical motifs will tend to be enlisted simultane-
ously—potentially because they are involved in similar computations.
Examining the correlation matrix of the first 100 eigenvectors (treat-
ing the realand complex parts as separate eigenvectors), we found on
average correlation was weak with sparsely distributed higher values
(Fig. 3c). We observed that early eigenvectors tended to have lower
correlation to others (first ten rows and columns dark). Aggregating
the correlation of each of the top 1,000 eigenvectors to all others, we
found a clear trend in which both the max and average correlation
increased with eigenvalue rank (Fig. 3d). Roughly speaking, the top
ten dynamical modes will occurindependently of each other, whereas
the rest will tend to co-occur with at least one other mode. Thus, we
predict that dynamical modes will typically operate independently
of each other, which bodes well for the project of examining these
circuits individually.

Experimental limitations dictate that only sparse populations of
neurons can be simultaneously identified with the connectome and
independently stimulated. Thus, here we analysed whether the popula-
tionsinvolvedinthese eigenmodes arein fact sparse. Plotting the first
eigenvector, we found that the loadings across neurons were indeed
extremely sparse, with most loadings near zero and only several devi-
ating significantly from zero (Fig. 3e, top). These loadings were of the
samesign, indicating thatall neuronssignificantly involved in thismode
oscillate in sync. We found that later modes were also sparse, but less
so (Fig. 3e, bottom). We measured the number of neurons required to
account for 75% of power across loadings for the first 1,000 modes,
and found that this number never exceeded more than 10% of the fly
brain (Fig. 3f). The dominant modes tended to be the sparsest, sug-
gesting that the dominant dynamics of the fly brain can be explained
by estimating only a small fraction of the effectome. On average, for
the top 10 eigenvectors, around 50 neurons were needed (less than
0.05% of all neurons), for the 10th to 100th eigenvectors, around 500
neurons were needed (less than 0.5% of all neurons), and for the100th
to1,000th eigenvector, around 1,500 neurons were needed (less than
1.25% of all neurons). These findings suggest that the dynamics of the
dominant modesin the fly brain canbe explained by estimating a small
fraction of the effectome.

Finally, we characterized the anatomical properties of these puta-
tive circuits. We visualized up to 100 neurons that together comprise
75% of loading power within their respective eigenvector loadings and
colour-coded the top 12 (the remaining neurons are in grey; by contrast,
allresultsin Fig. 3a—e are for all neurons). To provide abroad sampling
of circuits, we organized eigenvectorsinto three groups on the basis of

anatomicallocation: visual, olfactory and motor/navigational (Fig.3g,
left, middle and right columns, respectively). Ingeneral, we found that
the highly sparse top eigenvectors that we previously characterized
were also anatomically localized. For example, the top visual eigenvec-
tors contained neurons that were confined to the lobula plate in the
left hemisphere (row 1) and right hemisphere (row 2) (Fig. 3g). These
eigenvectors recapitulate ahypothesized neural circuit for opponent
motion computation (Fig.4a-f). The top olfactory eigenvectors were
also anatomically localized and contained mushroom body neurons
(row1) and projection neurons from the antennal lobe to thelateral horn
(row 2). Multiple motor/navigational eigenvectors also showed con-
finement to the ellipsoid body (rows 1and 2). For all three anatomical
categories, we observed that eigenvectors with lower sparsity tended
toincorporate diverse cell types distributed across multiple neuropils
(rows 3 and 4). In general, we found that neurons with high loadings
in early eigenvectors were often anatomically localized inaccordance
with the classical approach of studying the nervous system region by
region. Conversely, many circuits were not anatomically localized and
merit further investigation (for examples, see Extended Data Fig. 7).

We observed that anatomically localized eigencircuits were in the
minority (10% of the top1,000 eigencircuits), and non-localized circuits
were often among the most dominant (Extended Data Fig. 8e,f). We
considered whether modest amounts of biological variability, measure-
ment error or saturation would change these results (Extended Data
Fig. 9), and found that in general the early eigencircuits were quite
robust, and the later ones less so. The non-local circuits tended to be
less robust to perturbation, but we did find many robust examples
(Extended DataFig. 9b). We also determined that the high dimensional-
ity of the connectome was not simply aresult of the sparsity of the con-
nectome, nor was it sensitive to the aformentioned factors (Extended
DataFig.10).

We found that the top eigenvectors of the connectome prior are
highly sparse. This property facilitates learning the effectome because
itis easier to identify, image and stimulate sparse populations. Given
the thousands of existing genetic driver lines accessible to the fly com-
munity” and tools for automatically screening these lines for neurons
of interest’®, it may be possible to identify reasonably sparse genetic
lines that contain a subset of each eigencircuit’s dominant neurons
(see Supplementary Information, ‘Sparse expression’). Altogether,
owing to the distinct properties of the fly connectome—namely the
sparsity of connections, eigenvector loadings and interaction between
eigenmodes—there exists aplausible path forward to systematically and
efficiently explain whole fly brain dynamics in terms of direct causal
interactions between neurons.

Dominant circuits are interpretable

Our decomposition of the putative effectome revealed sparse eigen-
vector loadings, which makes them amenable to further analysis. We
tested whether these vectors correspond to identifiable circuits and
interpretable dynamics in the fly brain (see Methods, ‘Simulations to
analyse eigencircuits’).

We found that the first eigenvector localized to the lobula plate
(Fig. 4a) and was highly sparse (Fig. 4b). We quantified the anatomi-
callocalization as the fraction of synapses in asingle neuropil. For this
eigencircuit, 75% of synapses were localized to the lobula plate, whereas
the rest were confined to the inferior posterior slope. The associated
real eigenvalue was negative: thus, for linear dynamics we expect rapid
oscillation, butinthe morerealistic case where activity is thresholded
(see Methods, ‘Simulations to analyse eigencircuits’), these neurons
willinactivate rapidly following activation (Fig. 4c). The top four neu-
rons in this eigenvector were VCH, DCH, LPi15 and Am1¥. All putative
effects between these neurons are inhibitory, but there is a complex
mix of mutual and directed inhibition (Fig. 4d, partial symmetry across
diagonal of weight matrix). Notably, VCH and DCH do not inhibit each
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Fig.4|Example eigencircuits. a, Neurons with top five loadings on
eigenvector 1. b, Firsteigenvector of the fly effectome. ¢, Linear and rectified
dynamics upon stimulation by first eigenvector (a.u., arbitrary units).

d, Synapticcountandsign between neurons.e, Circuit diagram representation
of synaptic weight and sign. f, Visual stimulation simulation. VCHand DCH are
given sustained stimulation for 150 ms, simulating BTF motion on the right
side of the fly (fly on the left; solid brown and yellow, high sustained response).
Allneurons were given sustained stimulation for 150 ms, simulating BTF motion
onbothsides of the fly, whichleads toinhibited responses of VCHand DCH

(fly ontheright; dashed brown and yellow below solid). g, Neurons with top

other, but are inhibited by Am1 and LPil5, but Amlreceives recurrent
inhibition from VCH and DCH, whereas LPil5 does not (Fig. 4e).

Concretely determining the computation that this visual circuit
may performrequires an assumption about how visual features drive
these neurons. It is known that VCH and DCH receive major input
from H2 from the contralateral eye, which responds to back-to-front
(BTF) motion?®, whereas LPi15 and Am1 receive major inputs from
T4b and T5b, which are driven by ipsilateral BTF motion®. We probed
the functional properties of this circuit by simulating BTF visual input
(see Methods) to either theright eye (contralateral input) or the left and
right eyes together (bilateral input). When provided with contralateral
BTF input only, we observe that VCH and DCH activity remained high
throughout the stimulation period, whereas LPil5 and Am1 activity
were suppressed because they were not directly stimulated and because
Aml is strongly inhibited by VCH and DCH (Fig. 4f, solid trace brown
and yellow above blue and green). Conversely, bilateral BTF stimula-
tion resulted in suppression of VCH and DCH. Overall, this putative
circuitis well-suited to compute opponent motion across the fly eyes.

Notably, this circuit was analysed in a very recent small-scale con-
nectomic analysis of the optic lobe?, whereas it was ‘rediscovered’
with our data-driven approach. This suggests, anecdotally, that the
eigendecomposition of the connectome can reveal scientifically inter-
esting sub-circuits.
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fourloadings oneigenvector45. h, Allloadings for eigenvector 45.1i, Linear and
rectified dynamics (left) upon stimulation by eigenvector 45 (right).j, Synaptic
countand signbetween nine neurons with top loadings on eigenvector 45.

k, Simulation of visual stimulation. Left, simulation of a 0° visual stimulus,
withstronginputto the 0°-preferring neuron (light blue trace) and sustained
backgroundinputtoall other neurons. The network response exhibits WTA
dynamics, inwhichall neuronsrespond transiently to stimulus onset, but

only the neuron with maximal response remains active for the entire stimulus
duration. Right, similar results for a90° stimulus and 90°-preferring neuron
(greentrace).

Inspired by our findings with the first eigenvector of the connectome
prior, we next sought toidentify additional circuits with a putativerole
instimulus selection. We found that eigenvector 45 contained high load-
ings for GABAergic (y-aminobutyric acid-producing) R4d ring neurons
inthe ellipsoid body (Fig. 4g). For this eigencircuit, 99% of synapses
were localized to the ellipsoid body, and the remainder were in the
fan-shaped body and mushroom body medial lobe. R4d ring neurons
have spatial receptive fields that retinotopically tile the visual field and
exhibit directional and orientation tuning®. This eigenvector has sparse
and bimodal loading (Fig. 4h, majority of scatter near O but subset
near 0.2). Its associated eigenvalue, similar to the first eigenvector, is
negativereal, leading torapid oscillatory linear dynamics and inactiva-
tion for rectified dynamics (Fig. 4i). Despite the similar dynamics, the
synaptic weight matrix revealed complete mutual inhibition between
R4dring neurons (Fig. 4j, off-diagonal blue). This connectivity pattern
hasbeenidentified in prior work?, but its functional relevance remains
incompletely understood.

One possible computation consistent with this connectivity pattern
isawinner-take-all (WTA) computation withrespectto visual features
distributed across space.InaWTA circuit, the most strongly activated
neuron strongly suppresses all other neurons, thereby preventing its
own inhibition. To test this prediction, we simulated uniform visual
drive to the R4d inhibitory sub-network while providing one neuron



with higher input (Fig. 4k, left and Methods). We found that the neuron
withastrongerinputindeed had arobust sustained response, whereas
the other neurons’ responses quickly decayed near to baseline (Fig. 4k).
We confirmed that this WTA property is not specific to asingle neuron
by providing different neurons with biased input (Fig. 4k, right). Indeed,
these dynamics persisted, which supports the idea thataWTA computa-
tion is arobust property of this circuit. On the basis of these findings,
the R4dinhibitory sub-network appears well-poised toimplement WTA
dynamics and thus toselectindividual visual spatial channels as primary
inputs to the central complex. We note that global mutual inhibition
withinring neurons such as the R4d cell type has been characterized*
and predicted to potentially drive WTA, but here we demonstrate thata
mechanism predicted directly from anatomical parameters generates
this computation.

We have analysed two of the hundreds of sparse eigenvectors
revealed by an eigendecomposition of the fly connectome. We empha-
size that these eigenvectors should not be interpreted as the ‘true’
effectome eigenvectors; rather, they provide a principled approach
for generating and testing falsifiable hypotheses about causal relation-
ships between neurons and the computations they may support. Our
analyses served to demonstrate how neurons may be systematically
chosen for causal perturbation experiments, and how—once the true
effectome weights are learned for this subset of neurons—one might
generate hypotheses about neural function than canbe tested in vivo.
Crucially, the dynamical mechanisms of the computations indicated by
our simulations remain untested and require estimating the effectome
between these neurons.

Discussion

We developed a combined experimental and statistical approach to
estimate a causal model of the fly central nervous system—its effec-
tome. In simulation, we demonstrated that the approach provides
consistent estimates of the ground truth effectome. We found that
the huge number of parameters of a whole-brain model made this
estimation unfeasible, motivating us to use the connectome as a prior
to markedly increase the efficiency of our estimator. We analysed
our connectome prior to reveal thousands of small putative circuits
operating largely independently of each other. This indicates that
whole-brain dynamics may be efficiently explained with sparse imag-
ing and perturbation, which is far more feasible than dense imaging
and perturbation. We analysed two of these circuits to find that one
recapitulates a proposed circuit for computing spatial opponent
motion, and the other provides an explicit mechanism for visual spa-
tial selectivity in the ellipsoid body.

Related IVs work

IVs has been an area of intense interest outside of the neurosciences
but was only recently recognized as a useful tool for neural perturba-
tion analysis*>*?°, Non-parametric approaches that estimate average
functional effects** do not provide an explicit model of neural dynam-
icsor differentiate between direct versus indirect synaptic effects. Yet,
these non-parametric estimates are naturally more robust and could
be used to validate model-based predictions. To our knowledge, our
workis thefirst to provide a consistent estimator of aneural dynamics
model in the challenging but nearly universal experimental condi-
tions where there are potential unobserved confounders (for example,
unobserved neurons).

Anextension of this approach to higher order auto-regressive models
would relax the restriction that the timescale of interaction is known
and fixed (1 ms in our simulations); thus, slower effects (potentially
through extra-synaptic paths such as peptide signalling pathways)
could be detected. There has been recent progress in this direction?,
butitdoesnot currently allow recurrentinteraction between observed
and unobserved populations, whichis typical in neuroscience settings.

Related connectomic work

There has been sustained interest in the analysis of large-scale ana-
tomicinformation'®*7° A linear systems analysis of the worm** made
several findings that are qualitatively similar to ours: they ‘rediscov-
ered’ several known circuits, found a preponderance of fast oscillatory
and monotonic decaying modes, and identified sparse eigencircuits
(seefig. 8inref.30).

Graph-based fly connectome analyses'? find that the fly brain is
a small-world network with short paths between almost any pair of
neurons, which could imply highly effective global communication.
By contrast, we find that neural dynamics are best described by small,
independent subsets of neurons: stimulating one eigencircuit has little
effect on neurons outside of that circuit. Future perturbative work is
required to determine the efficacy of global information propagation
across the fly brain.

Along a similar line, a clustering algorithm has been applied to the
fly hemibrain connectome®®. It also recovered well-studied circuits,
indicating its promise. Yet, the dynamics models under which the
recovered circuits doin fact sustain distinct computations is unclear.

Anatomical information has been used to constrain mechanistic
whole-brain models of the worm fit to neural data®, and a similar model
couldbe applied to the fly. A critical distinction of our approachisthat
it provides consistent estimates under unobserved confounders. Even
for whole-brain recordings (which are now possibleinthe worm), where
one mightassume there are nounobserved variables, itisimpossible to
directly test this assumption. Yet this prior work directly demonstrates
that connectomic constraints can improve the efficiency of model
estimation—as we show in simulation.

In analternative connectome-based approach applied to the visual
system of the fly*?, parameters were not constrained to neural activity
but were instead optimized to perform discrimination of visual motion.
By sharing parameters across circuits that are thought to perform
similar functions, the efficiency of estimation was greatly increased.
In a similar approach, IV-Bayes could be extended to a hierarchical
Bayesian model that borrows statistical power across circuits and cell
types that are hypothesized to have similar functional properties.

We were able to recapitulate experiments on the visual system by
directly stimulating model neurons in the central nervous system
(Fig.4), butthis required prior knowledge of how specific sets of stimuli
affect the central nervous system. Incorporating the effects of stimuli
onearly sensory neurons (for example, ommatidia) isacritical direction
for utilizing effectome estimates to predict sensory computations for
novel stimuli (for example, in refs. 32,33). Linking estimated internal
dynamics models to behaviour—a central goal of systems neurosci-
ence—will require integration with models of how descending motor
neurons actuate the body>*%,

Abroader definition of the effectome

The method that we introduce hereis a consistent estimator of alinear
dynamical system, yet the fly nervous system is a highly nonlinear
system. To provide aconcrete interpretation of linear model estimates
applied to nonlinear neural dynamics, we analysed our estimator in
the context of a conductance-based model of neural dynamics. This
model includes both a spiking nonlinearity and nonlinear synaptic
integration. We find that the IV estimate converges to the Jacobian
(matrix of partial derivatives with respect to voltage of each neuron)
oftheunderlying neural dynamics equation, evaluated at the voltages
of the neurons in the population (Extended Data Fig. 3 and Supple-
mentary Information, ‘Conductance-based neural dynamics model’).
Thisresultis entirely consistent with our notion of the effectome—the
Jacobian captures the effect of a small perturbation of one neuron
on any other neuron. Our linear simulation (equation (1)) is a special
caseinwhich theJacobianis exactly the connectome. In the conduct-
ance model, the effect of a perturbation varies with the state of the
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network and the Jacobian captures this notion because it varies with
respect to neuronal voltage. This also provides motivation to titrate
optogenetic stimulation to the minimal amount possible—for larger
deviations, the estimate of the Jacobianbecomes less precise and aver-
ages over more states. The Jacobian is also a foundational quantity
in the study of stochastic differential equations. It is classically uti-
lized in a linear dynamical system that approximates nonlinear and
non-stationary dynamics along anestimated trajectory. For example, in
the case of neural data, independent IV estimates can be formed across
astimulus-triggered average. More generally, extensions to our esti-
mator can utilize estimated trajectories within repeated experimental
conditions, stereotyped behaviour or inferred latent states”. The latter
may be critical if the emerging observation that the bulk of variationin
global brain dynamicsis unrelated to stimuli or behaviour holdsin the
fly*°_ Ultimately, we interpret effectome estimates as capturing local
interactions between neurons in a particular state (for example, ata
set of membrane voltages). Further researchis needed to understand
how to use these local estimates to learn about changes in state (such
as synaptic plasticity).

Our interpretation of our estimator as providing the Jacobian of
neural dynamics further clarifies the utility of the connectome prior. We
show analytically in our conductance model that the Jacobian between
unconnected neurons will always be zero (Supplementary Informa-
tion, equation 6). Thus, the connectome prior mean will be wrong for
only 0.01% of the effectome parameters, because only 0.01% of pairs of
neurons form a synapse in the fly brain. Thus, even with misspecified
non-zero weights IV-Bayes provides alarge gain in statistical efficiency
(Extended DataFig. 4).Ingeneral, most neuronsin the fly brain do not
directly affect each other, and this is where the majority of our gainsin
statistical efficiency are achieved. This in combination with weak priors
onthesmallsubset of neurons that plausibly directly affect each other
allows our estimator the flexibility to efficiently estimate the effectome.
We also confirm that even with a completely misspecified prior (for
example, there may be extra-synaptic effects through peptide signal-
ling pathways*), our estimator, with enough data, converges to the
Jacobian—that is, the weight matrix that provides alinear description
of the effect of each neuron on any other in the system’s current state
(Extended DataFig.5).

The connection of the effectome to the Jacobian of conductance
model also provides a concrete interpretation of the connectome
(matrix of signed synaptic counts) as alinear dynamics matrix. Itisin
only a narrow set of situations that the best linear approximation to
these nonlinear neural dynamics would be proportional to the con-
nectome. Variation in neural voltage across neurons, synaptic rever-
sal potentials, synaptic conductance, membrane time constants and
more can all corrupt proportionality (Supplementary Information,
equation 6). Thus, a biophysical interpretation of our results is that
the eigencircuits decompose the best linear approximation to neu-
ral dynamics under the assumption that there is a small amount of
variation across these neuronal properties. Amild confirmation of this
untested assumption is that we do in fact recover known functional
sub-circuits of the fly nervous system from an eigendecomposition
of the connectome (Fig. 4).

Ingeneral, the form of dynamics in the fly brain even for our simpli-
fied conductance modelis highly under-constrained—the parameters
needed to evaluate the Jacobian are not available (including average
voltage, membrane time constants, postsynaptic currents associated
with different synapse types and morphologies). Itisbeyond the scope
ofthiswork toidentify biophysically realistic models of neural dynam-
ics fromthe connectome and measured neural activity. Our estimate of
the effectomerepresents afirst-order approximation to these underly-
ing dynamics, which will depend on the state of the nervous system.
Future work could focus on how sets of these first-order estimates can
be used to infer the appropriate models and parameters of nonlinear
neural dynamics equations.
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Sufficient experimental setting

Here we specify the sufficient, feasible, experimental setting to ‘learn’
the effectome. We mean feasible in that the technologies to perform
these experiments exist but have yet to be simultaneously integrated
into the fly. In Supplementary Information, ‘Experimental approach’,
we discuss how to achieve this ideal setting, including practical steps
for generating a fly line specific to estimating an eigencircuit.

We note that these requirements are sufficient but that there could
certainly be alternative approaches to satisfying the requirements
of our estimator. In general, we expect that it would be unfeasible to
estimatealarge fraction of the effectome inasingle experiment. Thus,
our proposed strategy is to estimate eigenvectors of the effectome
piecemeal, with sparse subsets across genetically identical flies in the
same experimental conditions (Supplementary Information, ‘Experi-
mental approach’).

There are four main technical requirements to estimate the effec-
tome in such a manner. (1) The ability to select a sparse subset of
neurons within a population of interest to image and stimulate (Sup-
plementary Information, ‘Sparse expression’). (2) The ability to record
the intracellular voltage of a population of neurons (Supplementary
Information, ‘Voltage imaging’). (3) Simultaneous independent direct
stimulation of neurons in the population (Supplementary Informa-
tion, ‘Holographic stimulation’). Both the recording and stimulation
must be at the timescale of neuronal interaction. (4) Identification of
imaged and stimulated cells with the connectome (Supplementary
Information, ‘Identification pipeline’).

This ideal experimental setting is challenging to achieve. None-
theless, if it is achieved, it provides a principled approach to accu-
rately estimate a causal account of local neuronal dynamics. A
complete nonlinear dynamical account of brain dynamics would nec-
essarily recapitulate local dynamics; thus, the effectome will serve
to rigorously constrain and test a mechanistic model of the nervous
system.
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Methods

Statistical model of fly brain
Here we approximate fly brain dynamics as a first-order vector auto-
regressive model (VAR(1)),

L=Wr_ + Wl +e,. (3)

wherer,is the D x 1 vector of responses from all neurons on time step
t, Wis the full D x D dynamics matrix, L, is the random D, x 1 vector of
stimulation power (for example, voltage), W, is the matrix specifying
the effect of stimulation, and ¢, is additive noise with arbitrary bounded
covariance (for graphical model, see Extended Data Fig.1). Theraw IV
estimator that we outline below requires no distributional assump-
tions on the random variables (L,, €,). Furthermore, the noise (¢,) can
take on any correlation structure over time and across neurons, so our
estimator applied to dynamics of this form will converge to the true
effectome W, regardless of confounding inputs (so long as the noise is
independent of the stimulation L,). We note that for nonlinear dynam-
ics, further assumptions are required (see Supplementary Informa-
tion, ‘IV estimator applied to nonlinear dynamics’).

For our derivations below we define three subsets of neuronsinr,,
we will call the vector of neurons that are observed in a given experi-
ment, target neurons, at time point ¢, Y,, the neurons that are both
stimulated by the laser and observed X,, source neurons, and finally
neurons that are neither observed nor stimulated Z, (for graphical
model, see Extended DataFig.1). Note that source neurons are asubset
oftarget neurons.

Simulations

Simulations to analyse eigencircuits. To evaluate neural dynamics
associated with eigencircuits (see ‘Dominant circuits are interpretable’)
in continuous time, we restricted our analyses to neurons with the
highest eigenvector loadings that accounted for 75% of all eigenvector
power. Inthe case of the opponent motion circuit, this was 5 neurons,
andinthe case of the ellipsoid body circuit, this was 21 neurons. We set
the discrete time step to 7=10 ms, and a sampling period of 4 =1 ms
sothatateachtime step,

1. ,=exp(log(W)AT )f (r,+u,) (4)

where Wis the putative effectome of the subset of neurons being
simulated, f(-) is a nonlinearity (here rectification), and u, is a vector
of time-varyinginputs.

We tuned the membrane time constant manually to 0.5 ms to reca-
pitulate the qualitative findings of prior work. The resulting W was
scaled to have a maximum eigenvalue of 1. It is unknown what a good
approximate scaling of synapse number to linear effect is in these
regions but if the scaling was zero then this circuit would not perform
acomputationand ifit was too large the dynamics would be unstable.
The membrane time constant is often faster in sensory systems but
depends on the voltage of the neuron*. Future work could consider
other normative motivations for scaling weights and time constants
(forexample, ref. 32).

In both the ellipsoid and opponent motion simulations, inputs in
Fig. 4 were simulated by addinginastep functioninput to therelevant
neurons in our dynamics simulation. This step function was eitherat 0 or
ahand tuned maximum. Inthe opponent motion circuitinput maximum
was 0.01and for the ellipsoid body circuit the winner neuron receivinga
largerinput hadinput of 0.01and other neurons had 0.006.Inboth cases
stimulation lasted 150 ms. In the case of the opponent motion circuit,
we used prior literature to determine which neurons to stimulate under
unilateraland bilateral BTF motion***. In the case of the ellipsoid body
circuit, the ordering of the neurons with respect to retinotopic input
was arbitrarily set by their eigenvector loading magnitude.

Simulations to evaluate estimators. In all simulations to evaluate
statistical estimators, €, ~ N, (0, 2,.) where 2, = clpand L, ~ N, (O, lip). To
simulate misspecification of the connectome prior mean, we esti-
mated the accuracy of our estimator across many ‘ground truth’
effectomes drawn from the connectome prior (except without a small
constant added to the variance so that synaptic weights equal to O
remained 0), such that the connectome prior mean was never the same
as the ‘ground truth’ effectome in a given simulation.

Giventhatthere are ahost of unknowns withrespect to areal experi-
mental setting (such asimaging SNR, strength of laser effect or duration
of recordings), we hand tuned these parameters to give reasonable
rates of convergence. In our whole-brain IV simulations, signal-to-noise
ratio (SNR) =10 (laser power relative to noise power). We note that
while we have simulated from a parameter regime in which our esti-
mator converges rapidly, there are many parameter settings where
convergence is slow. We note that conditions of high noise and little
effect of thelaser are particularly challenging. Slow timescales are also
challenging because they effectively filter out most of the power of
the white noise perturbation (but for extension to correlated IVs, see
ref.27). Yet, we show analytically that our estimator is consistent and
thus will converge with enough samples.

For clarity, in our example simulation we chose a single neuron to
stimulate and estimate its downstream synaptic weights (Fig. 3). This
neuron was chosen because it had a larger than typical number of
downstream contacts. It is straightforward to estimate downstream
weights for multiple neurons simultaneously (equation (7)), and we
demonstrate this both for IV and IV-Bayes (Extended Data Figs. 4-6)
andIVinaconductance-based model (Extended Data Figs.3and 4). We
note thatin our simulations, as the number ofindependent perturba-
tionsincreases (n)), thereis effectively more noise overall both through
second-order effects and in estimating the effect on a downstream
neuronthatitselfis being perturbed. Thisis another pressure to keep
the number of stimulated neurons low and the strength of perturbation
minimal, but depends on the particularity of connectivity.

IV estimator for an LDS
We note that

CovIX,, L]=W,, )

because the stimulationisassumed to have identity covariance. Thus,
by calculating the sample covariance between the laser and simulta-
neous activity in the stimulated neurons we can obtain an unbiased
estimate of the linear weighting of laser drive on each neuron. Similarly,
we can obtain an unbiased estimate of the linear effect of the laser on
all target neurons at the next time step,

COV[Y[H: I-t] = Wx,ym/l,x' (6)

where W, ,is the submatrix of Wwith postsynaptic effects of X,onY,,,.
We can then use equation (5) to identify W, ,with

Wey=We Wi (W07, @)

where (W,,)" isa pseudoinverse because we have not specified the rank
of L.Onlyifn, > nsisthisatrueinverseand W, isinvertible. Anequiva-
lent but more intuitive approach is termed two-stage least-squares
(2SLS), where in the first stage L, is regressed on X, to give X, = W, L,
and then X, is regressed on¥,,, to give¥,,,= W, , X,. The IV estimator
canalsobe extended to higher order AR processes by conditioning the
estimator on multiple past time steps?.

We note that multi-synaptic effects can be derived from the estimated
monosynaptic effects with powers of the effectome matrix. For exam-
ple, if we have the effectome matrix Wand inputris aninput vector of
allzeros except for neuron i, then the nth order synaptic effectis exactly



W"r (forexample, n =1gives direct synaptic effects, n = 2 gives effects
through up to two synapses, and so on).

The connectome prior

We use the 2SLS approach to motivate a consistent estimator from a
Bayesian perspective. In short, we perform classical Bayesian regres-
sionfor the second stage of regression using the connectome as a prior
on the weights W, ,. To be consistent with the most typical setting of
Bayesian regression we first work out the case of multiple source neu-
ronsand asingle target neuron (thatis, learning a set of weights in the
same row of W). We assume the conditional distribution of the output
giventheinputis:

Y,1X - NW'x,, 07), (®)

where (x,,y,) represents theinputand outputforsamplez< {1, ..., T},
and 62 is the variance of the observation noiseiny.

Let us now suppose that u provides the mean for a Gaussian prior
over the linear weights w:

w- N, y2). 9

Let i = sc, where the hyperparameter sscales ¢, the connectome prior
weset tobe equal to the synaptic count and sign. Combining this prior
with thelikelihood defined above gives us the following posterior mean:

Wyap = arg max  P(wlX, Y, 6)
= (/o XX+ 1/yH) 1 (1/o® XTY + 1/y )
=(X"™X+ a2y XY+ (2 /o XTX + 1,

(10)

where 6={0? y% ¢} denotes the hyperparameters. The second
expression above (equation (10)) shows that the maximum a poste-
riori (MAP) estimate is the standard ‘ridge regression’ estimate,

L
Wiidge = (XT)(+ ‘Lz[j X"y, plusatermthat biases the estimate towards
4

the anatomical connectome u. Note that in the limit of small observa-
tion noise a2or large prior variance y2, the MAP estimate converges to
the maximum likelihood (ML) estimate, whereas in the limit of large
o2orsmally?, it converges to .

In our simulations we choose the optimal hyperparameters
beforehand but the hyperparameters could be learned via a standard
cross-validation grid search. Amore principled approach would be to
use evidence optimization,

6=argmaxyP(Y|X, ) =arg mglxIP( Y|IX,w, 0)P(w|0)dw, (11)

whichwould be straightforward given that the evidenceis available in
closed form for this model.

Construction of fly connectome matrix
The connectomeisareconstruction of the central nervous system of a
seven-day-old adult female Drosophilia melanogaster. We use the most
recent version of the connectome v783. Details of the reconstruction
are provided in the original publications of the connectome dataset’.
Each entry in the connectome matrix W, the main object of study
in our analyses, was the number of synapses multiplied by their
inferred sign based on predicted neurotransmitter type™. Specifically,
neurons with neurotransmitters acetylcholine and dopamine had
positive weights on their downstream neurons and neurons with GABA,

serotonin, glutamate and octopamine had negative weights. The neu-
rotransmitter type was predicted directly from electron microscopy
images trained on synapses with known neurotransmitter types. The
matrix Wscaled for stability was used as the connectome prior mean
in estimator simulations (Fig. 2) and our eigendecomposition analy-
sis (equation (2); Figs. 3 and 4). A threshold was set on the synapse
count such that any connections with less than five synapses were
set to zero. This choice followed the reasoning of other analyses of
the connectome' that this would minimize the impact of spurious
synapses—manual proofreading did not extend to connections with
fewer than five synapses.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Datausedin this study canbe downloaded from https://codex.flywire.
ai/api/download. FlyWire data can be accessed online through Codex
(Connectome Data Explorer) at https://codex.flywire.ai. Codex pro-
vides neuron annotations, neurotransmitter information, and compact
data downloads. All eigencircuits’ loadings and additional plots of
eigencircuits are available at https://github.com/dp4846/conn2eff.

Code availability

All code to analyse data and generate figures is available at https://
github.com/dp4846/conn2eff.
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Extended DataFig.1|Graphical model associated with VAR(1) estimation.
L,islID stimulation at time step t, effect on source populationisimmediate
and mediated by linear transformation W, ,.. Effect of X,_; on X, andY, (target,
unstimulated population) is mediated respectively by linear transformation
W.andW, ,. Interacting unobserved confounds canadd arbitrary correlated
noise (Z,).
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Extended DataFig.2|Schematic of perturbation experiment types.

(a) (left) Single fly experiment with whole-brain observation (microscope FOV
encompasses all postsynaptic neurons), single neuron stimulation (laser drives
filled red neuron), and total rank of stimulationis 1 (only one laser). Asaresult,
all postsynaptic weights from the stimulated neuron areidentifiable (blue
column of weight matrix filled). (middle) To learn all other effectome weights
inthis setup would require as many flies as neurons, as each individual neuron
isstimulated. (b) Single fly experiment in which all weights are identifiable:
whole-brain observation, whole-brain stimulation, and rank of stimulation s
equal to the number of neuronsin the brain (same number of lasers as neurons).
(c) (left) Single fly experiment with partial brain observation (FOVencompasses

half of neurons), partial brain stimulation (two neuronsredfilled), and rank of
stimulationis equal to that of the source (2). (middle) To identify all weights of
source neurons the experimentisrepeatedinanother fly but with different
target neurons. All effectome weights can be identified piecemealin this
manner. (d) Convergencerate to full identifiability of the fly effectome asa
function of the fraction of number of experiments over the total number of
neurons. Different tracesreflect different experimental settings. Columns in
legend are three primary ways experiments can vary. Source is the number of
neurons thatare being stimulated. Target is the number of neurons observed,
we assume the source neurons are also observed. Perturbationrankis the
dimensionality of the perturbation method. Dis the total number of neurons.
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Extended DataFig. 3 | Instrumental variables estimator converges to the
Jacobian of membrane voltage equation. (a) Conductance matrix, W,, of
conductance simulation where off-diagonals were set randomly according
toauniformdistribution between 0.01and 0.02. The reversal potential of

all synapsesis O mV; thus all synapses are typically excitatory. Membrane
constant7=10 ms, membraneresistance R=1,inputnoiseisSD=2mV, laser
perturbation SD =2 mV, inputs were hand chosen toinduce two conditions

of similar vs different average voltages, and the conductance equation is
integrated using Euler’smethod with 4 =1mswith noise and laser perturbation
added ateachtimestep. (b) The firing rate as afunction of membrane voltage is
sigmoidal. (c) (top) Example traces of firing rate over time for neurons with

W, (conductances)

Jacobian evaluated

W, (conductances)
at average voltage

similar average voltage. Different colors represent the five different neurons.
(c) (bottom left) Relationship between 1V estimates and the Jacobian evaluated
atthe average voltage, with a high correlation (r*= 0.97) and alinear fit with
slopenearlindicating IV converges to the Jacobian of neural dynamics.

(c) (bottomright) Relationship between the Jacobian and conductances (W),
withastrong correlation (r?=0.87) and slope deviating from one indicating
thatapproximately /< W.(d) (top) Example traces of firing rate over time

for neurons with different average voltages. (d) (bottomleft) IV estimates
converge to the Jacobian again. (d) (bottomright) In contrast, Jacobian and
conductance matrix are not proportional to each other when average voltages
vary widely.
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estimator. Error bars show standard deviations across 5 simulations (a different
W,chosen for each simulation but all other parameters remain the same).
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Extended DataFig.5|1V-Bayesisaconsistent estimator even withincorrect
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average 9-%aresetto O and diagonalisset to 0.1) (a) (center) In‘Correct prior’
condition prior meanisset to the true effectome. (a) (right) In ‘Incorrect prior’
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(b) Simulations of IV-Bayes estimator with correct (blue) and incorrect

prior (orange) and the raw [V estimator (green) across number of samples
(i.e.,duration of recording) and resamplings of effectomes (mean + s.d.;
n=10simulations). Variance of prior mean has a constant (see Fig. 2c legend)
of increasing size added toit (increasing left to right). R*is measured between
the estimate of the effectome and ground truth.
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parameter linear fit. Measure was taken for three levels of noise (SNR=100 connectomes (see A) versus rank of original eigencircuit, splitacross realand
02=0.01ublack, SNR=1002=0.1u grey,and SNR=102=pred where pis the complex unique eigencircuits of top 250 eigencircuits. (e) Robustness of
synapse count). (b) Non-anatomically localized eigencircuits tend to be less non-localized eigencircuits to choices inloading threshold. (left) Localization
robust to measurement error. Robustness of eigencircuits measured as index computed across differentinclusion criteria. (right) Number of neurons

maximum absolute correlation with eigencircuits from noisy connectome within each eigencircuit for multiple loading thresholds.



Eigenvalues of connectome
T —— Original C
Tanh( C/max(|C|) )
Tanh( 2*C/max(|C|) )
—— Tanh( 10*C/max(|C|) )
—— Sign(C)
----- Shuffled (n=5)
=== Poisson noise (n=5)

ST
iditaiag,
i,
|

) 5

1074

Eigenvalue

1072

10° 10! 107 10°

Eigenvalue index
Extended DataFig.10 | Effect of nonlinearity and measurementerror
applied to connectome on dimensionality. For reference, the original
eigenvalues of the connectome (scaled by the largest magnitude eigenvalue)
areplotted (black). Non-linearity of increasing degree via hyperbolic tangent
applied to connectome weights scaled relative to their maximum (larger scaling,
stronger effect of nonlinearity) shows asmallincrease in dimensionality (pink,
orange, red above black). In an extremal case, the connectome weights were set
totheirsignsothatall entries were either +1, 0, or -1, and dimensionality was
similar (cyanoverlapsblack). A shuffle control, where the index of count entries
was shuffled without replacement, was used to determine if dimensionality
was theresult of marginal connectome statistics (e.g., sparsity). This showed
alargeincreaseindimensionality (n =5independent shuffles, dotted lines
wellabove black). Simulated measurement error was added with draws
from Poisson distributions with means equal to the original synapse count
andsignwas drawn from a binomial distribution with probability set by the
neurotransmitter type prediction confidence (n =5 simulations, dashed line).
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