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Temporally distinct 3D multi-omic dynamics 
in the developing human brain

Matthew G. Heffel1,2,29, Jingtian Zhou3,4,5,29, Yi Zhang1,29, Dong-Sung Lee6,7,29, 
Kangcheng Hou2,8,9,29, Oier Pastor-Alonso10, Kevin D. Abuhanna1, Joseph Galasso1,2,11, 
Colin Kern12, Chu-Yi Tai12, Carlos Garcia-Padilla12,13, Mahsa Nafisi13, Yi Zhou13, 
Anthony D. Schmitt14, Terence Li1,2, Maximilian Haeussler15, Brittney Wick15, 
Martin Jinye Zhang16,17, Fangming Xie11,18, Ryan S. Ziffra19,20,21,22, Eran A. Mukamel18, 
Eleazar Eskin23, Tomasz J. Nowakowski19,20,21,22, Jesse R. Dixon24, Bogdan Pasaniuc8,9, 
Joseph R. Ecker3,25, Quan Zhu12, Bogdan Bintu13, Mercedes F. Paredes8,26,27,28 ✉ & 
Chongyuan Luo1 ✉

The human hippocampus and prefrontal cortex play critical roles in learning and 
cognition1,2, yet the dynamic molecular characteristics of their development remain 
enigmatic. Here we investigated the epigenomic and three-dimensional chromatin 
conformational reorganization during the development of the hippocampus and 
prefrontal cortex, using more than 53,000 joint single-nucleus profiles of chromatin 
conformation and DNA methylation generated by single-nucleus methyl-3C 
sequencing (snm3C-seq3)3. The remodelling of DNA methylation is temporally 
separated from chromatin conformation dynamics. Using single-cell profiling and 
multimodal single-molecule imaging approaches, we have found that short-range 
chromatin interactions are enriched in neurons, whereas long-range interactions  
are enriched in glial cells and non-brain tissues. We reconstructed the regulatory 
programs of cell-type development and differentiation, finding putatively causal 
common variants for schizophrenia strongly overlapping with chromatin loop- 
connected, cell-type-specific regulatory regions. Our data provide multimodal 
resources for studying gene regulatory dynamics in brain development and 
demonstrate that single-cell three-dimensional multi-omics is a powerful approach 
for dissecting neuropsychiatric risk loci.

The adult human brain contains hundreds of cell types that exhibit 
an extraordinary diversity of molecular, morphological, anatomic 
and functional characteristics4–6. Although most cortical neurons are 
generated during the first and second trimesters, the highly distinct 
molecular signatures of cell types emerge between the third trimester 
and adolescence7–9. Single-cell and bulk transcriptome analyses impli-
cated marked gene expression remodelling in late prenatal and early 
postnatal development10,11. The pervasive transcriptome dynamics 

during human brain development is associated with genome-wide 
reconfiguration of the DNA methylome and chromatin conforma-
tion12–16. The brain-specific non-CG methylation emerges in the human 
dorsal prefrontal cortex (PFC) during prenatal development in a 
cell-type-specific pattern, with the average level of non-CG methylation 
increasing through adolescence12,17. Recent studies have uncovered the 
remodelling of chromatin architecture during the early postnatal devel-
opment of mouse and human brains15,18, as well as extensive chromatin 

https://doi.org/10.1038/s41586-024-08030-7

Received: 24 October 2022

Accepted: 6 September 2024

Published online: 9 October 2024

Open access

 Check for updates

1Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA. 2Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles,  
CA, USA. 3Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA. 4Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, 
CA, USA. 5Arc Institute, Palo Alto, CA, USA. 6Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea. 7Genomic Medicine Institute, Medical 
Research Center, Seoul National University, Seoul, Republic of Korea. 8Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 
Los Angeles, CA, USA. 9Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. 10Department of Neurology, 
University of California, San Francisco, San Francisco, CA, USA. 11Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 
USA. 12Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. 13Department of Bioengineering, University of California, 
San Diego, La Jolla, CA, USA. 14Arima Genomics, Carlsbad, CA, USA. 15Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA. 16Ray and Stephanie Lane Computational 
Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. 17Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 
18Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA. 19Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA. 
20Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA. 21Department of Psychiatry and Behavioral Sciences, University of California, San Francisco,  
San Francisco, CA, USA. 22Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA. 23Department of 
Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA. 24Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA. 25Howard 
Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA. 26Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA. 
27Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA. 28Developmental Stem Cell Biology, University of California, San Francisco, San Francisco, 
CA, USA. 29These authors contributed equally: Matthew G. Heffel, Jingtian Zhou, Yi Zhang, Dong-Sung Lee, Kangcheng Hou. ✉e-mail: Mercedes.Paredes@ucsf.edu; cluo@mednet.ucla.edu

https://doi.org/10.1038/s41586-024-08030-7
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-08030-7&domain=pdf
mailto:Mercedes.Paredes@ucsf.edu
mailto:cluo@mednet.ucla.edu


482  |  Nature  |  Vol 635  |  14 November 2024

Article

conformational diversity across brain regions and cell types in the adult 
human brain19. However, the dynamic trajectory of DNA methylation 
and chromatin conformation changes have not been characterized 
with single-cell resolution in prenatal human brain tissues and com-
pared to those of postnatal development using infant and adult sam-
ples. This study investigated the developmental dynamics of human 
PFC and hippocampus (HPC) using the sequencing-based approach 
single-nucleus methyl-3C sequencing (snm3C-seq3) to jointly profile 
chromatin conformation and DNA methylation in single nuclei3,19, as 
well as the orthogonal multimodal chromatin tracing procedure, and 
RNA and protein imaging.

Three-dimensional multi-omics of developing brains
We generated 29,691 snm3C-seq3 profiles (including 3,321 previously 
published profiles3) from 13 developing and adult human frontal cortex 
samples and 23,372 snm3C-seq3 profiles from 9 HPC samples using the 
newly devised snmC-seq3 method for single-cell methylome library 
preparation (Fig. 1a and Supplementary Tables 1 and 2). The quality of 

snm3C-seq3 3C (chromatin conformation capture) profiles is consist-
ent across brain specimens (Supplementary Note 1). The multimodal 
information profiled by snm3C-seq3 was used at various resolutions. 
To classify brain cell types, we quantified CG and non-CG methylation 
and 3C information in individual cells at 100 kilobase (kb) resolution. 
In downstream analyses, aggregated methylation profiles at a cell-type 
level were used for differentially methylated region (DMR) analysis at 
base resolution, whereas aggregated 3C profiles were used to iden-
tify domain boundaries at 25 kb resolution and loop calling at 10 kb 
resolution. We identified 139 cell populations across all developmental 
stages by fusing three data modalities: CG and non-CG methylation 
and chromatin conformation (Fig. 1b and Supplementary Table 3). 
These cell types are organized into 10 major groups (Fig. 1c). Excitatory 
neurons had distinct epigenomic types in the human PFC and HPC, 
which is consistent with their spatially separated in situ neurogenesis 
(Fig. 1d and Extended Data Fig. 1a). By contrast, inhibitory neurons 
and non-neuronal cell types are broadly shared between the two brain 
regions (Fig. 1d and Extended Data Fig. 1a). Our previous works found 
strong agreements between adult brain cell types identified using 
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Fig. 1 | Profiling of epigenomic and chromatin conformation dynamics 
during human brain development using snm3C-seq3. a, Schematics  
of the study. Illustrations of developing human brain by Byron Ashley.  
b–e, Dimensionality reduction using uniform manifold approximation and 
projection (UMAP) distinguishes cell types (b), major cell lineages (c), brain 
regions (d) and developmental stages (e). Astro, astrocyte; CGE, caudal 
ganglionic eminence; DG, dentate gyrus; DL, deep layer; ENT; entorhinal 

cortex; Exc, excitatory neurons; Inh, inhibitory neurons; MGC, microglia;  
MGE, medial ganglionic eminence; ODC, oligodendrocyte; OPC, oligodendrocyte 
progenitor cell; UL, upper layer. f, Reconstructed developmental hierarchy  
of excitatory neurons and glial cells. 2T, second trimester or mid-gestation;  
3T, third trimester or late gestation; NP, near-projecting; Sub, subiculum.  
g,h, Dynamics of genome-wide non-CG methylation (g) and CG methylation (h) 
during human brain development.
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snm3C-seq and single-nucleus RNA sequencing20. Taking advantage 
of the inverse correlation between CG methylation and gene expres-
sion20, and between CG methylation and the chromatin accessibility 
gene activity score (Extended Data Fig. 1b,c), we integrated snm3C-seq3 
with single-nucleus RNA sequencing21 (Extended Data Fig. 1d–i), or 
chromatin accessibility profiling14 (Extended Data Fig. 1j–o), and found 
that each data modality identified similar cell types in the prenatal 
frontal cortex14,21 (Extended Data Fig. 1h,i,n,o). Neurons and neural 
progenitor-derived glial cells were strongly separated by developmen-
tal stages on the basis of their methylation and chromatin conformation 
patterns, whereas non-neural cell types showed similar epigenomic 
patterns across development (Fig. 1e and Extended Data Fig. 1p–q). 
The developmental trajectories of cortical and hippocampal cell types 
were reconstructed using shared CG methylation feature patterns at 
cell-type marker genes and computational integration of cells derived 
from different age groups22 (Fig. 1f and Extended Data Fig. 1r). Cell-type 
classifications based on DNA methylation and chromatin conformation 
were largely concordant (Extended Data Fig. 2a–c), with DNA methyla-
tion profiles providing a greater resolution for cell-type classification3 
(Extended Data Fig. 2d). However, we found a notable exception in 
mid-gestational brains, in which a single neural progenitor radial glia 
(RG) population defined by DNA methylation signatures can be further 
discretely divided using chromatin conformation signatures (Extended 
Data Fig. 2e). Using chromatin conformation, we grouped RG cells into 
a neurogenic (RG-1) population and a putative astrocyte progenitor 
(RG-2) population23 (Extended Data Fig. 2e). This result was validated 
by an iterative classification of cells from mid-gestational brains, which 
found the gliogenic RG-2 population to be more discretely defined by 
chromatin conformation than by DNA methylation (Extended Data 
Fig. 2f).

The marked increase of non-CG methylation in neuronal cells, com-
pared to moderate elevations of CG methylation, is an epigenomic 
hallmark of neuronal maturation12. The accumulation of non-CG meth-
ylation begins earlier in HPC excitatory and inhibitory neurons than in 
PFC neurons (Fig. 1g,h), with HPC cornu ammonis (CA) and inhibitory 
neurons containing substantial amounts of non-CG methylation (>1% 
mean non-CG methylation level) at gestational week (GW) 39. By con-
trast, comparable non-CG methylation levels were not observed in PFC 
neurons until the infant stage (4 and 7 months; Fig. 1g). The finding 
that the remodeling of CG and non-CG methylation in HPC precede 
those in PFC was further supported by genome-wide and gene-specific 
analyses and using additional GW-39 donors (Supplementary Note 2).

Temporal order of multi-omic dynamics
Developing brain tissue consists of diverse cell populations at various 
stages of differentiation, making it challenging to analyse cell dynamics 
solely on the basis of the donor ages. We used pseudotime analysis to 
explore the temporal dynamics of chromatin conformation and DNA 
methylation by a more continuous time quantification24. Pseudotime 
scores were computed for cortical RG-derived cell populations using 
the fusion of CG methylation and chromatin conformation modalities 
(Fig. 2a–c). Pseudotime scores were computed separately for the glial 
trajectory in which RG differentiates into astrocytes, oligodendrocyte 
progenitor cells and oligodendrocytes, and the neuronal trajectory in 
which RG produces excitatory neurons (Fig. 2a–c). To quantify chroma-
tin conformation at individual loci, we devised the 3C gene score (3CGS) 
representing the sum of intragenic chromatin contact frequency, which 
predominantly shows a negative correlation with gene body CG meth-
ylation (Fig. 2d and Supplementary Note 3). The pseudotime approach 
allows us to explore marker genes showing CG methylation dynamics 
throughout the continuous neurogenesis and gliogenesis processes 
(Fig. 2e,f), with CG methylation depletion or elevated 3CGS indica-
tive of gene activation (Supplementary Note 4). As found in previous  
studies12,25, cell-type marker genes are commonly depleted of gene body 

non-CG methylation in neurons in the adult brain. This dataset further 
showed that whereas most genes gain non-CG methylation during 
neuronal maturation, cell-type marker genes are specifically protected 
from mCH accumulation (Fig. 2g).

We focused on the RG to astrocyte differentiation trajectory to inves-
tigate the observed discrepancy between DNA methylation and chro-
matin conformation regarding the separation of astrocyte progenitor 
RG-2 from the neural progenitor RG-1 clusters (Extended Data Fig. 2e). 
The cross-modality comparison revealed little CG methylation dynam-
ics in RG-1 and RG-2 populations (Fig. 2h,i), whereas the reconfiguration 
of chromatin interactions was more continuous across the differen-
tiation of RG-1 to RG-2 to early astrocytes (Fig. 2j,k). This resulted in a 
markedly different distribution of pseudotime scores computed from 
CG methylation or chromatin interactions in RG-2 and differentiated 
astrocytes in late-gestational and infant brains (Fig. 2l). The differentia-
tion of RG to astrocytes can be divided into a stage of rapid chromatin 
conformation remodelling in RG-1 and RG-2 that predominantly occurs 
during mid-gestation, followed by a notably protracted maturation of 
the CG methylome that extends into the adult brain (Fig. 2l,m). Con-
sistent with genome-wide pseudotime patterns, the findings of the 
gene-specific analyses showed that the remodelling of the 3CGS gener-
ally occurs in RG-1 and RG-2 populations and precedes CG methylation 
dynamics in differentiated astrocytes (Fig. 2n–o). By extending the 
cross-modality pseudotime analysis to other cell types, we found nota-
ble temporal separations of CG methylation and chromatin interaction 
dynamics in most cell-type differentiation trajectories with nuanced 
cell-type-specific patterns (Supplementary Note 5).

In situ validation of cell-type markers
In the adult human brain, gene body CG and non-CG methylation 
are predictive of cell-type-specific gene expression12,20,25,26. Here we 
extended the approach to the developing brain taking advantage of 
the inverse correlation between gene expression and CG methylation20 
(Extended Data Fig. 3a–d). We used single-molecule fluorescence in situ 
hybridization to investigate the RNA expression patterns of cell-type 
markers identified by the methylation analyses. TLL1, a gene that shows 
reduced gene body CG methylation in granule cell layer neurons, was 
localized to the granule cell layer in the HPC in the third trimester 
(GW 30; Extended Data Fig. 3b,e). There were overlaps with RBFOX3, 
a molecular marker for mature neurons, and PROX1, a transcription 
factor (TF) found in granule neurons of the HPC (Extended Data Fig. 3e). 
TRPS1 mRNA was expressed in excitatory (GAD1−) cells in the hilus and 
CA3 regions, supporting its expression in mossy cells and CA3 pyrami-
dal neurons in the third trimester (Extended Data Fig. 3c,f). Last, we 
identified a reduced level of CG methylation in astrocytes at the LRIG1 
locus (Fig. 2n and Extended Data Fig. 3d). We found a substantial frac-
tion (40%) of cells expressing a canonical astrocyte marker, ALDH1L1, 
as well as LRIG1 (Extended Data Fig. 3g,h), supporting the dynamic 
expression of LRIG1 during astrocyte differentiation.

Neuronal-specific chromatin conformation
Chromatin conformation capture techniques produce snapshots of 
three-dimensional (3D) genome architecture at multiple scales, includ-
ing A and B compartments and more local features such as chromatin 
domains and loops27. Whereas A and B compartments are detected 
through long-range interactions (for example, >10 Mb distance), 
chromatin domains and loops are primarily detected by short-range 
interaction with less than 2 Mb distance. We clustered single-cell 3C 
profiles by the distribution of the distance between interacting loci 
using k-means clustering and found that single brain cells range from 
mainly containing short-range interactions (clusters 1–5) to containing 
a substantial amount of long-range interactions (clusters 6–10; Fig. 3a,b 
and Extended Data Fig. 4a,b). The distributions of chromatin contact 
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distance are significantly different in the two types of cluster (clus-
ters 1–5 versus 6–10; Extended Data Fig. 4c). Strikingly, neuronal cell 
types are strongly enriched in clusters 1–6, dominated by short-range 
interactions, whereas glial and non-neural cell types are enriched in 
clusters 8–10 and are dominated by long-range interactions (Fig. 3c and 
Extended Data Fig. 4d). We have developed thresholds to categorize 
the global chromatin conformation of each single cell into short-range 
interaction enriched (SE), long-range interaction enriched (LE) and 

intermediate (INT; Fig. 3d and Extended Data Fig. 4e,f). We analysed a 
published bulk Hi-C dataset generated from primary human tissues and 
found that bulk chromatin conformation profiles from all ten tissues 
show an LE signature28, suggesting that SE is specific to neuronal cells 
(Fig. 3e). Although Hi-C profiles generated from bulk human cortical 
and hippocampal tissues show a greater fraction of short-range interac-
tions than other somatic tissues, they were nevertheless classified as 
LE-type samples probably owing to the abundant non-neuronal cells in 
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the analysed tissue (Fig. 3e). The neuronal-specific SE conformation is 
supported by reanalysing bulk Hi-C profiles generated from neuronal 
and non-neuronal nuclei isolated from adult human brain PFC29 (Fig. 3f). 
The differentiation of neurons and astrocytes involved distinct global 
chromatin conformation remodelling events (Fig. 3g–i and Extended 
Data Fig. 4g–k). The neural progenitor RG-1 population is depleted of 
the LE conformation but is not enriched in either the SE or INT confor-
mation (Fig. 3g,h). The chromatin conformation was rapidly remod-
elled in progenitors committed to producing upper-layer excitatory 
neurons (RG-UL) in the mid-gestational brain (2T-Exc-UL) and showed 
a comparable enrichment in the SE conformation to adult neurons 
(Fig. 3g,i). The differentiation of astrocytes involved a transition to the 
LE conformation, which was completed during late gestation (Fig. 3h,i).

Multimodal chromatin and RNA imaging
Quantifying the physical distance between chromatin loci using 
imaging is an orthogonal method that complements the proximity 
ligation and sequencing-based Hi-C approach. We sought to validate 
the neuronal-specific SE chromatin conformation in newly differ-
entiated neurons in mid-gestational (GW 23) human brain tissue by 
jointly imaging the 3D organization, gene expression and nuclear 
architectural proteins using the chromatin tracing and RNA multi-
plexed error-robust fluorescence in situ hybridization (MERFISH) 

platforms30–32. Specifically, the median-sized chromosome 14 was 
imaged at a resolution of 250 kb by sequentially labelling 354 genomic 
loci uniformly covering the chromosome (Fig. 4a and Supplemen-
tary Table 4), allowing the conformation reconstruction of 46,023 
homologues of chromosome 14 in 24,099 cells across HPC, fimbria and 
choroid plexus structures (Fig. 4b,c). RNA MERFISH was carried out on 
the same tissue section using a probe panel targeting 298 genes with 
cell-type-specific expression in the developing HPC33 (Fig. 4d,e and 
Supplementary Table 5). Brain cell types were identified by unbiased 
clustering of the MERFISH profiles followed by integration with the 
snm3C-seq3 DNA methylome using the k-nearest neighbours approach 
(Fig. 4f–h and Supplementary Note 6).

Average cell-type-specific distance matrices reconstructed from 
imaging chromosome 14 recapitulated key features of the chromo-
somal organization, including topologically associating domains 
and compartmental structures observed in Hi-C contact matrices 
(Extended Data Fig. 5a–d). Imaging quantification of spatial distance 
between genomic loci revealed striking differences between neurons 
and non-neuronal cells. In neuronal cell types such as CA1 or dentate 
gyrus excitatory neurons, genomic regions separated by short genomic 
distances (up to 5 Mb) showed a compact spatial distance, which is 
indicative of a high interaction frequency (Fig. 4i,j,o and Extended Data 
Fig. 5e). By contrast, distal genomic regions showed larger physical 
distances in neuronal cell types indicating low interaction frequencies 
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Fig. 3 | Remodelling of global chromatin conformation during human  
brain development. a, k-means clustering analysis groups single-cell 3C 
profiles by the distance distribution between interacting loci. b, Merged 
chromatin interaction profiles of the odd-numbered clusters identified in a.  
c, Cell-type-specific enrichments of clusters identified in a. EC, endothelial 
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interactions (coloured in grey). a.u., arbitrary units. g,h, Remodelling of global 
chromatin conformation during the differentiation of upper-layer excitatory 
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progenitor. i, Merged chromatin interaction profiles of developing cell 
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(Fig. 4i,j,o). An opposite pattern was observed in progenitors and 
non-neuronal cell types, for which loci separated by short genomic 
distances show an increased physical distance, whereas distal genomic 
loci exhibit reduced spatial distances, compared to that observed in 
neuronal cell types (Fig. 4k–o and Extended Data Fig. 5e). The imaging 
results are consistent with the enrichment of SE and LE conformations 
in neurons and non-neuronal cells, respectively. Furthermore, the imag-
ing results validated the emergence of the SE conformation (increased 
short-range interaction and decreased long-range interaction) during 
the differentiation of RG to excitatory neurons. A direct comparison 
of RG-1 and RG-2 has found a more compact configuration of chromo-
some 14 across the whole range of genomic distances in RG-2 (P value 
for near-range genomic distances: 2.2 × 10−5; P value for long-range 
distance: 4 × 10−3; two-sided rank-sum test; Fig. 4m,n,p and Extended 
Data Fig. 5f,g).

Recent studies have suggested that nuclear volume variation could 
affect cell-type-specific chromatin conformation18. The large nuclear 

size of neurons could decrease the probability of long-range chroma-
tin interaction and lead to an SE conformation. Through imaging a 
set of nuclear architectural proteins and post-translational modifica-
tions (Fig. 4q–u), we found that the spatial distances of distal regions 
were indeed most strongly correlated with nuclear volume (Fig. 4u), 
whereas the spatial distances of genomic loci separated by short 
genomic distances were best correlated with H3 K9 trimethylation 
(Supplementary Note 7). Together, the findings of our imaging analysis 
of the mid-gestational HPC demonstrated spatially distinct chromatin 
conformation signatures that marked transitions from neural progeni-
tors to mature neurons.

Chromatin compartmental remodelling
In exploring the chromatin compartmental diversity across cell types 
and developmental stages, we found that cell types showing the LE 
conformation are associated with a stronger compartment strength: 
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Fig. 4 | Multimodal imaging reveals SE chromatin conformation in newly 
differentiated hippocampal neurons. a, Sequential imaging of 354 genomic 
regions on the median-sized chromosome 14 using 119 rounds of hybridization 
with three-colour imaging. b, 3D localization of each genomic region in a single 
nucleus. c, Reconstruction of single-molecule chromatin conformation for  
two chromosome 14 homologues in a single nucleus. d, Overview of the tissue 
section containing HPC and choroid plexus structures. FIM, fimbria; CP, choroid 
plexus. e, Example of multiplexed RNA imaging using MERFISH. f, UMAP 
dimensionality reduction of the RNA MERFISH profile and cell-type annotation. 
g, Spatial localization of annotated cell types. h, Spatial expression patterns  
of marker genes for cell types shown in g. i–n, Reconstruction of chromatin 
conformation for CA1 (i), dentate gyrus ( j), excitatory neuron, choroid plexus 
cell types (k), ependymal cells (l), RG-1 (m) and RG-2 (n). o,p, Quantification  

of spatial distance in micrometres as a function of genomic distance in 
megabases for differentiated brain cell types (o) and RG progenitor cells (p).  
q, Imaging of nuclear architectural proteins and histone modifications.  
r, Correlation of active and repression protein markers across genomic loci  
on chromosome 14. s,t, Quantification of nuclear volume (s) and mean H3 K9 
trimethylation intensity (t) on chromosome 14 in distinct cell types. n = 24,099 
imaged cells. The centre of the box plot marks the median, with each box  
above or below the median representing 10 percentiles of the data distribution. 
u, Correlation of the spatial distance for loci with near-range and long-range 
genomic distance with nuclear volume or mean intensities for protein markers 
on chromosome 14. Abs., absolute. Scale bars, 5 μm (a,b,q), 250 μm (d,g), 
20 μm (e).
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compartmentalization strength scores are inversely correlated with 
the ratio of short- to long-range interactions (Pearson’s r = −0.35, 
P = 8.1 × 10−4; Extended Data Fig. 6a). For example, microglia popula-
tions show the strongest LE conformation and strongest compart-
ment strengths (Extended Data Fig. 6a). The compartment strength 
of microglia is primarily contributed by interactions in the inactive 
B compartment, whereas the compartment strength of neuronal 
populations is more strongly contributed by the active A compart-
ment (Extended Data Fig. 6b,c). The enrichment of A compartment 
strength in neuronal cells was validated using published bulk Hi-C 
profiles of purified neuronal and non-neuronal nuclei29 (Extended 
Data Fig. 6d). In addition, compartment strength is developmentally 
regulated, which includes a substantial loss of compartmentalization 
strength score between mid-gestation and late gestation followed by 
a gradual gain during further development (Extended Data Fig. 6e–g). 
We further analysed genomic regions associated with developmen-
tally differential compartments and found regions switching from the  
A to the B compartment accumulated a greater amount of CG methyla-
tion, supporting the notion that DNA methylation reinforces inactive 
chromatin compartments34,35 (Supplementary Note 8).

Dynamics in chromatin loops and domains
We identified chromatin loops using scHiCluster, optimized for 
single-cell Hi-C profiles19. The number of identified chromatin loops 
is positively correlated with the cell-type abundance (Spearman’s 
r = 0.47, P < 2 × 10−22; Extended Data Fig.  7a and Supplementary 
Table 6). We further used an approach based on analysis of variance 
to identify differential chromatin loops across the differentiation 
of cell-type trajectories (Extended Data Fig. 7b–f and Supplemen-
tary Table 6). In all neuronal trajectories, developmentally gained 
loops outnumber developmentally lost loops by more than tenfold 
(Extended Data Fig. 7g), which is consistent with the strengthening of 
the SE conformation in neuronal cell types. By contrast, similar num-
bers of gained and lost loops were found during the differentiation 
of astrocytes that show an LE conformation (Extended Data Fig. 7g). 
Promoters that are highly connected through chromatin interactions 
or super-interactive promoters (SIPs) have previously been found 
to be enriched in lineage-specific genes16. Here we extended the SIP 
analysis to multiple development stages and found that prenatal 
development and postnatal development were associated with dif-
ferent SIPs (Extended Data Fig. 7h–k and Supplementary Table 6), 
reflecting the distinct biological processes associated with each 
stage. SIP-associated genes (for example, POU3F3) found in RG cells 
are enriched in cell proliferation and cortical cell migration functions, 
whereas SIP-associated genes (for example, KHDRMS3, also known 
as SLM2) found in upper-layer excitatory neurons in infant brains are 
enriched in terms including transmitter-gated channel activity and 
synapse (Extended Data Fig. 7h,j,l). We further identified promoters 
that are associated with high cumulative scores of differential loops 
(Extended Data Fig. 7m and Supplementary Table 6). Using the BRAIN-
SPAN developmental transcriptome resource11, we found a strong cor-
relation between the developmental decrease of the cumulative loop 
score and gene repression and between an increase of the cumulative 
loop score and gene activation (Extended Data Fig. 7m). Expanding on 
previous studies that correlated loop strength with CG methylation in 
the adult human brain3,19, we found that differential loops across each 
cell-type trajectory predominantly show an inverse correlation with 
the CG methylation level of loop anchor regions (Extended Data Fig. 8 
and Supplementary Note 9). Last, the analysis of differential chroma-
tin domain boundaries has recapitulated the impact of the SE and LE 
conformations on local chromatin structures: the strengthening of the 
SE conformation during neuronal differentiation led to more gained 
domain boundaries than losses of boundaries in neuronal trajectories, 
whereas the formation of the LE configuration was associated with 

more loss of boundaries than gains of boundaries (Extended Data 
Fig. 9 and Supplementary Note 10).

Regulatory programs of development
DMRs of CG methylation are a reliable marker of dynamic regulatory 
activity, with a loss of methylation indicating an increase in regulatory 
activity and a gain of methylation associated with repression36,37. We 
investigated the global regulatory dynamics of human cortical and 
hippocampal development by identifying more than 2.5 million DMRs 
across all cell types and developmental stages (Fig. 5a and Supplemen-
tary Table 6), followed by the analysis of TF-binding motif enrichment 
(Supplementary Note 11). The developmental dataset generated in this 
study allows us to infer the temporal sequence of TF activity. We have 
identified dynamic DMRs across the stages of cell-type specification 
(trajectory-DMRs; Fig. 5b–d, Supplementary Note 12, Supplementary 
Figs. 7 and 8 and Supplementary Table 6) and DMRs that distinguish 
daughter cell populations derived from a common mother cell type 
(branch-DMRs; Fig. 5e–g, Supplementary Figs. 9 and 10 and Supplemen-
tary Table 6). Using TF-binding motif analysis, we found that the regula-
tory landscape of both excitatory and inhibitory neurons is shaped by 
the sequential action of lineage-specific and activity-dependent TFs. 
Regulatory elements that become activated (loss of CG methylation) 
in mid-gestation are enriched in the binding motifs of lineage-specific 
TFs such as Maf and MEF2 for inhibitory cells or neurogenin, MEF2 and 
POU3 for excitatory neurons (Fig. 5d and Supplementary Fig. 7). Fol-
lowing lineage specification, the binding motif of activity-dependent 
TFs (FOS, JUN, EGR1 and CREB) is strongly enriched in regulatory ele-
ments activated in late-gestation to infant stages in both excitatory and 
inhibitory populations38 (Fig. 5d). This result suggests late-gestational 
to early-infant development as a key stage during which the epigenome 
is shaped by neuronal activity. The analysis of branch-DMRs associated 
with RG-2 differentiation supported the gliogenic characteristic of this 
progenitor pool as the binding motif of neurogenic TFs is strongly 
depleted in regions losing CG methylation in RG-2 (Fig. 5e–g).

Dissection of neuropsychiatric risk loci
Using DMRs and chromatin loops identified in this study, we systemati-
cally localized the heritability signals of neuropsychiatric disorders 
across developmental stages and cell populations. The polygenic herit-
ability enrichment of annotations defined by DMR and/or chromatin 
loops was quantified for each cell type using stratified linkage disequi-
librium score regression39 (Supplementary Figs. 11 and 12). We found 
significantly greater enrichment of heritability in loop-connected DMRs 
than in all DMRs (Fig. 5h and Extended Data Fig. 10a–f; P = 1.8 × 10−49 
through paired t-test), supporting the utility of chromatin loops in 
locating potential causal variants. We also overlapped fine-mapped 
putative causal loci of schizophrenia40 to DMRs and loop-connected 
DMRs (190 independent loci containing 569 high-confidence putative 
causal single nucleotide polymorphisms (SNPs) with posterior inclu-
sion probability > 0.1; Supplementary Table 7). Out of 190 schizophre-
nia fine-mapped loci, 111 and 81 loci contain at least 1 putative causal 
SNP that overlaps with a DMR or loop-connected DMR, respectively 
(Fig. 5i). We found a strong correlation between the odds ratio of over-
lapping with a putative causal SNP and the enrichment of polygenic 
heritability across cell types (Fig. 5j; Spearman’s correlation = 0.74, 
P = 8.6 × 10−31). As an example, we showcase rs500102 (posterior inclu-
sion probability = 0.27), a putative causal variant for schizophrenia 
that overlaps with a loop-connected DMR in L4–5 excitatory neurons 
(Extended Data Fig. 10g). The variant is also a fine-mapped expres-
sion quantitative trait locus of RORB detected in the brain tissue by 
Genotype-Tissue Expression studies41 (Supplementary Table 7). The 
region where rs500102 is localized is connected by a loop domain to 
the RORB promoter, specifically in L4–5 excitatory neurons (Extended 
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Data Fig. 10g). The loop domain is associated with cell-type-specific 
reduction of CG methylation in the RORB gene body as well as in the 
region surrounding rs500102 (Extended Data Fig. 10g). This example 
demonstrates the utility of single-cell multi-omic profiles to generate 
mechanistic hypotheses regarding the function of variants associated 
with genome-wide association studies.

Next we assessed the developmental dynamics of enrichment for 
neuropsychiatric disorder heritability in various neuronal populations 
(Fig. 5k,l and Extended Data Fig. 10h–m). We observed similar patterns 
over developmental trajectories for DMRs and loop-connected DMRs 
while noting that loop-connected DMRs show higher overall heritability 
enrichment. For schizophrenia and bipolar disorder, the enrichment 
of polygenic heritability increases from neuroprogenitors (RG-1) to 
early post-mitotic neurons (for example, 2T-Exc-UL-1) and further to 
post-mitotic neurons in late-gestational brains for both excitatory 
(Fig. 5k,l and Extended Data Fig. 10h–k) and inhibitory (Extended Data 
Fig. 10l,m) populations. We also found a trend of decreased heritability 
enrichment in adult neurons for schizophrenia and bipolar disorder, 
although the decreases are not statistically significant except for in an 
L5–6 excitatory population (Fig. 5k,l). Using meta-analyses of all excita-
tory (Fig. 5m and Extended Data Fig. 10n) or inhibitory (Extended Data 
Fig. 10o) populations, we found a consistent developmental increase 

of enrichment for schizophrenia and bipolar disorder between neuro-
progenitors and neurons in infant brains, followed by a decrease in the 
adult brain. Taken together, our results indicate that the genetic risk of 
schizophrenia and bipolar disorder more strongly affects post-mitotic 
neurons than the neuroprogenitor population in developing human 
brains.

Discussion
Genome-wide rearrangements of the DNA methylome and chromatin 
conformation are crucial for the normal development of mammalian 
brains. Our study underscores the dynamic shifts from progenitors 
to neuronal and glial populations in the second and third trimesters 
to the neonatal period, highlighting the importance of using pri-
mary brain specimens in studies of perinatal development. This work 
provides a data resource to understand the genetic and epigenetic 
mechanisms of brain diseases. For example, the single-cell multi-omic 
dataset generated by snm3C-seq3 provides cell-type-specific func-
tional annotations (that is, DMRs and chromatin loops) to more than 
half of the fine-mapped schizophrenia-associated loci, highlighting 
the application of snm3C-seq3 profiles in dissecting the develop-
mental context and molecular mechanism of non-coding variants 
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differentiation. g, TF-binding motif enrichments in branch-DMRs associated 
with RG-1 differentiation. h, The enrichment of schizophrenia polygenic 
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associated with neuropsychiatric disorders. The pervasive remodel-
ling of the neuronal methylome and chromatin conformation during 
perinatal development suggests that the human brain is particularly 
vulnerable to genetic and environmental perturbations that affect 
these developmental stages. Consistent with this conjecture, the 
localization of the polygenic risk of schizophrenia and bipolar dis-
order suggests a peak of heritability enrichment during the third 
trimester and infancy.

Our study found the temporal separation of DNA methylation and 
chromatin conformation reconfigurations, suggesting the asynchrony 
across gene regulatory mechanisms (for example, TF binding, DNA 
methylation or histone modifications) might be common in dynamic 
biological systems such as human brain development. In addition to 
the exceptional abundance of non-CG methylation, we found another 
layer of unique epigenomic regulation in neurons (that is, the unusually 
strong enrichment of short-range chromatin interactions that is differ-
ent from the case for glial cells or non-brain tissues). Using multimodal 
single-molecule imaging of chromatin, RNA and nuclear protein mark-
ers, we found that the neuronal-specific SE chromatin configuration 
is established during early development (for example, mid-gestation) 
and is correlated with the histone modification H3 K9 trimethylation, 
transcription and a change in the nuclear volume. This finding raises 
questions regarding whether cohesin-dependent enhancer–promoter 
loops are regulated differently in neurons than in non-neuronal cell 
types42, as well as the potential impact of the nuclear volume on chro-
matin folding and gene regulation.
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Methods

Ethics statement
Paediatric tissues obtained from the University of California, San Fran-
cisco (UCSF) were collected from autopsy sources through the UCSF 
Pediatric Neuropathology Research Laboratory. Informed consent was 
obtained from the next of kin for all paediatric samples obtained from 
the Pediatric Neuropathology Research Laboratory. Paediatric samples 
collected through autopsy were de-identified before acquisition and 
thus exempt from Institutional Review Board (IRB) review. For tissues 
obtained through the gynaecology clinic, patients were asked about 
their interest in donating tissue to research after making the decision 
for termination of pregnancy. Patients who agreed signed a written 
consent after receiving information, both written and oral, given by 
a physician or midwife. They were informed that agreeing to donate 
would not affect their medical care and that neither the donor nor the 
clinical team would benefit from the donation. The use of abortion 
material was reviewed and approved by the UCSF Committee on Human 
Research. Protocols were approved by the Human Gamete, Embryo, 
and Stem Cell Research Committee (IRB GESCR number 10-02693; IRB 
number 20-31968) at UCSF.

Adult human brain samples and a post-mortem GW-35 sample (based 
on adjusted age) were banked by the National Institutes of Health (NIH) 
NeuroBioBank at the University of Maryland Brain and Tissue Bank 
(Supplementary Table 1). Informed consent was obtained from the 
patient or next of kin for all samples obtained from NIH NeuroBioBank. 
The tissue collection and repository is overseen by The University of 
Maryland IRB with IRB protocol number HM-HP-00042077, as well as 
The Maryland Department of Health and Mental Hygiene IRB with IRB 
protocol number 5-58. When an individual of any age dies, the medical 
examiner or coroner contacts the next of kin and asks whether they 
would be willing to talk to a staff member at the University of Maryland 
Brain and Tissue Bank about an NIH-funded tissue procurement project. 
If the family agrees, the medical examiner or coroner contacts the bank, 
and a staff member obtains a recorded telephone consent from the next 
of kin for donation. A written verification of the consent is then faxed to 
the office of the referring medical examiner or coroner. Alternatively, 
the recording can also be played over the telephone for confirmation. 
The University of California, Los Angeles IRB has determined that our 
study using post-mortem human tissue obtained from the NIH Neu-
roBioBank involves no human participant and requires no IRB review.

Brain specimens
Collections were carried out at post-mortem intervals of less than 24 h. 
Tissue was collected through the UCSF, and the NIH NeuroBioBank. 
Patient consent was obtained before collection according to institu-
tional ethical regulations. The UCSF Committee on Human Research 
reviewed protocols that were approved by the Human Gamete, Embryo 
and Stem Cell Research Committee (IRB GESCR number 10-02693) and 
associated IRBs (20-31968) at UCSF. For prenatal samples, mothers 
gave consent for the related medical procedure before any consent for 
donation of tissue. In the tissue consent process, they were informed 
that agreeing to donate would not affect their medical care and that nei-
ther the donor nor the clinical team would benefit from the donation. 
Specimens collected from UCSF were evaluated by a neuropathologist 
as control samples collected through the UCSF Pediatric Neuropathol-
ogy Research Laboratory. Additional samples were identified from the 
NIH NeuroBioBank, according to their IRB approval. Tissues were cut 
coronally, and areas of interest were sampled. Tissue blocks of 1 mm 
used for the snm3C-seq3 assay were flash-frozen in liquid nitrogen 
and stored at −80 °C. Blocks used for histological analyses were fixed 
with 4% paraformaldehyde (PFA) for 2 days and cryoprotected in a 30% 
sucrose gradient. The tissue was then frozen in OCT, and blocks were 
cut at 30 µm with a cryostat and mounted onto glass slides. For each 
sample used, we cresyl-stained three sections spanning the block to 

ensure our position using anatomical landmarks, such as the lateral 
ventricle, presence of the caudate, thalamus and HPC.

snm3C-seq3
For prenatal brain samples, snm3C-seq3 was carried out without the 
labelling of neuronal nuclei using anti-NeuN antibody, whereas post-
natal samples were labelled by anti-NeuN antibody during the proce-
dure to isolate nuclei. For snm3C-seq3 carried out without labelling, 
frozen powder of brain tissue was resuspended in 10 ml of DPBS with 
2% formaldehyde and incubated at room temperature for 10 min with 
slow rotation. The crosslinking reaction was quenched with 1.17 ml 
of 2 M glycine for 5 min at room temperature. The crosslinked tissue 
sample was pelleted by centrifugation at 2,000g for 10 min at 4 °C. The 
same centrifugation condition was used to pellet nuclei throughout 
the snm3C-seq3 procedure. The pellet was resuspended in 3 ml NIBT 
(10 mM Tris-HCl pH 8.0, 0.25 M sucrose, 5 mM MgCl2, 25 mM KCl, 1 mM 
dithiothreitol, 0.1% Triton X-100 and 1:100 protease inhibitor cocktail 
(Sigma number P8340)). The resuspended tissue sample was dounced 
with a dounce homogenizer (Sigma number D9063) 40 times with a 
loose pestle and 40 times with a tight pestle. For snm3C-seq3 carried 
out with anti-NeuN labelling, anti-NeuN antibody (PE-conjugated, clone 
A60, Millipore-Sigma number FCMAB317PE) was added to NIBT at 
a 1:250 dilution and was incubated with the tissue lysate during the 
homogenization steps for a total of 15 min. The lysate was mixed with 
2 ml of 50% iodixanol (prepared by mixing OptiPrep density gradient 
medium (Sigma number D1556) with diluent (120 mM Tris-Cl pH 8.0, 
150 mM KCl and 30 mM MgCl2) with a volume ratio of 5:1). The lysate 
was gently layered on top of a 25% iodixanol cushion and centrifuged at 
10,000g for 20 min at 4 °C using a swing rotor. The pellet of nuclei was 
resuspended in 1 ml of cold DPBS followed by quantification of nuclei 
using a Biorad TC20 Automated Cell Counter (Biorad number 1450102).

The in situ 3C reaction was carried out using an Arima Genomics 
Arima-HiC+ kit. Each in situ 3C reaction used 300,000 to 450,000 nuclei. 
Nuclei aliquots were pelleted and resuspended in 20 µl H2O mixed with 
24 µl conditioning solution and incubated at 62 °C for 10 min. After 
the incubation, 20 µl of stop solution 2 was added to the reaction and 
incubated at 37 °C for 15 min. A restriction digestion mix containing 7 µl 
of 10× NEB CutSmart buffer (NEB number B7204), 4.5 µl of NlaIII (NEB 
number R0125), 4.5 µl of MboI (NEB number R0147) and 12 µl of 1× NEB 
CutSmart buffer was added to the reaction followed by incubation at 
37 °C for 1 h. The restriction digestion reaction was stopped by incuba-
tion at 65 °C for 20 min. A ligation mix containing 70 µl of buffer C and 
12 µl of enzyme C was added and then incubated at room temperature 
for 15 min. The reaction was then kept at 4 °C overnight.

Before fluorescence-activated nucleus sorting, 900 µl cold DPBS 
supplemented with 100 µl ultrapure BSA (50 mg ml−1, Invitrogen num-
ber AM2618) was added to the in situ 3C reaction. To fluorescently 
stain nuclei, 1 µl of 1 mg ml−1 Hoechst 33342 was added before sorting. 
Fluorescence-activated nucleus sorting was carried out at the Broad 
Stem Cell Research Center Flow Cytometry core of the University of 
California, Los Angeles using BD FACSAria sorters. Single nuclei were 
sorted into 384-well plates containing 1 µl M-Digestion buffer contain-
ing proteinase K and about 0.05 pg lambda DNA isolated from dcm+ 
Escherichia coli (Promega number D1501).

Single-nucleus DNA methylome library preparation with 
snmC-seq3
snmC-seq3 is a modification of snmC-seq243 that provides improved 
throughput and reduced cost. Key differences between snmC-seq3 
and snmC-seq2 include the usage of 384 instead of 8 barcoded degen-
erated (RP-H) primers (Supplementary Table 8) for the initiation of 
random-primed DNA synthesis using bisulfite-converted DNA as a 
template. The expanded multiplexing allows the combination of 64 
single nuclei into the downstream enzymatic reactions, which provides 
an eightfold reduction of the usage of Adaptase and PCR reagents. 



In addition, the amounts of Klenow exo−, exonuclease 1 and rSAP are 
reduced by tenfold compared to snmC-seq2, further reducing reagent 
cost. A detailed bench protocol for snm3C-seq3 is provided through 
protocol.io (https://doi.org/10.17504/protocols.io.kqdg3x6ezg25/v1).

Probe library design for RNA MERFISH and chromatin tracing
We selected 40-bp target sequences for DNA or RNA hybridization 
by considering each contiguous 40-bp subsequence of each target of 
interest (the mRNA of a targeted gene or the genomic locus of inter-
est) and then filtering out off-targets to the rest of the transcriptome 
or genome including repetitive regions, or too high or low GC content 
or melting temperature. More specifically, our probe design algorithm 
was implemented with three steps: build a 17-base index based on refer-
ence genome hs1 assembly (DNA) or the hg38 transcriptome (RNA); 
quantify 17-base off-target counts for each candidate 40-bp target 
sequence; filter and rank target sequences on the basis of predefined 
selection criteria as previously described30,44.

MERFISH gene selection
The MERFISH gene selection was carried out by first using a BICCN 
dataset from GW-18–19 brain and using NSForest v245 with default 
parameters to identify marker genes for the cell-type clusters in this 
data46. This list of genes was supplemented with additional marker 
genes from the literature (that is, DCX, GFAP and so on) as well as 
genes with differential methylation in the snm3C-seq3 data in HPC of 
mid-gestational human brains. The target sequences for each gene were 
concatenated with one or two unique readout sequences to facilitate 
MERFISH or single-molecule fluorescence in situ hybridization imag-
ing. The final list of encoding probes for RNA imaging used is shown 
in Supplementary Table 5.

Design of chromatin probes
We designed probes for DNA hybridization similarly to those for RNA 
MERFISH as described in refs. 30,47. Briefly, we first partitioned chro-
mosome 14 into 50-kb segments and selected for imaging a fifth of these 
segments uniformly spaced every 250 kb (amounting to 354 target 
genomic loci using genome reference hs1). After screening against 
off-target binding, GC content and melting temperature, about 150 
unique 40-bp target sequences were selected for each 50-kb segment. 
We concatenated a unique readout sequence to the target probes of 
each segment to facilitate sequential hybridization and imaging of 
each locus. The final list of encoding probes for DNA imaging used is 
shown in Supplementary Table 4.

Primary probe synthesis
The encoding probes were synthesized from template oligonucleotide 
pools, following the previously described method48. First, we amplified 
the oligonucleotide pools (Twist Biosciences) using a limited cycle 
quantitative PCR (approximately 15–20 cycles) with a concentration of 
0.6 µM of each primer to create templates. These templates were con-
verted into the corresponding RNAs using the in vitro T7 transcription 
reaction (New England Biolabs, E2040S) and the PCR product as the 
templates. The resulting RNAs were then converted to complementary 
single-stranded DNA using reverse transcription. During the reverse 
transcription step, a primer with a 5′ acrydite-modified end was used 
to facilitate the incorporation of the encoding probes into a protective 
acrylamide gel cast on the sample allowing for more than 100 rounds 
of hybridization without substantial probe loss. Subsequently, the 
single-stranded DNA oligonucleotides were purified using alkaline 
hydrolysis to remove RNA templates and cleaned with columns (Zymo, 
D4060). The resulting probes were stored at −20 °C.

Sample preparation for multiplexed imaging experiments
The samples were prepared similarly to previously described for cell 
culture samples with notable modifications30. Briefly, fresh frozen 

brain tissues were sectioned into coronal sections of 18 μm thickness 
at −20 °C using a Leica CM3050S cryostat. Sections were collected 
on salinized and poly-l-lysine (Millipore, 2913997)-treated 40-mm, 
round number 1.5 coverslips (Bioptechs, 0420-0323-2). The tissue sec-
tions were fixed with 4% PFA (Electron Microscopy Sciences, 15710) in  
1× PBS with RNase inhibitors (New England Biolabs, M0314L) for 10 min 
at room temperature before being permeabilized with 0.5% Triton 
X-100 (Sigma-Aldrich, T8787). Then coverslips were treated with 0.1 M 
hydrochloric acid (Thermo Scientific, 24308) for 5 min at room tem-
perature. Tissue sections were next incubated with pre-hybridization 
buffer (40% (vol/vol) formamide (Ambion, AM9342) in 2× SSC (Corn-
ing, 46-020-CM)) for 10 min. Then 50 μl of encoding probe hybridiza-
tion buffer (50% (vol/vol) formamide (Ambion, AM9342), 2× SSC, 10% 
dextran sulfate (Millipore, S4030)) containing 15 μg of RNA-encoding 
probes for the targeted genes and 150 μg of DNA-encoding probes for 
the targeted chromosome 14 loci was incubated with the sample first at 
90 °C for 3 min, followed by 47 °C for 18 h. The sample was then washed 
with 40% (vol/vol) formamide in 2× SSC, 0.5% Tween 20 for 30 min 
before being embedded in thin, 4% polyacrylamide gels as described 
previously49.

Imaging and adaptor hybridization protocol
MERFISH measurements were conducted on a custom microfluidics– 
microscope system with the configuration described previously 
described30,44. Briefly, the system was built around a Nikon Ti-U 
microscope body with a Nikon CFI Plan Apo Lambda 60× oil immer-
sion objective with 1.4 NA and used a Lumencor CELESTA light engine 
and a scientific CMOS camera (Hamamatsu FLASH4.0). The different 
components were synchronized and controlled using a National Instru-
ments data acquisition card (NI PCIe-6353) and custom software30.

To enable multimodal imaging, we first sequentially hybridized fluo-
rescent readout probes and then imaged the targeted genomic loci and 
then the targeted mRNAs. Then we carried out a series of antibody stains 
and imaging. Specifically, the following protocol was used in order:  
118 rounds of hybridization and chromatin tracing imaging, sequen-
tially targeting the 354 chromosome 14 loci using three-colour imaging; 
16 rounds of hybridization and MERFISH imaging, combinatorially 
targeting 298 genes using three-colour imaging; 3 rounds of sequential 
staining for 6 different antibodies using two-colour imaging.

The protocol for each hybridization included the following steps: 
incubate the sample with adaptor probes for 30 min for DNA imag-
ing or 75 min for RNA imaging at room temperature; flow wash buffer 
and incubate for 7 min; incubate fluorescent readout probes (one for 
each colour) for 30 min at room temperature; flow wash buffer and 
incubate for 7 min; flow imaging buffer. The imaging buffer was pre-
pared as described previously30 and additionally included 2.5 μg ml−1 
4′,6-diamidino-2-phenylindole (DAPI).

Following each hybridization, the sample was imaged, and then the 
signal was removed by flowing 100% formamide for 20 min and then 
re-equilibrating to 2× SSC for 10 min.

RNA MERFISH measurement of the 298-gene panel was carried out 
with an encoding scheme of 48-bit binary barcode and a Hamming 
weight of 4. Therefore, in each hybridization round, about 75 adaptor 
probes were pooled together to target a unique subset of the 298 genes. 
The genes targeted in each round of hybridization are highlighted in 
Supplementary Table 9.

Immunofluorescence staining
Antibody imaging was carried out immediately after completing the 
DNA and RNA imaging. The sample was first stained for 4 h at room 
temperature using two primary antibodies of two different species 
(mouse and rabbit), washed in 2× SSC for 15 min and then stained for 
2 h using two secondary antibodies for each target species conjugated 
with fluorescent dyes. Supplementary Table 10 lists all of the antibod-
ies used in this study.

https://doi.org/10.17504/protocols.io.kqdg3x6ezg25/v1
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MERFISH image acquisition
We imaged approximately 650 fields of view covering the HPC. After 
each round of hybridization, we acquired z-stack images of each field of 
view in four colours: 750 nm, 647 nm, 560 nm and 405 nm. Consecutive 
z-sections were separated by 300 nm and covered 15 μm of the sample. 
Images were acquired at a rate of 20 Hz.

Processing of snm3C-seq3 data
Sequencing reads were first demultiplexed by matching the first 
8 bp of R1 reads to the predefined well barcodes (https://github.com/
luogenomics/demultiplexing). Demultiplexed reads were trimmed 
to remove sequencing adaptors using Cutadapt 1.18 with the follow-
ing parameters in paired-end mode: -f fastq -q 20 -m 50 -a AGATCG 
GAAGAGCACACGTCTGAAC -A AGATCGGAAGAGCGTCGTGTAGGGA. 
Then 18 bp and 10 bp were further trimmed from the 5′- and 3′-end 
of the R1 reads, respectively; and 10 bp were trimmed from both the 
5′- and 3′- ends of the R2 reads. snm3C-seq3 reads were mapped to the 
hg38 reference genome using a modified Taurus-MH package (https://
github.com/luogenomics/Taurus-MH)3. Briefly, each read end (R1 or 
R2) was mapped separately using Bismark with Bowtie1 with read1 as 
complementary (always G to A converted) and read2 (always C to T 
converted) as the original strand. After the first alignment, unmapped 
reads were retained and split into three pieces by 40 bp, 42 bp and 40 bp 
resulting in six subreads (read1 and read2). The subreads derived from 
unmapped reads were mapped separately using Bismark Bowtie1. All 
aligned reads were merged into BAM using the Picard SortSam tool with 
query names sorted. For each fragment, the outermost aligned reads 
were chosen for the chromatin conformation map generation. The 
chromatin contacts with both ends mapped to the same positions were 
considered duplicates and removed for further analysis. Duplicated 
reads were removed from BAM files using the Picard MarkDuplicates 
tool before the generation of allc files using the Allcools bam-to-allc 
tool (https://lhqing.github.io/ALLCools/)26.

Single-molecule fluorescence in situ hybridization
Single-molecule fluorescence in situ hybridization was carried out 
according to the RNAscope manual (multiplex details). Sequences of 
target probes, preamplifiers, amplifiers and label probes are propri-
etary and commercially available (Advanced Cell Diagnostics (ACD)). 
Typically, the probes contain 20 ZZ probe pairs (approximately 50 bp 
per pair) covering 1,000 bp. Here we used probes against human 
genes as single-plex probes, outlined below: Hs-MEF2C (452881), 
Hs-GAD1-C2 (404031-C3), Hs-RBFOX3-C2 (415591-C2), Hs-TLL1-C3 
(439211), Hs-TRPS1 (831611-C3), Hs-PROX1 (530241), Hs-ALDH1L1-C3 
(438881-C3), Hs-LRIG1-C2 (407421-C2).

Slides were dried at 60 °C for 1 h and fixed in 4% PFA for 2 h. After 
several washes in PBS, slides were treated with ACD hydrogen peroxide 
for 10 min and then washed in water twice before treatment in 1× target 
retrieval buffer (ACD) for 5 min (at 95–100 °C). After being washed in 
water and then 100% alcohol, the slides were baked at 60 °C for 30 min. 
After moistening samples with water, protease treatment was carried 
out for 15 min at 40 °C in a HybEZ oven. Hybridization of probes and 
amplification was carried out according to the manufacturer’s instruc-
tions. In short, tissue sections were incubated in the desired probe (2–3 
drops per section) for 2 h at 40 °C in the HybEZ oven. The slides were 
washed twice in 1× wash buffer (ACD) for 2 min each and incubated 
in 5× SSC at room temperature overnight. Amplification and detec-
tion steps were carried out using the Multiplex kit (ACD, 320293) for 
single-plex probes. The following was carried out in repeated cycles for 
each probe. About four drops of AMP x-FL were added to entirely cover 
each section and the slide was placed in the HybEZ oven. The slide was 
incubated for 30 min at 40 °C. Slides were removed from the HybEZ 
slide rack, and excess liquid was removed before being submerging 
them in a Tissue-Tek staining dish filled with 1× wash buffer. Slides were 

washed in 1× wash buffer for 2 min at room temperature. The next AMP 
x-FL treatment was added, and the cycle was repeated. Slides were 
washed in PBST, incubated with DAPI for 30 s at room temperature, 
and mounted in aqua mount (Lerner). Images were taken using a 100× 
objective on a Leica Stellaris confocal microscope.

Single-cell bimodal data quality control and preprocessing
Cells were filtered on the basis of several metadata metrics: mCCC 
level < 0.03; global CG methylation level > 0.5; global non-CG meth-
ylation level < 0.2; and total 3C interactions > 100,000. Methylation 
features were calculated as fractions of methylcytosine over total 
cytosine across gene bodies ±2 kb flanking regions and 100-kb bins 
spanning the entire genome. Methylation features were further split 
into CG and CH methylation types. These features were then filtered on 
mean coverage of ≥10 and values with coverage of <5 were imputed as 
the mean feature value by sample. Principal component analysis (PCA) 
was then run using Scanpy50 default parameters followed by k-nearest 
neighbours using only the top 20 principal components by the amount 
of variance explained and k = 15. Iterative clustering was then carried 
out with a combination of Leiden unsupervised clustering and UMAP 
dimensionality reduction, identifying clusters as cell types by marker 
gene body CH and CG hypomethylation. We observed certain batch 
effects in our dataset that are associated with the time the data were 
generated. Harmony22 was used on metadata features to mitigate batch 
effects occurring between samples in the principal-component feature 
space. The developmental trajectories of cortical and hippocampal 
cell types were reconstructed using shared CG methylation feature 
patterns at cell-type marker genes and integration of cells derived from 
different age groups using Harmony22. Cells were first separated by 
their L2 (major cell-type groups) annotation using the shared marker 
gene approach, and then Harmony integration by pairwise ages for all 
L2 groups was used to link L3 cell types across ages.

Integration of snm3C-seq3 data with datasets for single- 
nucleus RNA-sequencing or single-nucleus assay for 
transposase-accessible chromatin with sequencing
The single-nucleus RNA (snRNA) and prenatal snm3C-seq CG meth-
ylation data were co-embedded by inverting the sign of the methyla-
tion matrix (owing to an inverse correlation of gene expression to CG 
methylation). PCA was then applied on the combined data, and Har-
mony22 was used to correct for the systematic differences between the 
two modalities. The co-embedded UMAP was then generated from 
the k-nearest neighbours graph with k = 20 using the top 20 princi-
pal components. Annotation transfer was carried out for each cell 
in the CG methylation data by taking the cell’s top snRNA neighbour 
and assigning the RNA label to the CG methylation cell. The Jaccard 
index was then computed on the CG methylation annotation versus 
the snRNA liftover annotation. The correlation of features between the 
two modalities was calculated by taking the k = 1 nearest neighbour for 
all methylation cells and computing the Pearson correlation of raw CG 
methylation fraction to log-scaled gene expression counts for all genes 
across all paired cells. Generalized annotations were then made for the 
co-embedding by running Leiden unsupervised clustering and naming 
the clusters by their most representative cell type to assess the rela-
tive quantity of similar cells in each dataset. The co-embedding of the 
single-nucleus assay for transposase-accessible chromatin (ATAC) and 
snm3C-seq CG methylation data followed the same procedure as the 
snRNA co-embedding, but the Pearson correlation was computed on 
the raw ATAC gene activity scores versus raw CG methylation fractions.

Pseudotime analysis
Pseudotime analysis was run following the methods outlined in ref. 24. 
Each pseudotime analysis had clustering preprocessing steps, PCA, 
k-nearest neighbours with k = 15 using 20 principal components, and 
Leiden, recomputed for its respective subset of the data. The computed 
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Leiden clusters were then used to initialize a partition-based graph 
abstraction. This partition-based graph abstraction is used as the 
precomputed initialization coordinates for the visualization with 
force-directed graph drawing by the ForceAtlas2 package51. A root 
node is then set in the Leiden cluster furthest from the adult cell types, 
and Scanpy’s implementation of diffusion-based pseudotime was used. 
In multimodal pseudotimes the same cell is set as the root node in each 
modality. Genes are selected for display compared to the pseudotime 
scores by sorting by correlation and anticorrelation to the pseudotime 
score as well as requiring the 3CGS to have variance of >0.1 and gene 
length of >90 kb. For Fig. 2n and Supplementary Fig. 4j,u, gene exam-
ples were selected by highest gene body CG methylation correlation to 
the pseudotime and 3CGS anticorrelation. For Fig. 2o and Supplemen-
tary Fig. 4k,v, gene examples were selected by highest gene body CG 
methylation anticorrelation to the pseudotime and 3CGS correlation 
to the pseudotime. Distribution comparisons are computed by the 
Wilcoxon rank-sum test.

DMR and TF-binding motif analysis
All CG methylation DMRs were identified from pseudobulk allc files 
using Methylpy (https://github.com/yupenghe/methylpy)52. DMRs 
identified from a multi-sample comparison of all cell types were used 
for analyses in Fig. 5, as well as disease heritability enrichment analy-
ses. Trajectory-DMRs were identified using pairwise comparisons of 
adjacent development stages of a cell-type trajectory. Branch-DMRs 
were identified using multi-sample comparisons, including the 
mother cell population from an earlier developmental stage and 
daughter populations from a later developmental stage. TF-binding 
motif enrichment analysis was carried out similarly to previously 
described17,25,53. DMR regions were lifted over to the hg19 reference 
genome for the TF-binding motif enrichment analysis. TF-binding 
motif position weight matrices were obtained from the MEME motif 
database and scanned across the human hg19 reference genome to 
identify hits using FIMO (--output-pthresh 1E-5, -- max-stored-scores 
500,000 and --max-strand)54,55. DMRs were extended 250 bp both 
upstream and downstream for overlapping with TF-binding motif 
hits. The overlap between TF-binding motif hits and DMRs (extended 
±250 bp) was determined by requiring a minimum of 1-bp overlap. The 
enrichment of TF-binding motifs in DMRs was assessed using DMRs 
(extended 250 bp from centre) identified across adult human tissues 
(tissue DMRs) as the background52. The overlaps between TF-binding 
motif hits and the foreground DMR list were compared to the overlaps 
between TF-binding motif hits and tissue DMRs (background) using 
the hypergeometric test (MATLAB hygecdf).

Single-cell embedding based on chromatin contact
Single-cell contact matrices at 100 kb resolution were imputed by 
scHiCluster56 with pad = 1. The imputed contacts with distance of 
>100 kb and <1 Mb were used as features for singular value decompo-
sition dimension reduction. Principal components were normalized 
by singular values and L2 norms per cell and then used for k-nearest 
neighbour graph construction (k = 25) and UMAP. A total of 25 dimen-
sions were used for the full dataset (Fig. 1 and Extended Data Fig. 2b,e), 
20 dimensions were used for the RG subtypes (Extended Data Fig. 2f) 
and 10 dimensions were used for the MGE or CGE lineage (Extended 
Data Fig. 2d).

Chromatin loop, differential loop and SIP analysis
Chromatin loops were identified with scHiCluster56 for each cell type 
identified in this study. To identify loops from a group of cells, 
single-cell contact matrices at 10 kb resolution were imputed by scHi-
Cluster with pad = 2 for the contacts with a distance less than 5.05 Mb 
(result denoted as Qcell). We carried out loop calling only between 50 kb 
and 5 Mb, given that increasing the distance leads to only a limited 
increase in the number of statistically significant loops. For each 

single cell, the imputed matrix of each chromosome (denoted as Qcell) 
was log-transformed, Z-score-normalized at each diagonal (result 
denoted as Ecell) and a local background between >30 kb and <50 kb 
was subtracted (result denoted as Tcell), as in SnapHiC57. We then gen-
erated pseudobulk matrices for each sample by taking the average 
across single cells. To compute the variance of each matrix across 
single cells in loop and differential loop analysis, for each pseudobulk 
sample, we saved both the mean and mean of squares. Specifically, 
six pseudobulk matrices were generated as Q Q n= ∑ /bulk cell cell, 
Q Q n2 = ∑ /bulk cell

2
cell, E E n= ∑ /bulk cell cell, E E n2 = ∑ /bulk cell

2
cell , T T n= ∑ /bulk cell cell,  

T T n2 = ∑ /bulk cell
2

cell. A pseudobulk-level t-statistic was computed to 
quantify the deviation of E and T from 0 across single cells from the 
cell group, with larger deviations representing higher enrichment 
against the global (E) or local (T) background. Ecell is also shuffled across 
each diagonal to generate Eshufflecell, then minus local background for 
Tshufflecell, and further merged into pseudobulks Eshufflebulk, E2shufflebulk, 
Tshufflebulk and T2shufflebulk, to estimate a background of the t-statistics. 
E2shufflebulk is defined as E E n2 = ∑ /shufflebulk shufflecell

2
shufflecell. T2shufflebulk is 

defined as T T n2 = ∑ /shufflebulk shufflecell
2

shufflecell . An empirical false dis-
covery rate (FDR) can be derived by comparing the t-statistics of 
observed cells versus shuffled cells. We required the pixels to have 
average E of >0, fold change of >1.33 against doughnut and bottom 
left backgrounds, fold change of >1.2 against horizontal and vertical 
backgrounds57, and FDR of <0.01 compared to global and local back-
grounds.

Differential loops were identified between age groups in the same 
major lineage. The detailed analysis framework is shown at https://
zhoujt1994.github.io/scHiCluster/hba/loop_majortype/intro.html. To 
compare the interaction strength of loops between different groups 
of cells, analysis of variance or a Kruskal–Wallis test can be used. This 
test is more generalizable, as it does not require the data to be normally 
distributed. However, in practice, it is very expensive computationally 
to enumerate through all cells and all loops to run the tests. Therefore, 
we adopt an analysis of variance framework to compute the F statistics 
for each loop identified in at least one cell group using either Qcell (result 
denoted as FQ) or Tcell (result denoted as FT). This analysis requires only 
Qbulk, Q2bulk, Tbulk and T2bulk for each pseudobulk sample to capture the 
variability across cells rather than the matrices of each single cell, which 
makes it feasible across thousands of cells and millions of pixels. We 
log-transformed and then Z-scored FQ and FT across all of the loops 
being tested and selected the ones with both FQ and FT > 1.036 (85th 
percentile of standard normal distribution) as differential loops. The 
threshold was decided by visually inspecting the contact maps as well 
as the correlation of interaction and loop anchor CG methylation. These 
thresholds selected the top ≈5% loops as differential for downstream 
analyses.

To identify SIPs, annotated transcription start sites from GENCODE 
v33 annotation were intersected with chromatin loops, allowing a maxi-
mum distance of 5 kb. To determine a threshold of cumulative loop 
score for SIPs, the cumulative loop score of promoters was modelled 
by a half-Gaussian distribution with the mean equal to 0 and standard 
deviation equal to the standard deviation of cumulative loop scores. 
The threshold for SIP was selected with a P value of 0.001.

Identification of domains and differential domain boundaries
Single-cell contact matrices at 25 kb resolution were imputed by scHi-
Cluster56 with pad = 2 for the contacts with distance less than 10.05 Mb. 
Domains were identified for each single cell. Insulation scores were 
computed in each cell group (major type or major type in a brain region) 
for each bin with the pseudobulk imputed matrices (average over single 
cells) and a window size of 10 bins. The boundary probability of a bin 
is defined as the proportion of cells having the bin called as a domain 
boundary among the total number of cells from the group.

To identify differential domain boundaries between n cell groups, 
we derived an n × 2 contingency table for each 25-kb bin, in which 
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the values in each row represent the number of cells from the group 
that has the bin called as a boundary or not as a boundary. We com-
puted the chi-square statistic and P value of each bin and used the 
peaks of the statistics across the genome as differential boundaries. 
The peaks are defined as the local maximum of chi-square statistics 
with an FDR of <1 × 10−3 (Benjamini and Hochberg procedure). If two 
peaks are within less than five bins of each other, we kept only the peak 
with a higher chi-square statistic. We also require the peaks to have a 
Z-score-transformed chi-square statistic of >1.960 (97.5th percentile of 
standard normal distribution), fold-changes between maximum and 
minimum insulation score of >1.2, and differences between maximum 
and minimum boundary probability of >0.05.

3CGS
3CGS is defined as the sum of off-diagonal values from the row and 
column of the transcription start site bin to the row and column of 
the transcription end site bin in the imputed 10-kb contact matrices.

Correlation between loop strength and CG methylation
Differential loops for cell-type trajectories were used in these analyses 
(Supplementary Table 6), with each trajectory analysed separately. 
Single cells were grouped into meta-cells ordered by the developmental 
pseudotime scores to boost the power of correlation analyses. Each 
meta-cell is composed of 20 single cells. Specifically, the joint embed-
ding of CG methylation and chromosome conformation for each trajec-
tory was used to generate a k-nearest neighbour (k = 20, self-included) 
graph of single cells. Each cell was merged with its other 19 nearest 
neighbours to generate a meta-cell. To avoid meta-cells that are highly 
similar to each other, we first computed the number of shared cells 
between each pair of meta-cells and removed highly similar meta-cells. 
We repeated this process until no pairs of meta-cells shared more than 
five cells. To further alleviate the bias towards large homogeneous cell 
populations, we downsampled the number of meta-cells that originated 
from RG-1 to half of the number.

The methylation level of a meta-cell at each 10-kb bin was computed 
by the sum of methylated basecalls divided by the sum of total base-
calls over its 20 composed single cells. The average methylation levels 
of the two anchors were used to correlate with the loop interaction 
strength. The loop interaction strength of a meta-cell was the average 
of imputed interactions over the 20 composing single cells. The diffu-
sion pseudotime of a meta-cell was also the mean across its composing 
single cells. The meta-cells were ordered according to the pseudotime, 
and the cross-correlation was used to measure the temporary discrep-
ancy between chromatin conformation and DNA methylation changes 
during development. Intuitively, the cross-correlation measures the 
correlation between loop strength and CG methylation after shifting 
the DNA methylation values along the developmental axis for a certain 
distance. We used the argument of the minima of the cross-correlation 
for the loops having a negative correlation between interaction and CG 
methylation to evaluate their timing differences. If the loop interaction 
is changing before DNA methylation, the DNA methylation values need 
to be moved backward to maximize its (absolute) correlation with 
genome structure, therefore corresponding to a negative shift in our 
measurement. A left-skewed distribution indicates that interaction 
changes earlier than methylation and vice versa.

Distribution of the distance between interacting loci analysis
To count the number of cis (intra-chromosomal) contacts in each cell 
and bulk Hi-C data28, we divided the contacts into 143 logarithmic bins, 
the first of which was for contacts that were separated by less than 1 kb. 
Each subsequent bin covered an exponent step of 0.125, using base 2. 
Contacts in bins 1–37 were determined to be noisy and were eliminated, 
leaving bins 38–141 as valid bins.

The following metrics were used for the following analysis: percent-
age median, the percentage of contacts in bins 38–89 out of all valid 

bins; percentage long, the percentage of contacts in bins 90–141 out 
of all valid bins.

Cells were clustered by the distribution of their distance between 
interacting loci (k-means, k = 10) and reordered by the average value 
of log2[percentage median/percentage long] of each cluster (Fig. 3a–d 
and Extended Data Fig. 4a–c).

Each cell was assigned to a group by the following criteria (Fig. 3e,f 
and Extended Data Fig. 4d–k): SE, log2[percentage median/percentage 
long) > 0.4; INT, −0.4 > log2[percentage median/percentage long) > 0.4; 
LE, log2[percentage median/percentage long) < −0.4.

To find the clusters enriched in each cell type, we first calculated 
the percentage belonging to each cluster by cell type (Extended Data 
Fig. 4d). The enrichment score was obtained by normalizing the fraction 
of each cell type by the relative cluster sizes. For each cell type, an aver-
age of log2[percentage near/percentage long] scores (representing the 
ratio of median to long-range interactions) for all individual cells of that 
type was computed to compare with compartmentalization metrics.

We have computed empirical P values to determine the significance 
of k-means clusters showing distinct distributions of chromatin contact 
distances (Fig. 3a and Extended Data Fig. 4c). For each pair of clusters, 
we randomly selected one cell from each cluster. This process was 
repeated 1,000 times for each cluster pair. Cell pairs whose chromatin 
contract distribution showed a Pearson’s correlation coefficient greater 
than 0.8 were considered similar. For each pair of clusters, we counted 
the number of times (out of 1,000) that the correlation coefficient 
exceeded the threshold. This gave an estimate of the similarity in cell 
patterns between the two clusters.

Chromatin compartment detection and analysis
Pseudobulk .cool files for all cell types were generated and balanced 
with cooler v0.8.3 at 1 Mb resolution58. For each cell type, compartments 
were assigned with cooltools v0.5.1, through eigenvector decomposi-
tion of each chromosome’s cis-interaction matrix59. Each 1-mb genomic 
bin (excluding chromosomes X, Y and M) was assigned to the A or B com-
partment by the sign of its chromosome’s eigenvector that has the high-
est Pearson correlation with GC content. A positive sign indicates bin 
membership in the A compartment; a negative sign indicates bin mem-
bership in the B compartment. We use the magnitude of the eigenvector 
value as the strength of compartment assignment. Using cooltools, we 
generated saddle plots, which visualize the distribution of observed/
expected (O/E) contact frequency between genomic bins stratified by 
their eigenvector value. For pseudobulk files with more than 30 million 
contacts, we subset each matrix’s bins whose assignment strengths are 
in the top 20th percentile for their compartment. Then, we find the sum 
of O/E values of AA, BB, AB and BA interactions between these bins. For 
computing AA or BB O/E interaction dominance, we find the fraction 
of O/E signal explained by these AA or BB interactions, respectively, 
out of the total O/E signal for the pseudobulk matrix (Extended Data 
Fig. 6b). Similarly, the formula for compartmentalization strength 
score is: (sum(AA O/E) + sum(BB O/E))/(sum(BA O/E) + sum(AB O/E)) 
(Extended Data Fig. 6a,e). When computed on pseudobulk files with 
more than 30 million contacts, compartmentalization strength scores 
had no significant correlation with total pseudobulk contacts (Pearson 
correlation = 0.18, P = 0.10). Two-sided Mann–Whitney U-tests were 
used to compare distributions of these metrics between groups of cell 
types (Extended Data Fig. 6b,e).

Differential compartments were identified across all age groups for 
each major (L2) lineage using dcHiC v2.1 at 100 kb resolution (adjusted 
P < 0.01)60. These results were used to identify 100-kb genome bins 
that transitioned from the A compartment to the B compartment (AB 
transition) or vice versa (BA transition) between the earliest and latest 
ages in each lineage (Extended Data Fig. 6h). For each lineage, the tran-
sitioning bins’ CG methylation levels were computed at each age and 
normalized by subtracting the CG methylation level at the earliest age. 
The distribution of CG methylation levels for AB versus BA transitions 



at each age and lineage was compared with two-sided Mann–Whitney 
U-tests (Extended Data Fig. 6j–l).

Polygenic heritability enrichment analysis
Polygenic heritability enrichment of DMRs and/or chromatin loops 
was analysed using a stratified linkage disequilibrium score regression 
(S-LDSC)-based partitioned heritability approach61. The genome-wide 
association study (GWAS) summary statistics included in this study 
were as follows: schizophrenia40, bipolar disorder62, major depres-
sive disorder63, attention deficit hyperactivity disorder64, autism 
spectrum disorder65, Alzheimer’s disease66 and height from the UK 
Biobank67 (downloaded from https://alkesgroup.broadinstitute.org/
sumstats_formatted/). For each cell type, binary annotations were 
created using DMR and/or chromatin loop. We considered two types 
of genomic region—DMR: including all DMRs for a given cell type; 
loop-connected DMR: including the subset of DMRs that overlap with 
any of the chromatin loop-called in the matching cell types. To create 
binary annotations, SNPs in these genomics regions were assigned 
as 1 and otherwise 0. Then we assessed the heritability enrichment of 
each of these annotations conditional on the ‘baseline model’39. We 
reported heritability enrichment and proportion of heritability using 
Enrichment, Enrichment_std_error, Prop._h2, Prop._h2_std_error col-
umns in S-LDSC results. To assess statistical significance for heritability 
enrichment differences across annotations (for example, differences 
between cell types in a developmental trajectory), we used a t-test to 
test the differences of heritability enrichment of two cell types with 
d.f. = 200 + 200 − 2, in which 200 corresponds to the number of jack-
knife samples in the S-LDSC block jackknife procedure.

Overlap between fine-mapped variants and DMR and/or 
chromatin loop for schizophrenia
We used statistical fine-mapping results that were previously per-
formed in the latest PGC schizophrenia study40. We filtered for auto-
somal high-confidence putative causal SNPs with posterior inclusion 
probability of >10%, and retained 190 independent association loci 
(containing 569 SNPs in total), with each loci containing a credible set 
with 3.0 SNPs on average. We used Fisher’s exact test to assess the over-
lap between these 569 fine-mapped SNPs and DMR and/or chromatin 
loop annotations using all SNPs in the GWAS summary statistics as the 
background (see above for constructing DMR and/or chromatin loop 
annotations). We reported odds ratios of the overlap. We also assessed 
the overlap between 190 schizophrenia fine-mapped loci (as aggre-
gates of 569 putative causal SNPs) and DMR and/or chromatin loop 
annotations (Fig. 5i). We define the overlap between fine-mapped loci 
and DMR and/or chromatin loop annotations on the basis of whether 
any high-confidence putative causal SNP in the fine-mapped loci is 
located in the annotation. Furthermore, we overlapped putative causal 
SNP and DMR and/or chromatin loop annotations to Genotype-Tissue 
Expression high-confidence fine-mapped cis-expression quantitative 
trait locus (eQTL) data (downloaded from https://www.gtexportal.
org/home/downloads/adult-gtex/qtl): we first identified SNP–gene 
pairs such that the putative causal SNP is located in DMRs and con-
nected to the transcription start site of any gene through chromatin 
loops, and then we overlapped these SNP–gene pairs with cis-eQTL–
eGene pairs.

Chromatin tracing analysis
Localization of fluorescent spots. To calculate fluorescent spot lo-
calizations for chromatin tracing data, we carried out the following 
computational steps: we computed a point spread function for our 
microscope and a median image across all fields of view for each colour 
channel based on the first round of imaging to be used for homogeniz-
ing the illumination across the field of view (called flat-field correction); 
to identify fluorescent spots, the images were flat-field-corrected, 
deconvoluted with the custom point spread function, and then local 

maxima were computed on the resulting images. A flat-field correction 
was carried out for each colour channel separately.

Image registration and selection of chromatin traces. Imaging 
registration was carried out by aligning the DAPI channel of each  
image from the same field of view across imaging rounds. First, the local 
maxima and local minima of the flat-field-corrected and deconvolved 
DAPI signal were calculated. Next, a rigid translation was calculated 
using a fast Fourier transform to best align the local maxima or minima 
between imaging rounds.

Nuclear segmentation was carried out on the DAPI signal of the first 
round of imaging using the Cellpose algorithm68 with the ‘nuclei’ neural 
network model. Following image registration, chromatin traces were 
computed from the drift-corrected local maxima of each imaged locus 
as previously described30.

RNA MERFISH analysis
The MERFISH decoding followed a similar strategy to that of the MERlin 
algorithm but operated on spots identified in the images rather than 
individual pixels. Briefly, the drift- and chromatic-aberration-corrected 
local maxima (spots) were grouped into clusters, with each cluster con-
taining all spots from all imaging rounds in a 2-pixel radius of an anchor 
spot. Clusters were generated for every possible anchor spot. Any clus-
ter containing spots from at least four images was then assigned a gene 
identity by best matching the MERFISH codebook. Each cluster was 
ranked by the average brightness and the interdistance between the 
contained spots. These measures were used to filter the decoded cluster 
and best separate the more confident spots from the less confident.

Protein density quantification
The antibody images were flat-field-corrected, deconvolved and then 
registered to the chromatin traces using the DAPI signal as described pre-
viously. For each chromatin trace, the fluorescent signal of each antibody 
was sampled at the 3D location corresponding to each genomic locus.

Refinement of the nuclear segmentation
Refined 3D nuclear segmentation was carried out using the 3D Cellpose 
‘nuclei’ model based on the NUP98 fluorescent stain.

Integration of snmC-seq3 and RNA MERFISH
RNA profiles generated by MERFISH were unbiasedly clustered using 
the Leiden method and annotated on the basis of known marker genes 
shown in Supplementary Fig. 5a. The MERFISH transcriptomic data were 
then integrated with the data from mid-gestation HPC snmC-seq3 meth-
ylation samples by subsampling a set of 220 shared genes, inverting 
the methylation matrix and using Harmony22 to correct the systematic 
differences between the two modalities. RG-1 and RG-2 annotations 
were generated by label transfer from the methylation data using k = 9 
nearest-neighbour majority voting in the batch-corrected UMAP space. 
Label transfer was blocked in mature cell types (dentate gyrus, CA1 and 
CA2–3) and those not derived from hippocampal RG cells (ependyma 
and choroid plexus).

MERFISH data availability
Raw imaging data will be provided on request owing to the extraor-
dinary file sizes. Processed data are available at the Gene Expression 
Omnibus under the accession number GSE213950 as a scanpy.h5ad 
file. The main ‘.X’ matrix of the object contains log-normalized counts. 
The full contents of the scanpy object are described below. For brevity, 
standard contents added by scanpy (for example, connectivities and 
distances added by sc.pp.neighbors) are not listed.
•	 obs

•	 volm: total pixel volume of the cell based on DAPI segmentation;
•	 x_um_abs, y_um_abs: global x and y coordinates of the cell in micro-

metres;

https://alkesgroup.broadinstitute.org/sumstats_formatted/
https://alkesgroup.broadinstitute.org/sumstats_formatted/
https://www.gtexportal.org/home/downloads/adult-gtex/qtl
https://www.gtexportal.org/home/downloads/adult-gtex/qtl
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213950
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•	 zc, xc, yc: pixel coordinates of the cell centre relative to the field 

of view;
•	 Leiden: unsupervised Leiden clustering;
•	 L1: excitatory versus inhibitory;
•	 dpt_pseudotime: pseudotime calculated from RG-1;
•	 Final_anno_v3: annotation used in figures;
•	 Hpc_regional: spatial subset of cells restricted to the HPC;
•	 hpcRG: RG-1 and RG-2 annotation in this zone;
•	 Fimbria_regional: spatial subset of cells restricted to the HPC;
•	 fimbriaRG: RG-1 and RG-2 annotation in this zone;
•	 Ventricular_regional: spatial subset of cells restricted to the  

ventricular zone;
•	 ventricularRG: RG-1 and RG-2 annotation in this zone;
•	 Refined_volume: Recalculated cell volume based on Nup98  

antibodies.
•	 var

•	 mean: average expression of the gene across cells;
•	 std: standard deviation of the gene expression across cells.

•	 uns
•	 X_h_score_shape: original shape of X_h_score in obsm;
•	 antibody_shape: original shape of each antibody matrix in obsm.

•	 obsm
•	 X_fov: the field-of-view identifier each cell was imaged in;
•	 X_raw: raw count matrix;
•	 X_spatial: the spatial coordinates of the cells;
•	 blank: the count of each blank barcode per cell;
•	 X_h_score: a csr sparse matrix containing chromatin trace results. 

The matrix should be reshaped to 50,374 ×4 × 354 × 5, representing 
the number of cells, maximum number of homologues, number 
of chromatin regions, and the z, x, y coordinates followed by the 
brightness and score of the fluorescent spot. Missing data (that 
is, containing fewer than four homologues or missing regions) are 
filled with 0 s;

•	 H3 K9 trimethylation, Pol2PSer2, SRSF2, K27Ac, LAMA1, NUP98: 
antibody signals localized at each chromatin region. Stored as a 
csr sparse matrix and can be reshaped to 50,374 × 4 × 354, similar 
to X_h_score.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Datasets generated by this study can be accessed interactively through 
https://brain-epigenome.cells.ucsc.edu/ and https://genome.ucsc.
edu/s/luogenomics/hs-brain-epigenome. Processed chromatin con-
formation data for all samples, processed single-cell DNA methylation 
data for samples with unrestricted access and processed multimodal 
MERFISH data are available at the National Center for Biotechnology 
Information Gene Expression Omnibus under the accession number 
GSE213950. Raw sequencing reads for all samples and processed 
DNA methylation data for controlled access samples can be down-
loaded from the NeMO Archive (https://assets.nemoarchive.org/
dat-obec38w). Access to raw data for prenatal specimens analysed 
in this study is controlled as specified in the consent for tissue dona-
tion. Requests for controlled data hosted by the NeMO Archive can be 
made through the NIMH Data Archive (https://nda.nih.gov/). Access 
to controlled data associated with this study is permitted for general 
research use. Instructions for requesting access to controlled data 
hosted by NeMO are provided at https://nemoarchive.org/resources/
accessing-controlled-access-data. Single-cell RNA-sequencing data for 
prenatal human cortical specimens were published in ref. 21. Data from 
the single-nucleus ATAC approach for prenatal human cortical speci-
mens were published in ref. 14. Bulk Hi-C data for multiple human tissues 

were published in ref. 28. Bulk Hi-C data for neuronal and non-neuronal 
nuclei isolated from adult human brains were published in ref. 29. The 
BRAINSPAN developmental transcriptome dataset was published in 
ref. 11. The GWAS summary statistics included in this study were as fol-
lows: schizophrenia40, bipolar disorder62, major depressive disorder63, 
attention deficit hyperactivity disorder64, autism spectrum disorder65, 
Alzheimer’s disease66 and height from the UK Biobank67 (downloaded 
from https://alkesgroup.broadinstitute.org/sumstats_formatted/).

Code availability
Codes for the demultiplexing of snm3C-seq3 fastq files are available 
at https://github.com/luogenomics/demultiplexing. A modified ver-
sion of TAURUS-MH (version 0.1) for mapping of snm3C-seq3 data is 
available at https://github.com/luogenomics/Taurus-MH. Codes for 
the generation and imputation of methylation features are available at 
https://github.com/luogenomics/snm3Cseq_feature_processing. Cus-
tom code used for analysing chromatin tracing and MERFISH datasets 
in this study are available at https://github.com/cfg00/MERFISH_Chro-
matin_Tracing_2024.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Multi-modal classification of brain cell types in 
developmental specimens. (a) Brain regional specificity of identified cell 
types. (b-c) Inversed correlations between gene expression and gene body CG 
methylation (b) and between chromatin accessibility (gene activity score) and 
gene body CG methylation (c). (d-g) UMAP dimensionality reduction of the 
integration of snm3C-seq3 and snRNA-seq datasets with the visualization of 
snRNA-seq clusters (d), snm3C-seq3 clusters (e), joint clusters (f), and assay 
type (g). (h) Comparison of cell type classification using snm3C-seq3 and 
snRNA-seq using a confusion matrix. (i) Comparison of cell type composition 

in snm3C-seq3 and snRNA-seq datasets. ( j-m) UMAP of the Integration of 
snm3C-seq3 and snATAC-seq datasets with the visualization of snATAC-seq 
clusters ( j), snm3C-seq3 clusters (k), joint clusters (l), and assay type (m). (n) 
Comparison of cell type classification using snm3C-seq3 and snATAC-seq using 
a confusion matrix. (o) Comparison of cell type composition in snm3C-seq3 
and snATAC-seq datasets. (p-q) Genome-wide Euclidian distance of gene body 
CG methylation (p) and chromatin interaction (q) between developmental 
stages for each major cell type group. (r) Reconstructed developmental 
hierarchy of inhibitory neurons and non-neuronal cells.
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Extended Data Fig. 2 | Comparison of brain cell type classification using 
DNA methylation and chromatin confirmation signatures. (a) Methylation 
dimensionality reduction using UMAP distinguishes, from left to right, cell 
types, major cell lineages, brain regions, and sample age groups. (b) Chromatin 
conformation dimensionality reduction using UMAP distinguishes, from left 
to right, cell types, major cell lineages, brain regions, and sample age groups. 
(c) Riverplot to show extensive consistency in adult major cell lineage 
annotation between DNA methylation and chromatin conformation modalities. 
(d) Dimensionality reduction using UMAP shows resolution difference in 

cell-type classification using DNA methylation and chromatin conformation 
modalities in adult inhibitory neurons; CGE-derived (top), MGE-derived 
(bottom). (e) Showing distinction of RG-1 and RG-2 populations in methylation 
space (left), chromatin conformation space (middle), and joint dimensionality 
reduction space (right). (f) Dimensionality reduction of z-scored CG methylation 
feature matrix for cells from mid-gestational brains (left). Chromatin 
conformation dimensionality reduction of cells from mid-gestational brains 
(right).



Extended Data Fig. 3 | In situ validation of cell-type marker genes predicted 
by CG methylation patterns. (a) UMAP of brain cells derived from late- 
gestational HPC samples. (b) UMAP showing TLL1 CG hypomethylation for 
more matured granule neurons. (c) UMAP showing TRPS1 CG hypomethylation 
in Mossy Cells and partially in CA3 neurons. (d) UMAP showing LRIG1 
hypomethylation in astrocytes. (e) single molecular RNA in situ detection of 

TLL1, PROX1, and RBFOX3 transcripts in the hippocampus in the third trimester 
(GW 30 GW). (f) single molecular RNA in situ detection of TPRS1, GAD1, and 
RBFOX3 transcripts in the hippocampus in the third trimester. (g) single 
molecular RNA in situ detection of LRIG1 and ALDH1L1 transcripts in the 
hippocampus in the third trimester. (h) Quantification of LRIG1/ALDH1L1 
co-expression (N = 4 imaging fields of view).
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Extended Data Fig. 4 | Remodeling of global chromatin conformation 
during human brain development. (a) Merged chromatin interaction profiles 
of even clusters identified in Fig. 3a. (b) Distribution of the distance between 
interaction loci of clusters identified in Fig. 3a. (c) Empirical p-values for the 
difference in distances of chromatin contact between pairs of clusters in Fig. 3a 
and Extended Data Fig. 4a. (d) Percentage of each brain cell type assigned to 

clusters identified in Fig. 3a. (e) Cell-type specific enrichments of SE (Short- 
range interaction Enriched), LE (Long-range interaction Enriched), and INT 
(Intermediate) chromatin conformation. (f) Percentage of each brain cell type 
classified as SE, LE, or INT conformation. (g-k) Remodeling of global chromatin 
conformation during the differentiation of Exc-CA-1 (g), Exc-DG (h), Inh-MGE- 
ERBB4 (i), Inh-CGE-CHRNA2 ( j), and MGC-1 & MGE-2 (k).
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Extended Data Fig. 5 | Chromatin- and RNA-MERFISH analysis of 
mid-gestational human brain development. (a-b) Comparison of contact 
matrices derived from imaging (lower left) and snm3C-seq3 (upper right) for 
HPC-Exc-CA (a) and HPC-RG-2 (b). (c-d) Correlation of snm3C-seq3 contact 
frequency to spatial distances quantified with imaging for HPC-Exc-CA (c) and 
HPC-RG-2 (d). (e) Quantification of spatial distance in µm as a function of 

genomic distance in Mb for brain cell types. (f-g) Comparison of the spatial 
distances of short-range interactions (f) and long-range interactions (g) 
between RG-1 and RG-2. (h) Quantification of protein marker density across the 
length of chromosome 14. (i-m) Median log (density) of NUP98 (i), LAMA1 ( j), 
Pol2ser2 (k), SRSF2 (l), and H3K27ac (l) on chromosome 14.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Chromatin compartment dynamics across cell types 
and developmental stages. (a) Relationship between compartmentalization 
and the dominance of median vs. long-range interactions across cell types.  
(b-c) Differing dominance of chromatin interactions in the active A compartment 
or the inactive B compartment between neuronal (Exc+Inh) and microglia 
(MGC) populations. (d) Comparison of chromatin compartment strength 
between neuronal and non-neuronal cells using Hi-C data (Hu et al., 2021) 
generated from isolated nuclei 30. (e-f) Decrease in compartment strength 
from 2T to 3T. Saddle plots are shown in (f) to quantify the interaction inside or 
between the active A compartment and the inactive B compartment. (g) A/B 
compartment saddle-plots for 4 cell trajectories, showing a general decrease  

in compartmentalization from mid-gestation to late-gestation, as well as  
the dominance of interactions in the inactive B compartment in HPC- 
MGC-1 (bottom row). (h) Number of genomic regions switching from A to B 
compartment or from B to A compartment in each cell-type development 
trajectory. (i) Compartmental and CG methylation dynamics at SOX2 and GLI3 
loci during the differentiation of cortical upper layer excitatory neurons.  
( j-l) Correlation between developmental changes of CG methylation and 
compartmental dynamics. Changes in CG methylation compared to the earliest 
developmental stage were shown for ( j) excitatory neurons, (k) astrocytes, and 
(l) inhibitory neurons.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Chromatin loop dynamic across cell types and 
developmental stages. (a) Correlation between the number of cells in  
each cell population and the number of chromatin loops identified.  
(b-f) Aggregated chromatin contact signals at differential loops identified 
across cell types in the adult brain (b), cell types in the mid-gestational brain (c), 
developmental stages for the Exc-UL trajectory (d), developmental stages for 
the astrocyte trajectory (e), and subtypes of MGE derived inhibitory neurons in 
the infant brain (f). The value above each aggregated profile indicates the APA 
score to evaluate the enrichment of identified loops with respect to the lower 
left background. (g) Numbers of gain or lost loops across the trajectories of cell 

type differentiation. (h) Identification of SIPs in PFC-2T-RG-1. (i) Gene 
expression patterns of the top 250 genes whose promoter is associated with 
the highest cumulative loop scores in PFC-2T-RG-1. ( j) Identification of SIPs in 
PFC-adult-Exc-UL. (k) Gene expression pattern of top 250 genes whose 
promoter associated with the highest cumulative loop scores in PFC-adult-Exc-
UL. (l) Chromatin loops dynamics at POU3F3 (BRN1) and KHDRBS3 (SLM2) loci 
across developmental stages. (m) Identification of dev-SIPs associated with the 
differentiation of Exc-UL. Gene expression patterns of dev-SIPs showing either 
developmental increase or decrease of loop scores were shown on the left.
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Extended Data Fig. 8 | Correlation between chromatin loop dynamics and 
CG methylation level of the loop anchor regions. (a) Distribution of the 
Pearson’s correlation coefficients between loop strength and CG methylation 
of loop anchor regions for developmentally differential loops. (b-e) Correlation 
between loop strength and CG methylation of loop anchor regions across 
astrocyte differentiation. (b) Normalized loop contact frequencies (cyan) and 
CG methylation levels of anchor regions (magenta) across meta-cells ranked by 

developmental pseudotime scores. (c-d) Normalized values of loop interaction 
frequency (c) and CG methylation of loop anchor regions (d). (e) Quantification 
of the lag of CG methylation remodeling by the amount of pseudotime shife  
(in counts of meta-cells) required to maximize the inverse correlation between 
loop strength and CG methylation levels of loop anchor regions. (f-i) Correlation 
between loop strength and CG methylation of loop anchor regions across the 
differentiation of cortical upper layer excitatory neurons.



Extended Data Fig. 9 | Cell-type and developmental dynamics of chromatin 
domain boundaries. (a) Aggregated chromatin contact signals at differential 
chromatin domain boundaries identified in the differentiation of Exc-UL and 
Astro. The value above each aggregated plot indicates 1/(insulation score), so a 
greater score indicates stronger insulation. (b) Numbers of gain or lost domain 

boundaries across the trajectories of cell type differentiation. (c) non-CG 
methylation level at domain boundaries identified for each cell type trajectory. 
Analysis of true boundaries (solid lines) shuffled (dashed lines). (d-e) Differential 
chromatin domain boundaries were identified during the differentiation of 
astrocytes at SLC1A2 (d) and SOX11 (e) loci.
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Extended Data Fig. 10 | Heritability enrichment analysis of neuropsychiatric 
disorders. (a-b) The enrichment of polygenic heritability for bipolar disorder 
(a), major depression (b), ADHD (c), ASD (d), Alzheimer’s disease (e), and height 
(f) in DMRs and loop-connected DMRs. (g) The genomic region overlapping 
with a putative causal variant for schizophrenia rs500102 is connected to the 
RORB promoter through a cell-type-specific loop domain. (h-m) Enrichment of 

polygenic heritability for neuropsychiatric disorders across developmental 
stages in PFC-Exc-L5-6-PDZRN4 (h), PFC-Exc-L1-3-CUX2 (i), PFC-Exc-L4-5-FOXP2 
( j), HPC-Exc-CA1 (k), PFC-Inh-MGE-ERBB4 (l), PFC-Inh-CGE-CHRNA2 (m).  
(n-o) Meta-analysis of heritability enrichment for neuropsychiatric disorders  
in excitatory (n) and inhibitory (o) neuron populations.

https://www.ncbi.nlm.nih.gov/snp/rs500102







	Temporally distinct 3D multi-omic dynamics in the developing human brain

	Three-dimensional multi-omics of developing brains

	Temporal order of multi-omic dynamics

	In situ validation of cell-type markers

	Neuronal-specific chromatin conformation

	Multimodal chromatin and RNA imaging

	Chromatin compartmental remodelling

	Dynamics in chromatin loops and domains

	Regulatory programs of development

	Dissection of neuropsychiatric risk loci

	Discussion

	Online content

	Fig. 1 Profiling of epigenomic and chromatin conformation dynamics during human brain development using snm3C-seq3.
	Fig. 2 Temporal order of DNA methylation and chromatin conformation reconfiguration during the differentiation of astrocytes.
	Fig. 3 Remodelling of global chromatin conformation during human brain development.
	Fig. 4 Multimodal imaging reveals SE chromatin conformation in newly differentiated hippocampal neurons.
	Fig. 5 Localizing the heritability signals of neuropsychiatric disorders using DMRs and chromatin loops.
	Extended Data Fig. 1 Multi-modal classification of brain cell types in developmental specimens.
	Extended Data Fig. 2 Comparison of brain cell type classification using DNA methylation and chromatin confirmation signatures.
	Extended Data Fig. 3 In situ validation of cell-type marker genes predicted by CG methylation patterns.
	Extended Data Fig. 4 Remodeling of global chromatin conformation during human brain development.
	Extended Data Fig. 5 Chromatin- and RNA-MERFISH analysis of mid-gestational human brain development.
	Extended Data Fig. 6 Chromatin compartment dynamics across cell types and developmental stages.
	Extended Data Fig. 7 Chromatin loop dynamic across cell types and developmental stages.
	Extended Data Fig. 8 Correlation between chromatin loop dynamics and CG methylation level of the loop anchor regions.
	Extended Data Fig. 9 Cell-type and developmental dynamics of chromatin domain boundaries.
	Extended Data Fig. 10 Heritability enrichment analysis of neuropsychiatric disorders.




