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Future increase in extreme El Niño 
supported by past glacial changes

Kaustubh Thirumalai1,6 ✉, Pedro N. DiNezio2,6, Judson W. Partin3, Dunyu Liu3, Kassandra Costa4 
& Allison Jacobel5

El Niño events, the warm phase of the El Niño–Southern Oscillation (ENSO) 
phenomenon, amplify climate variability throughout the world1. Uncertain climate 
model predictions limit our ability to assess whether these climatic events could 
become more extreme under anthropogenic greenhouse warming2. Palaeoclimate 
records provide estimates of past changes, but it is unclear if they can constrain 
mechanisms underlying future predictions3–5. Here we uncover a mechanism using 
numerical simulations that drives consistent changes in response to past and future 
forcings, allowing model validation against palaeoclimate data. The simulated 
mechanism is consistent with the dynamics of observed extreme El Niño events, which 
develop when western Pacific warm pool waters expand rapidly eastwards because  
of strongly coupled ocean currents and winds6,7. These coupled interactions weaken 
under glacial conditions because of a deeper mixed layer driven by a stronger Walker 
circulation. The resulting decrease in ENSO variability and extreme El Niño occurrence 
is supported by a series of tropical Pacific palaeoceanographic records showing 
reduced glacial temperature variability within key ENSO-sensitive oceanic regions, 
including new data from the central equatorial Pacific. The model–data agreement  
on past variability, together with the consistent mechanism across climatic states, 
supports the prediction of a shallower mixed layer and weaker Walker circulation 
driving more frequent extreme El Niño genesis under greenhouse warming.

El Niño events can reach extreme magnitude, as during the record- 
breaking events of 1982, 1997 and 2015, when extremely warm tempera-
tures in the equatorial Pacific (≥2 K in the central Pacific7) drove highly 
disruptive environmental changes, including bleaching and widespread 
coral mortality8, tropical forest fires, heat waves9 and ice-shelf instabil-
ity. Limited observations hinder our understanding of these extreme El 
Niño events because only three such events have been fully observed, 
to our knowledge, since the advent of satellite and moored observa-
tions2. Models predict increasing rainfall and sea-surface temperature 
(SST) variability under greenhouse warming10, potentially linked with 
stronger or more frequent extreme El Niño events. However, these 
predictions cannot be validated using historical records because of 
uncertainties in the forced response combined with high levels of 
unforced El Niño–Southern Oscillation (ENSO) variability2. This issue 
can be addressed by studying changes in ENSO during past geological 
intervals when the climate was substantially different from what it is 
today. However, contradictory palaeoclimatic evidence and uncer-
tain mechanisms have complicated this approach5. Holocene records 
suggest a highly variable ENSO phenomenon, largely insensitive to 
external forcings3,11. Records from the last glacial period show large, 
potentially forced changes in ENSO variability, although a systematic, 
model-based attribution of these changes has not been carried out so 
far12–15. Furthermore, a lack of common mechanisms linking past and 

future changes has prevented the use of any reconstructions of past 
ENSO variability to directly validate the multiple mechanisms control-
ling ENSO changes under future warming.

We addressed this problem using climate model simulations of key 
intervals spanning the past 21,000 years (or 21 kilo-annum before 
present (ka BP))—a period in the history of Earth when global climate 
experienced substantial changes. We studied common mechanisms 
between past and future changes in ENSO using additional simulations 
of greenhouse warming under doubling and quadrupling CO2 con-
centrations. These simulations are comparable to medium-range and 
high-emission scenarios, respectively. All simulations were performed 
with Community Earth System Model v.1.2 (CESM1.2), a model that 
realistically simulates key ENSO dynamics, including asymmetric event 
evolution16 and drivers of extreme El Niño events (Methods). We focus 
on SST variability over the Niño–3.4 region in the central equatorial 
Pacific (170° W–120° W, 5° S–5° N), where strong ocean–atmosphere 
interactions give rise to El Niño and La Niña events. We quantify the 
strength of the different feedbacks involved in the growth of El Niño 
events to identify common mechanisms driving changes across cli-
matic states. Our technique considers seasonality and asymmetries in 
the evolution of El Niño and La Niña, which is a marked improvement 
compared with the previous work4,17. Finally, we validate the simulations 
against existing and new reconstructions of past climate variability 
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from multiple sites across the tropical Pacific that unambiguously 
capture changes in ENSO compared with other sources of variability. 
All reconstructions are based on the individual foraminiferal analyses 
(IFA) technique that can estimate past interannual ocean tempera-
ture and, thus, ENSO variability12–14,18,19. Our validation considers the 
site-specific influence of ENSO on surface and subsurface temperature 
variations, and rigorous statistical tests of the influence of externally 
forced changes in variability, including changes in the seasonal cycle 
(Methods).

Simulated ENSO variability since Last Glacial 
Maximum
Our simulations show that the ENSO phenomenon can experience 
pronounced changes over a wide range of past and future climate 
states. Overall levels of ENSO variability increase under greenhouse 
warming and decrease under glacial conditions (Fig. 1a, bars). These 
changes—quantified by the standard deviation of SST variability over 
the Niño–3.4 region—are sufficiently large relative to unforced levels of 
variability (Fig. 1a, whiskers) and can, therefore, be used for validation 
against palaeoclimate reconstructions. Simulated ENSO variability 
reaches its lowest intensity under glacial and deglacial conditions, 
followed by a rapid increase to near-modern levels of variability as 
the climate responds to interglacial conditions (Fig. 1a). The simu-
lated ENSO variability shows a weaker upward trend under Holocene 

conditions, reaching the maximum amplitude for modern, preindus-
trial conditions (Fig. 1a, 0 ka BP interval). Greenhouse warming results 
in a pronounced increase in ENSO variability comparable to but not as 
large as the reductions under glacial conditions.

The broad levels of ENSO variability simulated in each climatic state 
are directly linked to the frequency of extreme El Niño. In climates 
with higher ENSO variability, SST variability has a distribution with 
heavier, not longer, tails (Fig. 1b). This indicates that extreme El Niño 
events become more frequent, but their maximum amplitude does not 
change. Under greenhouse warming, the mean amplitude of extreme El 
Niño, defined as events with peak amplitude larger than 2 K, decreases 
slightly (Fig. 1b). Our simulations show that the overall levels of ENSO 
variability are governed by how often extreme El Niño events are trig-
gered. The lowest levels of ENSO variability occur in intervals with no 
(or very few) extreme El Niño events (for example, 15 ka BP) relative to 
preindustrial conditions. Conversely, the highest variability occurs 
in response to greenhouse warming, with one in two events reaching 
extreme amplitude. The frequency of occurrence of extreme El Niño 
and overall ENSO variability are highly correlated across all simulations 
(r = 0.98, p-value < 0.01; Fig. 1d), indicating that this relationship is 
independent of the type of forcing.

The magnitude of the simulated glacial–interglacial changes is much 
larger than that for other intervals and, therefore, potentially detect-
able using reconstructions of past ENSO variability. By contrast, the 
increase in ENSO variability in response to changing Holocene forcings 
is much weaker and detectable only because of the length of our simula-
tions. This forced trend is overwhelmed by unforced variability—with a 
wide range of values of ENSO amplitude simulated over 100-year peri-
ods (Fig. 1a, error bars). This response is consistent with the palaeocli-
mate records derived from fossil corals and bivalves, suggesting a highly 
variable ENSO phenomenon during this interval3,20,21 and, therefore, 
limited detectability of forced changes using available palaeodata22. 
Accordingly, owing to the availability of multiple IFA reconstructions 
and the large, therefore detectable, simulated changes, we focus our 
investigation on the Last Glacial Maximum (LGM)—the interval 21 ka BP, 
when ice sheets reached their maximum extent and CO2 concentra-
tions were low (about 180 ppm). This analysis excludes the influence 
of freshwater forcing, which potentially drove changes in ENSO during 
deglacial intervals14,23,24. However, the paucity of a well-dated coverage 
of IFA records during these intervals prevents robust attribution of 
changes compared with using IFA data from the LGM.

Reconstructed LGM ENSO variability
IFA reconstructions collectively support the model inference that 
ENSO variability was weaker under LGM conditions. The IFA technique 
reconstructs surface and subsurface temperature variability, taking 
advantage of the near-monthly lifespan of planktic foraminifera12,19 
and the depth-dependent calcification habitats of various species25. 
We quantified past ENSO variability using IFA data from a network of 
eight records spanning key locations and depths in the tropical Pacific 
(Extended Data Table 3). Our analysis included new IFA data from the 
centre of action of ENSO in the central equatorial Pacific (Figs. 2 and 3) 
combined with published IFA data from other ENSO-sensitive locations. 
The new IFA was generated using surface-dwelling Globigerinoides 
ruber tests from central equatorial Pacific sediments in which ENSO 
variability is dominant relative to the annual cycle of the Pacific cold 
tongue26 (1.27° N, 157.26° W, 2,850 m depth). Previously existing IFA 
data were generated with four different planktic species allowing us to 
sample different habitat depths over the water column12–14,18.

Changes in temperature variability during the LGM show striking 
agreement with our simulation. Depth-stratified estimates of simulated 
changes in temperature variability between the LGM and preindustrial 
simulation show how the different sites capture interannual versus sea-
sonal variability (Fig. 2, hatching, and Extended Data Fig. 1). New data 
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Fig. 1 | Simulated ENSO variability under past and future climate states.  
a, ENSO variability simulated by CESM1.2 for climate intervals characterized by 
altered glacial, orbital and greenhouse gas conditions over the past 21 ka BP 
and under a doubling of atmospheric CO2 concentrations (2×CO2). The level of 
ENSO variability in each climatic interval is computed as the standard deviation 
of simulated monthly SST anomalies averaged over the Niño–3.4 region  
(170° W–120° W, 5° S–5° N). The box-and-whisker diagrams indicate the 
distribution of standard deviation values for randomly selected 100-year 
intervals from each simulation (in which the box depicts the interquartile  
range and the whiskers extend to show the full distribution). b, Frequency 
distribution of simulated Niño–3.4 SST anomalies averaged from November to 
January, when ENSO events peak. c, The contrast between the preindustrial (PI) 
and LGM (21 ka BP) simulations. d, Relationship between the mean amplitude  
of simulated ENSO events and the percentage of El Niño events that reach 
extreme amplitude. El Niño events are identified as those with peak amplitude, 
measured by the Niño–3.4 SST averaged from November to January, larger  
than 0.5 K. Extreme El Niño events are computed as those with peak amplitude 
exceeding 2 K.
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from the central equatorial Pacific site and existing data from ODP Site 
849 in the eastern equatorial Pacific show unambiguous evidence of 
externally forced reductions in ENSO variability (Figs. 2 and 3 and Meth-
ods). The distributions of anomalies for both the late Holocene baseline 
and the LGM show distinct agreement with simulated variability at both 
sites (compare Fig. 3a–d with Fig. 1b). Both sites show pronounced 
glacial reductions in the tails of the distributions, particularly the warm 
ones (Figs. 1b and 3g–h). This indicates that extreme El Niño and, to a 
lesser degree, La Niña were less frequent during the LGM. Statistical 
resampling of simulated temperature variability at species-specific 
depths shows low probabilities (≥16%) that IFA changes at these sites 
arose from unforced variability or because of changes in seasonality 
(Fig. 3e,f, red lines compared with green distributions). That is, each 
site shows a high probability (84% and 88%, respectively) that the IFA 
changes reflect externally forced changes in ENSO. Together, the IFA 
changes show a ≥98% joint probability of externally forced reductions 
in ENSO variability during the LGM. Moreover, reductions in the warm-
est quantiles of glacial IFA anomalies relative to late Holocene values 
(Fig. 3g,h) suggest that extreme El Niño events were suppressed under 
LGM conditions, in line with the proposed mechanism.

Extreme ENSO and the Bjerknes feedback
The growth of El Niño events is driven by the Bjerknes feedback—the 
positive feedback loop between SSTs, winds and ocean currents in 
the equatorial Pacific. Unlike La Niña events, which are triggered by a 
preceding El Niño, El Niño events are initiated when random, stochastic 
fluctuations in the trade winds weaken the equatorial currents that 
normally keep warm waters confined to the western Pacific. As the 
equatorial currents weaken, warm pool waters expand eastward, shift-
ing atmospheric convection to the central Pacific. These responses 

weaken the trade winds, reinforcing the initial response triggered by 
stochastic wind variability. This mechanism dominates the growth of 
simulated extreme El Niño events in agreement with observational 
studies (Extended Data Figs. 2–4). Variations in the depth of the thermo-
cline across the basin, the mechanism underlying conceptual models 
of ENSO27, play a lesser part restricted to amplifying warming in the 
eastern equatorial Pacific when warm pool waters expand sufficiently 
eastwards (Extended Data Fig. 4). This highlights the importance of 
using a comprehensive model such as CESM1.2, with its ability to real-
istically simulate the complex spatial dynamics of extreme El Niño, 
to study the past and future changes in ENSO (for further details, see 
the Methods). For these reasons, we quantified the strength of the 
Bjerknes feedback as the growth rate of positive SST anomalies in the 
equatorial Niño–3.4 region due to the thermal advection by anomalous 
currents (Fig. 4a). This approach captures the effect of zonal currents 
in the eastward expansion of warm pool waters during El Niño events 
(Methods). This mechanism is shown in Fig. 5.

Our simulations show that the strength of the Bjerknes feedback 
in each climate state is correlated with the fraction of El Niño events 
that reach extreme amplitude (≥2 K; ref. 7). Warmer climates show 
the strongest growth rate of simulated SST anomalies in the central 
Pacific, particularly during boreal summer when El Niño events develop 
(Fig. 4a). By contrast, these growth rates are negligible under glacial 
conditions. Their summertime magnitude—the strength of the Bjerknes 
feedback—is highly correlated (r = 0.98, p-value < 10−6) with the mean 
amplitude of El Niño events in each climatic state (Fig. 4b). This rela-
tionship supports a causal link between the changes in the strength of 
the Bjerknes feedback and the frequency of El Niño events that reach 
extreme amplitude. The higher growth rates during boreal summer are 
consistent with the notion that stochastic wind variability during this 
season has the largest impact on the amplitude of extreme El Niño28. 

10° S

5° S

0°

5° N

10° N

Change in temperature variability (1 , K) (21 ka minus 0 ka simulation)

Globigerinoides ruber IFA

Neogloboquadrina dutertrei IFATrilobatus sacculifer IFA

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

10° S

5° S

0°

5° N

10° N

10° S

5° S

0°

5° N

10° N

140° E 160° E 180° 160° W 140° W 120° W 100° W

Globorotalia tumida IFA

a

b

c

Fig. 2 | Model–data comparison for changes in Pacific Ocean upper 
water-column temperature variability during the LGM relative to modern 
conditions. a–c, Depth-averaged changes in 0–30 m (a), 40–80 m (b) and 100–
150 m (c) temperature variability simulated by CESM1.2 under 21 ka BP (LGM) 
and 0 ka BP (preindustrial; PI) background conditions. These depth ranges 
were chosen based on species-specific foraminiferal calcification habitats 
(Methods). Changes in variability were calculated as the difference in standard 
deviation (1σ) between the simulations at each grid point. Hatching denotes 

those regions in which changes in seasonal variability dominate the overall 
change in variability (that is, the sign of 1σ change in interannual temperature 
anomalies is opposite to the change in overall variability). Sites of IFA 
reconstructions12–14,18 (Extended Data Table 3), including new measurements 
from the central Pacific (IFA based on G. ruber shown as a circle with a yellow 
border in a) depict the 1σ change in inferred temperature variability during the 
LGM, where the symbols indicate different species used for IFA.
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Extreme El Niño events are not very frequent under preindustrial con-
ditions because sustained levels of wind fluctuations are required to 
activate the Bjerknes feedback28. Under glacial conditions, the Bjerknes 
feedback is very weak (Fig. 4b) and thus rarely activated. As a result, the 
frequency of extreme El Niño decreases to less than 20% compared with 
preindustrial levels. By contrast, under greenhouse warming, a stronger 
Bjerknes feedback is more easily activated. As a result, more than 50% 
of simulated El Niño events reach extreme amplitude. The fact that 
ENSO variability does not vanish when the Bjerknes feedback is very 
weak or negligible (for example, 12 ka BP, 15 ka BP and 18 ka BP intervals) 
indicates that all simulations have sufficient levels of stochastic vari-
ability controlled by other processes operating in the climate system.

Past and future ENSO feedbacks
The strength of the Bjerknes feedback is the main control knob of ENSO 
variability across climatic states. Other positive and negative feedbacks 
involved in ENSO have a lesser influence. For instance, atmospheric 
damping, a main control on the amplitude of El Niño and La Niña events 
on par with the Bjerknes feedback29, has a lesser influence on the simu-
lated response. This negative feedback is weaker in colder climates and 
stronger in warmer climates (Extended Data Fig. 2a) and, therefore, 
cannot explain the changes in ENSO. A weaker negative feedback under 

glacial conditions would favour the growth of El Niño events, allowing 
them to reach extreme amplitude. Conversely, stronger negative feed-
back under warming would dampen the growth of El Niño—this nega-
tive feedback starts playing a dominant part when CO2 concentrations 
reach four times preindustrial values (4×CO2) (Extended Data Fig. 2). 
Under these high levels of greenhouse forcing, our model simulates 
reductions in the amplitude of extreme El Niño (Extended Data Fig. 3b,c) 
because intensified atmospheric damping overwhelms the more mod-
est increase in the strength of the Bjerknes feedback (Extended Data 
Fig. 2d).

Atmospheric damping becomes dominant under the 4×CO2 forc-
ing scenario because the intensified warming over the central and 
eastern equatorial Pacific30,31 reduces the peak amplitude of El Niño. 
This behaviour is consistent with previous work showing that the peak 
amplitude of El Niño events is limited by the temperature of warm pool 
waters32. Under current and preindustrial conditions, observed and 
simulated El Niño reach this limit in the central equatorial Pacific—not 
in the eastern side of the basin, where temperatures remain colder 
than the warm pool, even at the peak of the record-breaking El Niño 
of 1997 (Extended Data Fig. 2e, blue and black curves). As the climate 
warms under 2×CO2 forcing, the Pacific cold tongue warms faster than 
the western Pacific warm pool, potentially limiting the amplitude of El 
Niño. However, as the cold tongue warms, peak El Niño temperatures 
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shift eastwards (Extended Data Fig. 2e, red curves), allowing events to 
continue to reach similar amplitudes as under preindustrial conditions 
(Extended Data Fig. 3c, red and blue curves). Therefore, under 2×CO2, 
extreme El Niño events reach a similar amplitude as under preindus-
trial conditions, but they become more frequent because of stronger 
Bjerknes feedback. This explains the minimal influence of atmospheric 
damping on El Niño peak amplitude under moderate levels of warm-
ing produced by 2×CO2 forcing. Furthermore, the interplay between 
these mechanisms explains the thicker, yet slightly shorter, warm tail 
of the distribution of Niño–3.4 SST anomalies (Extended Data Fig. 2c).

Under 4×CO2, El Niño events shift further to the east, where their peak 
amplitude starts reaching warm pool temperatures (Extended Data 
Fig. 3c, green curve). This makes atmospheric damping stronger and, 

therefore, the dominant mechanism at this level of CO2 forcing. This 
dominant effect of atmospheric damping explains the robust model 
projections of ENSO reductions under 4×CO2 levels33. At moderate, 
more plausible 2×CO2 levels, the opposing effects between changes in 
atmospheric damping and the Bjerknes feedback might explain model 
uncertainty34,35, making validation against past changes important. 
Thus, the challenge for models is simulating changes in ENSO under 
more moderate CO2 forcing36,37—for which our palaeo-validation is key 
to identifying responses associated with the proposed mechanism.

To determine how changes in the climate of the tropical Pacific alter 
the frequency of extreme El Niño, we quantified the strength of coupled 
processes involved in the Bjerknes feedback. We find that mechanical 
coupling between winds and ocean currents is the dominant physi-
cal process driving changes in growth rates associated with this posi-
tive feedback (Fig. 4c, magenta curve compared with black curve; see 
the Methods for details). This mechanical coupling of currents and 
winds is the weakest under glacial conditions, with reductions of up 
to 60%, and the strongest under greenhouse warming, increasing by 
more than 70%, relative to PI conditions (Fig. 4c). Low mechanical cou-
pling under glacial conditions hinders the eastward expansion of the 
warm pool during the onset of El Niño and explains why fewer events 
reach peak amplitude. Conversely, high mechanical coupling under 
greenhouse warming favours the eastward expansion of the warm 
pool and the activation of the Bjerknes feedback. The responsiveness 
of winds to SST anomalies also plays an important part in the strength 
of the Bjerknes feedback. This wind–SST coupling is also weaker under 
glacial conditions and stronger under greenhouse warming (Fig. 4c, 
blue curve). Together, these two coupled processes explain most of 
the changes in the strength of the Bjerknes feedback across climatic 
states (Fig. 4c, black curve). The Bjerknes feedback is also controlled 
by the magnitude of the climatological SST contrast across the equa-
torial Pacific because this gradient governs the thermal advection by 
anomalous currents. This thermal coupling is stronger under glacial 
conditions and weaker under interglacial conditions (Fig. 4c, green 
curve) and, therefore, cannot explain the simulated pattern of changes 
in extreme El Niño.

Glacial ENSO and the Walker circulation
The strength of the coupling mechanisms, and, therefore, the frequency 
of extreme El Niño events across cold and warm climates, is ultimately 
tied to the strength of the Pacific Walker circulation. This influence is 
mediated by the changes in the depth of the oceanic mixed layer and 
the climatological extent of the warm pool. Warmer climates are char-
acterized by a weaker Walker circulation, shallow oceanic mixed layer 
and an eastward expanded warm pool, whereas the opposite occurs 
for glacial climates (Fig. 4d). In warmer climates, wind fluctuations 
transfer momentum to a thinner layer of upper ocean waters making 
zonal currents more responsive to wind variations during the onset of 
El Niño. Moreover, winds are more responsive to SST anomalies because 
an eastward expanded warm pool favours convection over a larger area 
along the equatorial Pacific. Both factors promote rapid expansions 
of the warm pool during the onset of El Niño, allowing more events to 
reach extreme amplitude (Fig. 5). The opposite scenario occurs under 
glacial conditions, in which the onset of extreme El Niño is hindered by 
less responsive ocean currents and winds because of a deeper mixed 
layer and a contracted warm pool—both driven by a stronger Walker 
circulation (Fig. 5).

The simulated changes are supported by evidence of a deeper ther-
mocline across the equatorial Pacific during the LGM, a response indica-
tive of a deeper mixed layer and unambiguously linked to a stronger 
Walker circulation38—both important elements of the proposed mech-
anism. A recent compilation of subsurface proxies shows a deeper 
thermocline over the eastern Pacific39. Independent estimates show 
evidence of a deeper thermocline over the western side of the basin40,41. 
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the strength of the positive Bjerknes feedback driving the growth of El Niño 
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growth rates) across climatic states. c, Strength of the Bjerknes feedback 
across climatic states (black) and the contribution from mechanical coupling 
(magenta), wind–SST coupling (blue) and thermal coupling (green). The 
amplitude of ENSO variability (Fig. 1) in each interval is highly correlated with 
the strength of the Bjerknes feedback. d, Processes controlling the strength of 
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of the warm pool is defined as the easternmost longitude along the equator 
exhibiting ascending motion in the mid-atmosphere (Methods). The depth of 
the mixed layer is defined based on a 0.5-K threshold. These climatic features 
are ultimately related to the strength of the trade winds across the equatorial 
Pacific (dark blue; 2.5° S–2.5° N)—a measure of the strength of the Pacific 
Walker circulation.
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By contrast, the simulated pattern of enhanced equatorial cooling—
a metric also related to the strength of the Walker circulation—has 
less conclusive support from proxies. Individual temperature records 
generally disagree regarding the pattern of surface-ocean cooling42. 
However, data assimilation reconstructions of the LGM, which factor 
in spatial undersampling of proxies alongside proxy uncertainty and 
biases, support the pattern of enhanced equatorial cooling associ-
ated with a stronger Walker circulation43,44 (Methods). Our mechanism 
based on zonal advective processes clarifies a previously proposed 
link between levels of ENSO variability and depth of the mixed layer15. 
A deeper thermocline, such as during the LGM, would reduce mix-
ing in the upper ocean, whereas the stronger Walker circulation and 
associated surface winds would enhance turbulent mixing, both act-
ing to deepen the mixed layer. Together with the large reductions in 
ENSO variability inferred from IFA, these lines of evidence support our 
conclusion that mechanical and wind–SST coupling are the primary 
control knobs on ENSO variability.

Palaeo-constraints on future dynamics
Despite the complexity of feedbacks driving the growth and decay of 
El Niño and La Niña45, we identify a single mechanism connecting past 
and future changes. This mechanism is consistent with the dynamics 
of observed extreme El Niño events, which develop when warm pool 
waters expand rapidly eastwards because of strongly coupled ocean 
currents and winds29,46. This mechanism is realistically simulated by 
our model, consistent with the emerging paradigm that ENSO is not a 
cycle; instead, it is best described as a series of events47. Observed and 
simulated ENSO variability is energized every time an El Niño event is 
excited by stochastic forcing, triggering a subsequent La Niña, with the 
cycle breaking down as conditions return to neutral without triggering 
a subsequent El Niño event45,48. This asymmetric evolution is key to 
quantifying the strength of coupled feedbacks because each phase is 
triggered by different physical processes. Together, the existence of a 
single mechanism controlling ENSO variability across a range of cold 
and warm climatic states, combined with the robust evidence of weaker 
ocean temperature variability during the last glacial interval, supports 
our prediction of an increased risk of extreme El Niño frequency under 
continued greenhouse warming.

Our novel prediction verification using palaeoceanographic data 
enabled us to provide firm constraints on model projections of increas-
ing ENSO variability in a warming climate. Global models are starting 
to converge about stronger ENSO variability in the future37. However, 
their response needs validation against observed changes because of 
the highly variable nature of ENSO49. Ongoing greenhouse warming 
has not resulted in a discernible weakening of the Walker circulation 
as predicted by models because natural variability or aerosol forc-
ing might be delaying the emergence of this response50. This model 
prediction, however, is supported by palaeoclimatic evidence of a 
weakened east–west gradient across the Pacific and a weaker Walker 
circulation during the Pliocene51, the most recent geological interval 
when CO2 levels were comparable to our idealized 2×CO2 scenario. The 
mechanism governing the past and future changes is also supported 
by evidence of a stronger Walker circulation during the LGM, seen as 
a deeper equatorial thermocline during this interval39–41. Despite the 
multiple forcings driving glacial cooling, our results indicate that global 
mean temperatures by their effect on the Walker circulation30,34 are the 
main control on ENSO variability. Stabilizing CO2 concentrations in 
the atmosphere well below two times preindustrial values (560 ppm) 
is, therefore, essential to mitigate the heightened risk of increasing 
climate extremes posed by more frequent extreme El Niño events.
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Methods

Numerical simulations
Simulations of global climate were run for eight distinct intervals 
selected every 3 ka from the LGM (21 ka BP) to modern or preindus-
trial conditions (0 ka BP). The numerical model—CESM1.2—simulates 
the coupled interactions between the atmosphere, land, ocean and 
sea ice. Together, these simulations resolve changes in climate since 
the LGM driven by the collapse of ice sheets, increasing atmospheric 
CO2 and orbitally driven changes in insolation. The simulations do 
not include freshwater forcing associated with iceberg discharges, 
an important driver of the abrupt events that punctuated the degla-
ciation. Our analysis does not consider changes in response to this 
forcing mechanism because of limited reconstructions of past ENSO 
variability during these events. Each simulation was run with specific 
boundary conditions corresponding to the interval (Extended Data 
Table 1), including modifications to (1) the distribution of seasonal and 
latitudinal insolation due to changes in the orbit of Earth; (2) green-
house gas (GHG) concentrations based on ice core measurements; 
(3) the effect of altered sea level on coastlines and key ocean passages; 
and (4) the topography and ice extent of continental ice sheets. The 
implementation of these boundary conditions follows the same pro-
cedure as in previous simulations of the LGM using CESM1 (ref. 53) 
outlined in more detail below. All simulations are nearly equilibrated  
(Extended Data Table 2).

Boundary conditions for simulations
Ice sheet topography and land surface glacier extent were prescribed 
based on the ICE-6G_C reconstruction54,55. This reconstruction pro-
vides ice sheet extent, land surface elevation and land–sea mask for 
the Laurentide, Fennoscandian, Patagonian and Antarctic ice sheets 
for all simulated intervals. For glacial intervals, we included prescribed 
ice shelves over the western Labrador Sea following previous work56 
showing that this alleviates numerical instabilities associated with 
very steep topography. For each simulation, the topography of the 
atmospheric component of CESM1.2 was uniformly elevated based on 
the magnitude of relative sea level (Extended Data Table 1) to represent 
the effect of a higher land surface. The land–sea mask was also modified 
in both the atmosphere and land components of CESM1.2 to represent 
the effect of lowered sea levels exposing continental shelves globally. 
The ICE-6G_C land–sea mask was used globally, except the Maritime 
Continent, where the land–sea mask was defined following previous 
work demonstrating the importance of shelf exposure on tropical 
climate changes57.

The bathymetry of the ocean component was also modified based 
on the past relative sea level58 following a previous work simulating the 
LGM57. This resulted in the exposure of the continental shelves with 
partial or full closure of several key oceanic passages depending on 
the magnitude of the relative sea level of each interval (Extended Data 
Table 1). The bathymetry around the Maritime Continent was further 
modified following previous work57 with the objective of representing 
the effect of lower sea level on the Indonesian Throughflow (ITF). The 
bathymetry of other key passages of the world ocean, such as the Bering 
Strait, Korea Strait or the Northwest Passage, was modified to ensure a 
realistic timing of the closure or opening of these passages. The effect 
of altered tidal mixing due to exposed shelves was implemented for 
the glacial intervals (15 ka, 18 ka and 21 ka—see Extended Data Table 1) 
using LGM dissipation rates57. Parametrized overflows in the Ross and 
Weddell Seas were removed in the glacial simulations (15 ka, 18 ka and 
21 ka) because the associated ice shelves extended over the overflow 
source regions. The Denmark Strait and Iceland–Scotland overflows 
were kept unchanged as in the 0 ka simulation.

Vegetation was prescribed to be the same as in the 0 ka simulation, 
except for the regions covered by the ice sheets or those exposed 
because of lowered sea levels. Different plant functional types (PFTs) 

were prescribed over exposed shelves according to the latitude. C3 
Arctic grass PFT was applied over the shelves polewards from 60°. C3 
grass PFT was applied over shelves polewards from 30°. An equal mix 
of tropical deciduous trees and C4 tropical grass was prescribed over 
tropical shelves (towards the equator from 30°), including the Sunda 
and Sahul shelves57. The remaining surface properties, such as albedo 
or surface roughness, are computed by the land component of CESM1.2 
based on the soil and plant properties and passed to the atmosphere 
component by the coupler. The vegetation phenology, including the 
total leaf and stem area indices and canopy heights, was prescribed 
and does not respond to changes in climate.

Concentrations of key greenhouse gases, CO2, CH4 and N2O, were 
altered for each simulation based on ice core measurements59 (Extended 
Data Table 1). The concentrations of other greenhouse gases, such as 
chlorofluorocarbons, were set to zero in all simulations. Ozone concen-
trations were kept at 1850 CE (common era) values in all simulations. 
CESM1.2 was configured to run with its prognostic aerosol module 
requiring prescribed emissions of aerosols and dust. These processes 
are likely to be of second order relative to the magnitude of Northern 
Hemisphere cooling caused directly by the higher albedo of ice sheets. 
Therefore, all our simulations were run with the same dust emissions 
as in the 0 ka simulation.

The 0 ka simulation corresponds to preindustrial conditions and was, 
therefore, run with external forcings (solar irradiance, orbit, green-
house gases, dust and other aerosol emissions, ozone and land use) set 
constant to 1850 CE values. The 2×CO2 simulation was identical to this 
0 ka simulation except for the doubling of CO2 to 580 ppm. The solar 
flux was kept constant at 1,365 W m−2 in all simulations.

Model initiation and climate equilibration
The 0 ka and 21 ka simulations were initialized from the existing simu-
lations performed with CESM1.2 under slightly different boundary 
conditions53 and were run until the surface climate reached a new 
equilibrium. This was particularly important for the 21 ka simulation 
that uses a different ice sheet reconstruction than the existing one 
used for initialization. To efficiently reach the equilibrated climate 
states, each of the remaining simulations was initialized starting from 
either the 0 ka or 21 ka simulations as listed in Extended Data Table 2. All 
simulations were run until the surface climate and oceanic processes 
controlling tropical climate, such as the depth of the thermocline (ZTC) 
in the equatorial Pacific or the Atlantic Meridional Overturning Circula-
tion (AMOC), reached equilibrium. All analyses were performed using 
output from the past 500 years of nearly equilibrated climate. The 
preindustrial, 0 ka simulation was run for 1,500 years to obtain a robust 
baseline of the range of unforced temperature variability to accurately 
assess forced changes in the remaining simulations. All simulations 
exhibit minimal drift in global mean surface temperature, tropical 
mean surface temperature, the depth of the equatorial thermocline 
in the Pacific and the strength of the AMOC during the periods used 
in the analyses (Extended Data Table 2).

Observational data
Ocean temperature and current data from the ORAS3 and ORAS5 rea-
nalyses60 were used for validation of key features of the simulation of 
extreme El Niño by CESM1. These datasets are used to evaluate the zonal 
and vertical thermal advection between the observed and simulated 
extreme El Niño events. Zonal thermal advection is computed for the 
extreme El Niño events of 1972, 1982, 1997 and 2015 using monthly 
mean temperature and zonal current fields from ORAS3 and ORAS5. 
Vertical thermal advection is computed for the events of 1972, 1982 and 
1997 because the vertical velocity needed to compute this quantity is 
available only from the ORAS3 dataset, which extends to the year 2009, 
thus excluding the 2015 event. Other diagnostics involving subsurface 
temperature, such as the zonally averaged thermocline depth, were 
computed using ORAS3 data from 1959 to 2009. Diagnostics involving 
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SST were computed using the Extended Reconstructed Sea Surface 
Temperature v.5 (ERSST5; ref. 61). This dataset spans from 1871 to 2020, 
providing three nonoverlapping 50-year intervals to evaluate the simu-
lated ENSO against different levels of observed variability.

Climate indices and diagnostics
Our analysis includes several variables and indices computed from the 
model output. The depth of the mixed layer (MLD) was computed as 
the depth at which the ocean temperature increases by 0.5 °C relative 
to the previous level. The depth of the thermocline (ZTC) is computed as 
the depth of the maximum vertical temperature gradient. This metric 
captures the depth of this ocean interface independently of the climate 
state31. The zonal extent of the Western Pacific Warm Pool (WPWP) is 
computed as the longitude along the equator where rainfall values aver-
aged from 2.5° N to 2.5° S reach 5 mm day−1. This definition of the east-
ward extent of the WPWP tracks the area characterized by ascending 
motion measured by the simulated vertical velocity (ω). The strength 
of the equatorial trade winds, a measure of the intensity of the Pacific 
Walker circulation, is computed as the simulated zonal wind stress 
averaged over the 180°–110° W; 2.5° S–2.5° N) region. The calculation 
of several key terms of the temperature equation involved in the heat 
budget of the oceanic surface layer, including thermal advection and 
sea–air heat fluxes, is outlined below.

For each climatic state, the variability associated with the ENSO 
phenomenon was quantified using anomalies relative to the monthly 
mean seasonal cycle of the corresponding timeslice simulation. The 
average amplitude of ENSO variability was quantified as the stand-
ard deviation of the Niño–3.4 SST index. This index is defined as the 
monthly mean SST anomalies averaged over the central equatorial 
Pacific (170° W–120° W; 5° S–5° N). The standard deviation of this index 
includes variability at all timescales other than seasonal, but it is domi-
nated by the interannual variations associated with El Niño and La Niña 
events. The zonal extent of the Niño–3.4 region captures the bulk of 
the SST variability in all simulations because the changes in variability 
are spatially stationary, that is, the variability increases and decreases 
while keeping its spatial pattern largely unaltered. A zonal mean ther-
mocline depth index is computed by averaging ZTC anomalies across 
the equatorial Pacific (140° E–80° W; 5° N–5° S). Under preindustrial 
or modern climatic conditions, this index is highly correlated with the 
Warm Water Volume index based on the depth of the 20 °C isotherm 
(D20) commonly used to study the oscillatory dynamics of ENSO. How-
ever, our definition can be applied to different climatic states because 
it does not require a 20 °C isotherm coinciding with the thermocline 
in the equatorial Pacific.

New and existing palaeoceanographic reconstructions of 
tropical Pacific variability during the LGM
We developed new IFA reconstructions using Globigerinoides ruber 
tests in well-dated62 late Holocene and LGM sediments from the cen-
tral equatorial Pacific, using cores ML1208-21MC and 20BB collected 
from the Line Islands Ridge26. We picked individuals of Globigerinoides 
ruber (white variety) from the 350–450 µm size fraction, focusing on 
sensu stricto morphotypes when possible26. IFA-δ18O (reported in per-
mille relative to Vienna Pee Dee Belemnite: ‰, VPDB) was measured at 
the University of Arizona Paleo² Laboratory using a Kiel IV Carbonate 
Device and a Thermo MAT253 + IRMS setup63, with δ18O analytical uncer-
tainty of 0.06‰ (VPDB). We interpret IFA-δ18O anomalies as quantitative 
changes in temperature anomalies, as the influence of seawater δ18O on 
carbonate-δ18O variability is minor at this location19,42. Available recon-
structions12–14,18 (Extended Data Table 3) of temperature variability using 
IFA-Mg/Ca and IFA-δ18O were also used in our analysis. The IFA technique 
takes advantage of the near-monthly lifespan of planktic foraminifera, 
in which numerous specimens from a sedimentary layer are analysed 
to approximate the distribution of monthly temperature variability 
in that period19,64. Proxy system modelling demonstrates that the IFA 

technique reliably captures changes in ENSO intensity at a site as long 
as the overall variability is dominated by interannual fluctuations19,52,65. 
Temperature anomalies were calculated relative to mean values, using 
temperature calibrations reported by the authors. The impact of vari-
ous calibrations on the resultant IFA variability is minor to negligible 
after removing the mean values52,64. These datasets12–14,18, including our 
new measurements, span six different locations and are composed of 
temperature-sensitive IFA-δ18O and Mg/Ca measurements using four 
different species of foraminifera that calcify in the upper ocean. The 
species include Globigerinoides ruber, Trilobatus sacculifer, Neoglobo-
quadrina dutertrei and Globorotalia tumida (Extended Data Table 3).

Model evaluation
Simulated changes in temperature variability between the 21 ka BP and 
0 ka BP timeslices were compared relative to reconstructed changes 
using IFA from LGM and late Holocene sediments. The intervals cor-
responding to deglacial conditions (18 ka, 15 ka and 12 ka) exhibit the 
largest simulated changes due to a combination of glacial and orbital 
forcings, but there are few-to-no palaeoreconstructions of ENSO vari-
ability from these intervals without an influence from freshwater forc-
ing14,24,66 and its influence on the AMOC. There is a wealth of coral and 
mollusc records of palaeo-ENSO variability from the Holocene20–22, but 
the model and data evidence point to changes dominated by natural 
multi-decadal to longer variations in levels of ENSO variability. The 
IFA reconstructions span multiple sites and depths at which seasonal 
to interannual processes are dynamically heterogeneous and capture 
unique aspects of glacial and modern El Niño variability and extremes 
(Fig. 2). Simulated ocean temperatures at the grid-point location of 
the core were used to compare temperature variability derived from 
surface-ocean IFA. Specific depth ranges were chosen for comparison 
based on recent global core-top estimates of apparent calcification 
depths25,67 (Extended Data Fig. 1). Changes in temperature variability 
using depth-stratified averages of 0–30 m, 40–80 m and 100–150 m 
were calculated in the simulations to compare with Globigerinoides 
ruber, Trilobatus sacculifer and Neogloboquadrina dutertrei, and Glob-
orotalia tumida, respectively (Fig. 2). We further investigated site-based 
model–data responses at two locations at which the simulated signal of 
ENSO-driven changes relative to the calcification depth of foraminifera 
(and associated uncertainty; see Extended Data Fig. 1) was unambigu-
ous: our central equatorial Pacific site ML2108-21MC/20BB and IODP 
Site 849 in the eastern equatorial Pacific12. At each site, the distributions 
of simulated variability were computed in the following scenarios:  
(1) changes between the 0 ka and 21 ka simulation (purple distribution 
and quantile–quantile uncertainty envelope in Fig. 3) and (2) seasonal 
variability under 21 ka conditions imposed with interannual anomalies 
from the 0 ka simulation (green distribution and quantile envelope in 
Fig. 3). These scenarios provide a statistical null hypothesis in which 
the IFA-inferred changes in variability may arise from changes in the 
local annual cycle. Bootstrap Monte Carlo simulations (n = 10,000) 
were performed for each scenario resampling the simulated variability 
according to the number of IFA samples generated by each study for 
the late Holocene and LGM datasets (Extended Data Table 3). Analytical 
uncertainty (1σ) values of 0.1‰ (ML1208) and 0.15 mmol mol−1 (ODP 
Site 849) were incorporated into each realization. Finally, we computed 
the probability that each scenario explains the IFA-inferred changes in 
variability at each site (as % change; Fig. 3).

Coupled feedbacks
The strength of the Bjerknes feedback was estimated using output from 
each simulation applying a technique that accounts for asymmetries 
between El Niño and La Niña as well as their seasonality48. These calcu-
lations are based on the anomalous zonal thermal advection because 
this process drives the largest positive tendency during the growth of 
positive SST anomalies (Extended Data Fig. 4). Further details on the 
heat budget calculation are available below. All simulations show that 



the anomalous temperature tendency because of thermal advection 
by zonal currents is positively correlated with positive SST anomalies 
in the equatorial Niño–3.4 region, consistent with a positive Bjerk-
nes feedback. This relationship indicates that during growing El Niño 
events, zonal currents weaken driven by the weakening trade winds, 
reducing the climatological cooling at the edge of the warm pool. This 
response translates into a warming of the central equatorial Pacific 
driving a further weakening of the trade winds and equatorial currents, 
feeding back into the expanding warm pool during the growth of an El 
Niño event. Partial least-square regression was used to compute the 
slope between the positive temperature tendency associated with 
the zonal thermal advection and the positive equatorial Niño–3.4 
SST anomaly. This slope represents the growth rate of SST anomalies 
in the central equatorial Pacific driven by zonal thermal advection 
associated with the expansion of the warm pool. This growth rate is 
the main process contributing to the Bjerknes feedback and reaches 
the peak amplitude during boreal summer when El Niño events grow 
(Fig. 4a). The strength of the Bjerknes feedback (Fig. 4b) is computed 
using the slope of those same quantities (zonal thermal advection 
versus the positive Niño–3.4 SST anomaly), but averaged from June 
to September before computing the slope. Damping rates associated 
with air–sea heat fluxes were computed as the slope between negative 
surface air–sea heat fluxes and the positive SST anomaly averaged 
over the equatorial Niño–3.4 SST region used to compute the thermal 
advection. The strength of this negative feedback was computed for 
both the growth phase of El Niño ( June–September) and for its peak 
(November–January).

Coupling mechanisms
Wind–SST coupling is estimated as the slope between positive zonal 
wind stress anomalies and positive SST averaged over the central 
equatorial Pacific and from June to September. Mechanical coupling 
is estimated as the slope between positive zonal current and zonal 
wind stress anomalies averaged over the central equatorial Pacific 
and from June to September. Thermal coupling is the slope between 
the positive zonal thermal advection and zonal current anoma-
lies averaged over the central equatorial Pacific and from June to  
September. For all three responses involved in the feedback loop, the 
slope or coupling coefficient is computed using partial least-square 
regression between the positive anomalies involved in the growth of 
El Niño during boreal summer, that is, quantities averaged from June 
to September. The product of the three couplings is equivalent to the 
growth rate associated with the Bjerknes feedback. The influence of 
each of these coupling mechanisms on the Bjerknes feedback is iso-
lated by keeping the other two couplings at the value for the 0 ka BP 
interval and then calculating the growth rate associated with each 
individual coupling (Fig. 4b).

ENSO heat budget
We computed the different advection terms of the temperature equa-
tion and integrated them vertically over a layer of constant depth 
approximating the oceanic mixed layer. These terms with the surface 
heat fluxes closely balance the time tendency of the vertically integrated 
ocean temperature. The resulting heat budget can be used to quantify 
the influence of different physical processes driving SST anomalies 
associated with ENSO because the time tendency is nearly equal to 
the tendency of SST (times the depth of the layer). The surface layer 
was defined as one vertical level (10 m) deeper than the climatological 
annual mean MLD in each simulation. Using a stationary layer provides 
accurate results on interannual timescales, despite ignoring the influ-
ence of a temporally varying mixed layer on the entrainment of colder 
thermocline waters68. The vertically averaged temperature tenden-
cies are averaged over an equatorial Niño–3.4 region (170° W–120° W; 
2.5° S–2.5° N) where air–sea coupling is the strongest. This region is 
meridionally narrower than the typical Niño–3.4 regions to isolate 

the effect of variations in equatorial currents on the zonal thermal 
advection. This region also captures the variability associated with 
vertical thermal advection. However, the influence of these processes 
is smaller for El Niño events (Extended Data Fig. 3) and is, therefore, 
not included in the estimates of El Niño growth rates.

Simulated ENSO dynamics
CESM1.2 provides a highly realistic simulation of ENSO dynamics, 
including asymmetries in amplitude and duration of its warm El Niño 
and cold La Niña phases16. These features of the simulation of ENSO 
vastly improve on CCSM3, a previous version of this model used to 
simulate the past 21,000 years (ref. 4). That model simulated an exces-
sively oscillatory, regular and symmetric ENSO69, precluding its use 
for investigating changing extremes. CESM1.2 simulates a lagged 
autocorrelation function of the Niño–3.4 SST index with a negative 
peak at about a 2-year lag is in striking agreement with observations 
(Extended Data Fig. 4a, purple and orange curves). The decay at longer 
lags and overall shape of the simulated and observed autocorrelation 
functions indicate that ENSO is not a self-sustained oscillation. This is 
a vast improvement relative to CCSM3 (Extended Data Fig. 4a, green 
curve), which simulated a Niño–3.4 SST index with autocorrelation at 
multiple, periodic peaks reflective of oscillatory behaviour. Similar 
improvements are seen in the lagged correlation between the Niño–3.4 
SST index and the zonally averaged thermocline depth, a metric of the 
influence of thermocline depth anomalies on the evolution of ENSO 
events. CESM1.2 shows a low positive correlation at negative lags, 
similar to observations, and an improvement relative to CCSM3, in 
which the correlation is much higher. The low correlation of CESM1.2 
is consistent with the secondary role played by thermocline variations 
in the onset of extreme El Niño (Extended Data Fig. 4b). Apart from a 
more realistic evolution of events, CESM1.2 also simulates ENSO with 
improved statistics of extremes. CESM1.2 simulates a distribution 
of the Niño–3.4 SST index with a heavier tail for positive anomalies 
associated with extreme El Niño (Extended Data Fig. 4c). This is also 
seen in the values of the skewness of this index, which are positive 
for CESM1.2, as observed, and unlike CCSM3, which shows negligible 
skewness indicative of non-frequent extreme El Niño events (Extended 
Data Fig. 4d).

CESM1.2 simulates physical processes driving extreme El Niño 
in striking agreement with observed events. Composite analysis 
of simulated and observed events shows that zonal thermal advec-
tion plays a much larger part than vertical thermal advection in the 
onset of extreme El Niño. In both CESM1.2 and nature, warming of 
the Niño–3.4 region (Extended Data Fig. 3, blue curves) is preceded 
by the positive zonal thermal advection (Extended Data Fig. 3, left, 
green curves) associated with positive zonal current anomalies, that 
is, weaker equatorial currents (Extended Data Fig. 3, left, red curves). 
These processes reflect the eastward expansion of the WPWP driv-
ing the onset of El Niño. Zonal thermal advection and the eastward 
expansion of the WPWP played a key part in the onset of the extreme  
El Niño events of 1997 and 2015 (refs. 29,46). By contrast, the magnitude  
of the vertical thermal advection is much smaller (Extended Data 
Fig. 3, right, green curves), indicative of the lesser role played by vari-
ations in the depth of the thermocline (Extended Data Fig. 3, right, red 
curves) in the onset of El Niño. This process, however, plays a dominant 
part in the onset of La Niña, as seen by the large, negative vertical  
thermal advection leading to La Niña events following the peak of an El  
Niño event.

This analysis is consistent with the emerging model that El Niño 
events are triggered by stochastic wind fluctuations and amplified by 
a positive Bjerknes feedback involving the expansion of the WPWP with 
a lesser role45 for subsurface thermal anomalies generated by a preced-
ing La Niña, as indicated by many theories of ENSO27. By contrast, large 
negative thermocline depth anomalies and associated negative vertical 
thermal advection do play a part in the onset of La Niña (Extended Data 
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Fig. 3, right). This suggests that the oscillatory dynamics underpin-
ning conceptual models of ENSO operate only in the transition from El 
Niño to La Niña, but not the other way around because La Niña events 
cannot trigger48 a subsequent El Niño. Because of this, the onset of El 
Niño events requires stochastic wind variability to excite the Bjerknes 
feedback by changes in zonal currents and associated zonal advection 
of warm pool waters1.

Pacific Ocean mean state at 21 ka
The main text demonstrates model–data parity between recon
structed and simulated ocean temperature variability in the surface 
and subsurface Pacific Ocean under LGM boundary conditions using 
CESM1.2 and IFA. Additional assessments of the 21 ka simulation are 
previously published53,57; ref. 53 also validated simulated LGM patterns 
in the Indo-Pacific using a network of mean annual temperature proxies. 
However, assessments of the pattern and magnitude of mean annual 
temperature changes across the Pacific Ocean are more challenging 
because of both larger gaps in the proxy record43 owing to the size of the 
basin and large multiproxy uncertainty arising from conflicting proxy 
reconstructions42,43,70. Furthermore, seasonal and depth-related biases 
in different proxies71—including their stationarity72—in tandem with 
calibration uncertainties73,74 complicate estimates of mean SST change. 
Recent applications of palaeoclimate data assimilation techniques 
have made marked advances in circumventing the aforementioned 
biases by explicitly incorporating proxy system models to blend model 
output and palaeoproxy information43. Moreover, data assimilation 
techniques provide globally complete reconstructions by leveraging 
local and remote information arising from available proxies. A recent 
assessment of four independent palaeoclimate assimilation recon-
structions of the LGM (using both inverse and forward modelling of 
proxies) indicates that SSTs in the eastern tropical Pacific cooled more 
than the western Pacific44 after accounting for proxy and spatial biases. 
This inference (see multimodel mean in fig. 1e in ref. 44) is in striking 
agreement with the simulated pattern and magnitude of surface-ocean 
cooling in our simulations. In CESM1.2, the eastern equatorial Pacific 
cooling response is associated with a deeper thermocline during the 
LGM57 (Fig. 4). Whereas available estimates of changes in LGM thermo-
cline depths have also been largely equivocal40,75,76, recent reappraisals 
of proxy data in the eastern39 and western41 tropical Pacific strongly 
support a deeper thermocline. Moreover, CESM1.2 shows thermocline 
deepening in the southern tropical western Pacific41 and shoaling in the 
off-equatorial northern tropical Pacific and in the southwest Pacific (see 
fig. 8a in ref. 57), both features that are observed in proxy reconstruc-
tions40,41,75,76. Accordingly, we suggest that these lines of evidence point 
to a thicker mixed layer across the Pacific40 during the LGM, with a more 
substantial deepening of the thermocline in the eastern equatorial 
Pacific39, pointing towards a stronger Walker circulation26, as observed 
in the CESM1.2. simulations.

Data availability
The stable isotopic IFA datasets produced in this study are available in 
Zenodo at https://doi.org/10.5281/zenodo.12744812 (ref. 77). Other IFA 
datasets are available in published repositories, detailed in individual 
publications12–14,18. Source data are provided with this paper.

Code availability
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xarray82, cartopy83 and SciPy84. Model output and scripts pertain-
ing to the analyses presented in this paper are available in Zenodo at 
https://doi.org/10.5281/zenodo.12832365 (ref. 85) and at https://doi.
org/10.5281/zenodo.12849829 (ref. 86). 
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Extended Data Fig. 1 | Changes in Pacific upper-ocean temperature 
variability between the 21 ka and PI timeslice simulations. Simulated 1 σ 
change (%) between the 21 ka and PI simulation temperature variability in the 
upper 200 m at grid-points corresponding to sites of available individual 
foraminiferal analyses (IFA) reconstructions (thick colored lines; Extended 

Data Table 3). Also shown are average calcification depths (with 95% confidence 
intervals) of four different species utilized in the IFA studies, based on Lakhani 
et al.25. Arrows next to core names indicate the sign of species-specific IFA 
(species indicated by abbreviation) dataset with a downward(/upward) arrow 
indicating reduced(/increase) variability (1 σ) during the LGM.



Extended Data Fig. 2 | Atmospheric damping and ENSO variability under 
preindustrial, 2xCO2, and 4xCO2 forcing. A. Rates of atmospheric damping of 
El Niño events across climatic states considered in this study. B. & C. ENSO 
variability and frequency distribution of simulated Niño–3.4 SST anomalies 
under preindustrial (PI), 2xCO2, and 4xCO2 forcings (both computed as in Fig. 1). 
D. Growth and damping rates associated with the Bjerknes feedback and 
atmospheric damping under PI, 2xCO2, and 4xCO2 forcings. E. Simulated SSTs 

along the equatorial Pacific (5° S–5° N) for climatological (annual mean) and El 
Niño conditions under PI, 2xCO2, and 4xCO2 forcings. El Niño conditions are 
averaged from November to January for events with Niño–3.4 SST index larger 
than 2 K. Observed SSTs (black curves) are from ERSST5 (years 1854 to 2022). 
Equatorial SSTs are averaged over the 5° S–5° N latitude range. Warm pool 
temperatures (dotted lines) are the equatorial (5° S–5° N) average from 120° E 
to 150° E.
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Extended Data Fig. 3 | Simulated and observed metrics of oscillatory and 
extreme behavior of ENSO events. Niño–3.4 sea-surface temperature (SST) 
index lagged auto-correlation (A), lagged correlation with the zonal mean 
thermocline depth index (B), probability distribution (C), and skewness (D). 
Simulated data is from the 1500-year-long pre-industrial simulation performed 
with CESM1.2 used in our analysis (orange) and from a 500-year-long 
pre-industrial simulation performed with CCSM3 (green), a previous version 
that exhibited excessive oscillatory ENSO behavior and was used in previous 

work exploring changes in ENSO since the Last Glacial Maximum4 (LGM). 
Observed SST and upper ocean temperatures used in the Niño–3.4 and 
thermocline depth (ZTC) indices are from the ERSST561 and ORAS560 products. 
The simulated and observed zonal mean thermocline depth index is computed 
averaging across the equatorial Pacific (140° E–80° W; 5° N–5° S). Shading and 
error bars show the 3 σ range computed from randomly sampling 50-year 
intervals from the simulated data. Error bars for observed data show 50-year 
intervals starting in the years 1871, 1921, and 1971.



Extended Data Fig. 4 | Thermal advective processes involved in simulated 
and observed El Niño. Anomalous zonal thermal advection (green, in W m−2) 
and associated zonal current anomalies (red, in m s−1) (left) and anomalous 
vertical thermal advection (green, in W m−2) and thermocline depth anomalies 

(red, in m) (right) for a composite of simulated (top) and observed extreme El 
Niño (bottom). The simulated composite is from El Niño events with peak 
amplitude exceeding 2 K in the 0 ka BP simulation. The observed composite is 
based on the 1972, 1982, and 1997 El Niño events using the ORAS5 dataset60.
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Extended Data Table 1 | Boundary conditions used in model simulations of past and future climate intervals

Relative sea level and greenhouse gas concentrations used to generate boundary conditions for the simulations of climate intervals since the Last Glacial Maximum (LGM), performed with  
version 1.2 of the Community Earth System Model (CESM1.2).



Extended Data Table 2 | Climate drift during analysis interval of model simulations of past and future climates

Drift in surface climate and key processes controlling tropical climate in simulations of intervals since the Last Glacial Maximum performed with version 1.2 of the Community Earth System 
Model (CESM1.2).
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Extended Data Table 3 | Individual foraminiferal analyses (IFA) datasets used in this study

LH–Late Holocene; LGM–Last Glacial Maximum.
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