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The human hippocampus and prefrontal cortex play critical rolesin learning and
cognition'?, yet the dynamic molecular characteristics of their development remain
enigmatic. Here we investigated the epigenomic and three-dimensional chromatin
conformational reorganization during the development of the hippocampus and
prefrontal cortex, using more than 53,000 joint single-nucleus profiles of chromatin
conformation and DNA methylation generated by single-nucleus methyl-3C
sequencing (snm3C-seq3)>. The remodelling of DNA methylation is temporally
separated from chromatin conformation dynamics. Using single-cell profiling and
multimodal single-molecule imaging approaches, we have found that short-range
chromatininteractions are enriched in neurons, whereas long-range interactions
are enriched inglial cells and non-brain tissues. We reconstructed the regulatory
programs of cell-type development and differentiation, finding putatively causal
common variants for schizophrenia strongly overlapping with chromatin loop-
connected, cell-type-specific regulatory regions. Our data provide multimodal
resources for studying gene regulatory dynamicsin brain development and
demonstrate that single-cell three-dimensional multi-omics is a powerful approach
for dissecting neuropsychiatric risk loci.

The adult human brain contains hundreds of cell types that exhibit
an extraordinary diversity of molecular, morphological, anatomic
and functional characteristics* . Although most cortical neurons are
generated during the first and second trimesters, the highly distinct
molecular signatures of cell types emerge between the third trimester
and adolescence”’. Single-cell and bulk transcriptome analyses impli-
cated marked gene expression remodelling in late prenatal and early
postnatal development'®, The pervasive transcriptome dynamics

during human brain development is associated with genome-wide
reconfiguration of the DNA methylome and chromatin conforma-
tion'?*, The brain-specific non-CG methylation emerges in the human
dorsal prefrontal cortex (PFC) during prenatal development in a
cell-type-specific pattern, with the average level of non-CG methylation
increasing through adolescence'". Recent studies have uncovered the
remodelling of chromatin architecture during the early postnatal devel-
opment of mouse and human brains'>*, as well as extensive chromatin
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Fig.1|Profiling of epigenomic and chromatin conformation dynamics
during humanbrain development usingsnm3C-seq3. a, Schematics
ofthe study. Illustrations of developing human brain by Byron Ashley.

b-e, Dimensionality reduction using uniform manifold approximation and
projection (UMAP) distinguishes cell types (b), major cell lineages (c), brain
regions (d) and developmental stages (e). Astro, astrocyte; CGE, caudal
ganglioniceminence; DG, dentate gyrus; DL, deep layer; ENT; entorhinal

conformational diversity across brainregions and cell typesin the adult
human brain®. However, the dynamic trajectory of DNA methylation
and chromatin conformation changes have not been characterized
with single-cell resolution in prenatal human brain tissues and com-
pared to those of postnatal development using infant and adult sam-
ples. This study investigated the developmental dynamics of human
PFC and hippocampus (HPC) using the sequencing-based approach
single-nucleus methyl-3C sequencing (snm3C-seq3) tojointly profile
chromatin conformation and DNA methylation in single nuclei*?, as
wellas the orthogonal multimodal chromatin tracing procedure, and
RNA and protein imaging.

Three-dimensional multi-omics of developing brains

We generated 29,691snm3C-seq3 profiles (including 3,321 previously
published profiles®) from 13 developing and adult human frontal cortex
samplesand 23,372 snm3C-seq3 profiles from 9 HPC samples using the
newly devised snmC-seq3 method for single-cell methylome library
preparation (Fig.1aand Supplementary Tables1and 2). The quality of
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cortex; Exc, excitatory neurons; Inh, inhibitory neurons; MGC, microglia;
MGE, medial ganglioniceminence; ODC, oligodendrocyte; OPC, oligodendrocyte
progenitor cell; UL, upper layer. f,Reconstructed developmental hierarchy

of excitatory neurons and glial cells. 2T, second trimester or mid-gestation;

3T, third trimester or late gestation; NP, near-projecting; Sub, subiculum.

g,h, Dynamics of genome-wide non-CG methylation (g) and CG methylation (h)
during human brain development.

snm3C-seq3 3C (chromatin conformation capture) profiles is consist-
ent across brain specimens (Supplementary Note 1). The multimodal
information profiled by snm3C-seq3 was used at various resolutions.
To classify brain cell types, we quantified CG and non-CG methylation
and 3C information inindividual cells at 100 kilobase (kb) resolution.
Indownstream analyses, aggregated methylation profiles atacell-type
level were used for differentially methylated region (DMR) analysis at
base resolution, whereas aggregated 3C profiles were used to iden-
tify domain boundaries at 25 kb resolution and loop calling at 10 kb
resolution. We identified 139 cell populations across all developmental
stages by fusing three data modalities: CG and non-CG methylation
and chromatin conformation (Fig. 1b and Supplementary Table 3).
These cell types are organized into 10 major groups (Fig. 1c). Excitatory
neurons had distinct epigenomic types in the human PFC and HPC,
whichis consistent with their spatially separated in situ neurogenesis
(Fig. 1d and Extended Data Fig. 1a). By contrast, inhibitory neurons
and non-neuronal celltypes are broadly shared between the two brain
regions (Fig. 1d and Extended Data Fig. 1a). Our previous works found
strong agreements between adult brain cell types identified using



snm3C-seq and single-nucleus RNA sequencing?. Taking advantage
of the inverse correlation between CG methylation and gene expres-
sion?, and between CG methylation and the chromatin accessibility
geneactivity score (Extended DataFig. 1b,c), weintegrated snm3C-seq3
with single-nucleus RNA sequencing® (Extended Data Fig. 1d-i), or
chromatin accessibility profiling"* (Extended Data Fig. 1j-0), and found
that each data modality identified similar cell types in the prenatal
frontal cortex'*?' (Extended Data Fig. 1h,i,n,0). Neurons and neural
progenitor-derived glial cells were strongly separated by developmen-
tal stages on the basis of their methylation and chromatin conformation
patterns, whereas non-neural cell types showed similar epigenomic
patterns across development (Fig. 1e and Extended Data Fig. 1p-q).
The developmental trajectories of cortical and hippocampal cell types
were reconstructed using shared CG methylation feature patterns at
cell-type marker genes and computational integration of cells derived
from differentage groups® (Fig. 1fand Extended DataFig. 1r). Cell-type
classifications based on DNA methylation and chromatin conformation
were largely concordant (Extended Data Fig. 2a-c), with DNA methyla-
tion profiles providing agreater resolution for cell-type classification®
(Extended Data Fig. 2d). However, we found a notable exception in
mid-gestational brains, in which a single neural progenitor radial glia
(RG) population defined by DNA methylation signatures can be further
discretely divided using chromatin conformation signatures (Extended
DataFig.2e). Using chromatin conformation, we grouped RG cellsinto
aneurogenic (RG-1) population and a putative astrocyte progenitor
(RG-2) population® (Extended Data Fig. 2e). This result was validated
by aniterative classification of cells from mid-gestational brains, which
found the gliogenic RG-2 population to be more discretely defined by
chromatin conformation than by DNA methylation (Extended Data
Fig. 2f).

The marked increase of non-CG methylation in neuronal cells, com-
pared to moderate elevations of CG methylation, is an epigenomic
hallmark of neuronal maturation'?. The accumulation of non-CG meth-
ylationbegins earlierin HPC excitatory and inhibitory neurons thanin
PFC neurons (Fig.1g,h), with HPC cornu ammonis (CA) and inhibitory
neurons containing substantial amounts of non-CG methylation (>1%
mean non-CG methylation level) at gestational week (GW) 39. By con-
trast, comparable non-CG methylation levels were not observed in PFC
neurons until the infant stage (4 and 7 months; Fig. 1g). The finding
that the remodeling of CG and non-CG methylation in HPC precede
thosein PFC was further supported by genome-wide and gene-specific
analyses and using additional GW-39 donors (Supplementary Note 2).

Temporal order of multi-omic dynamics

Developing brain tissue consists of diverse cell populations at various
stages of differentiation, making it challenging to analyse cell dynamics
solely on the basis of the donor ages. We used pseudotime analysis to
explore the temporal dynamics of chromatin conformation and DNA
methylation by amore continuous time quantification?. Pseudotime
scores were computed for cortical RG-derived cell populations using
the fusion of CG methylation and chromatin conformation modalities
(Fig.2a-c). Pseudotime scores were computed separately for the glial
trajectoryinwhich RG differentiates into astrocytes, oligodendrocyte
progenitor cellsand oligodendrocytes, and the neuronal trajectoryin
which RG produces excitatory neurons (Fig. 2a-c). To quantify chroma-
tinconformation atindividualloci, we devised the 3C gene score (3CGS)
representing the sumof intragenic chromatin contact frequency, which
predominantly shows a negative correlation with gene body CG meth-
ylation (Fig.2d and Supplementary Note 3). The pseudotime approach
allows us to explore marker genes showing CG methylation dynamics
throughout the continuous neurogenesis and gliogenesis processes
(Fig. 2e,f), with CG methylation depletion or elevated 3CGS indica-
tive of gene activation (Supplementary Note 4). As found in previous
studies®?, cell-type marker genes are commonly depleted of gene body

non-CG methylationinneuronsin the adult brain. This dataset further
showed that whereas most genes gain non-CG methylation during
neuronal maturation, cell-type marker genes are specifically protected
from mCH accumulation (Fig. 2g).

Wefocused onthe RGto astrocyte differentiation trajectory toinves-
tigate the observed discrepancy between DNA methylation and chro-
matin conformation regarding the separation of astrocyte progenitor
RG-2fromthe neural progenitor RG-1clusters (Extended DataFig. 2e).
The cross-modality comparison revealed little CG methylation dynam-
icsinRG-1and RG-2 populations (Fig. 2h,i), whereas the reconfiguration
of chromatin interactions was more continuous across the differen-
tiation of RG-1to RG-2 to early astrocytes (Fig. 2j,k). This resulted in a
markedly different distribution of pseudotime scores computed from
CG methylation or chromatin interactions in RG-2 and differentiated
astrocytesinlate-gestational and infant brains (Fig. 21). The differentia-
tionof RG to astrocytes canbe divided into a stage of rapid chromatin
conformationremodelling in RG-1and RG-2 that predominantly occurs
during mid-gestation, followed by anotably protracted maturation of
the CG methylome that extends into the adult brain (Fig. 2I,m). Con-
sistent with genome-wide pseudotime patterns, the findings of the
gene-specific analyses showed that the remodelling of the 3CGS gener-
ally occursinRG-1and RG-2 populations and precedes CG methylation
dynamics in differentiated astrocytes (Fig. 2n-0). By extending the
cross-modality pseudotime analysis to other cell types, we found nota-
ble temporal separations of CG methylation and chromatin interaction
dynamics in most cell-type differentiation trajectories with nuanced
cell-type-specific patterns (Supplementary Note 5).

Insitu validation of cell-type markers

In the adult human brain, gene body CG and non-CG methylation
are predictive of cell-type-specific gene expression'>?**2¢_ Here we
extended the approach to the developing brain taking advantage of
theinverse correlation between gene expression and CG methylation®
(Extended DataFig. 3a-d). We used single-molecule fluorescence in situ
hybridization to investigate the RNA expression patterns of cell-type
markersidentified by the methylation analyses. TLLI, agene that shows
reduced gene body CG methylation in granule cell layer neurons, was
localized to the granule cell layer in the HPC in the third trimester
(GW 30; Extended Data Fig. 3b,e). There were overlaps with RBFOX3,
amolecular marker for mature neurons, and PROX1, a transcription
factor (TF) foundin granule neurons of the HPC (Extended Data Fig. 3e).
TRPSImRNA was expressed in excitatory (GADI') cellsin the hilus and
CA3regions, supporting its expressionin mossy cellsand CA3 pyrami-
dal neurons in the third trimester (Extended Data Fig. 3c,f). Last, we
identified areduced level of CG methylationin astrocytes at the LRIG1
locus (Fig. 2n and Extended Data Fig. 3d). We found a substantial frac-
tion (40%) of cells expressing a canonical astrocyte marker, ALDHIL1,
as well as LRIG1 (Extended Data Fig. 3g,h), supporting the dynamic
expression of LRIG1 during astrocyte differentiation.

Neuronal-specific chromatin conformation

Chromatin conformation capture techniques produce snapshots of
three-dimensional (3D) genome architecture at multiple scales, includ-
ing A and B compartments and more local features such as chromatin
domains and loops”. Whereas A and B compartments are detected
through long-range interactions (for example, >10 Mb distance),
chromatin domains and loops are primarily detected by short-range
interaction with less than 2 Mb distance. We clustered single-cell 3C
profiles by the distribution of the distance between interacting loci
using k-means clustering and found that single brain cells range from
mainly containing short-range interactions (clusters 1-5) to containing
asubstantial amount of long-range interactions (clusters 6-10; Fig. 3a,b
and Extended Data Fig. 4a,b). The distributions of chromatin contact
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h,i, Dimensionality reduction and pseudotime scores computed from CG

distance are significantly different in the two types of cluster (clus-
ters 1-5 versus 6-10; Extended Data Fig. 4c). Strikingly, neuronal cell
typesare strongly enriched in clusters1-6, dominated by short-range
interactions, whereas glial and non-neural cell types are enriched in
clusters 8-10 and are dominated by long-range interactions (Fig. 3cand
Extended Data Fig. 4d). We have developed thresholds to categorize
the global chromatin conformation of each single cellinto short-range
interaction enriched (SE), long-range interaction enriched (LE) and
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intermediate (INT; Fig. 3d and Extended Data Fig. 4e,f). We analysed a
published bulk Hi-C dataset generated from primary human tissues and
found that bulk chromatin conformation profiles from all ten tissues
show an LE signature?®®, suggesting that SE is specific to neuronal cells
(Fig. 3e). Although Hi-C profiles generated from bulk human cortical
and hippocampal tissues show a greater fraction of short-range interac-
tions than other somatic tissues, they were nevertheless classified as
LE-type samples probably owing to the abundant non-neuronal cells in
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Fig.3|Remodelling of global chromatin conformation during human
braindevelopment. a, k-means clustering analysis groups single-cell 3C
profiles by the distance distributionbetweeninteracting loci. b, Merged
chromatininteraction profiles of the odd-numbered clustersidentified in a.

¢, Cell-type-specificenrichments of clusters identified in a. EC, endothelial
cell; PC, pericyte; VLMC, vascular leptomeningeal cell. d-f, Comparison of SE,
LE and INT chromatin conformation found in single brain cells (d), bulk Hi-C
profiles of diverse human tissues (e) and isolated neuronal and glial nuclei from

the analysed tissue (Fig. 3e). The neuronal-specific SE conformationis
supported by reanalysing bulk Hi-C profiles generated from neuronal
and non-neuronal nucleiisolated from adult human brain PFC* (Fig. 3f).
The differentiation of neurons and astrocytes involved distinct global
chromatin conformation remodelling events (Fig. 3g-i and Extended
DataFig. 4g-k). The neural progenitor RG-1 populationis depleted of
the LE conformation butis notenrichedin either the SE or INT confor-
mation (Fig. 3g,h). The chromatin conformation was rapidly remod-
elled in progenitors committed to producing upper-layer excitatory
neurons (RG-UL) inthe mid-gestational brain (2T-Exc-UL) and showed
a comparable enrichment in the SE conformation to adult neurons
(Fig.3g,i). The differentiation of astrocytesinvolved a transition to the
LE conformation, which was completed during late gestation (Fig. 3h,i).

Multimodal chromatin and RNA imaging

Quantifying the physical distance between chromatin loci using
imaging is an orthogonal method that complements the proximity
ligation and sequencing-based Hi-C approach. We sought to validate
the neuronal-specific SE chromatin conformation in newly differ-
entiated neurons in mid-gestational (GW 23) human brain tissue by
jointly imaging the 3D organization, gene expression and nuclear
architectural proteins using the chromatin tracing and RNA multi-
plexed error-robust fluorescence in situ hybridization (MERFISH)

primary adulthumanbrainspecimens (f). The vertical dashed linesindicate
thethreshold that separates short-range (coloured in orange) from long-range
interactions (colouredingrey). a.u., arbitrary units. g,h, Remodelling of global
chromatin conformation during the differentiation of upper-layer excitatory
neurons (Exc-L1-3-CUX2) (g) and astrocytes (h) from the common RG-1
progenitor. i, Merged chromatininteraction profiles of developing cell
populationsacross the differentiation of upper-layer excitatory neurons and
astrocytes.

platforms3°-2, Specifically, the median-sized chromosome 14 was
imaged ataresolution of 250 kb by sequentially labelling 354 genomic
loci uniformly covering the chromosome (Fig. 4a and Supplemen-
tary Table 4), allowing the conformation reconstruction of 46,023
homologues of chromosome 14 in 24,099 cells across HPC, fimbria and
choroid plexus structures (Fig.4b,c). RNAMERFISH was carried out on
the same tissue section using a probe panel targeting 298 genes with
cell-type-specific expression in the developing HPC* (Fig. 4d,e and
Supplementary Table 5). Brain cell types were identified by unbiased
clustering of the MERFISH profiles followed by integration with the
snm3C-seq3 DNA methylome using the k-nearest neighbours approach
(Fig. 4f-hand Supplementary Note 6).

Average cell-type-specific distance matrices reconstructed from
imaging chromosome 14 recapitulated key features of the chromo-
somal organization, including topologically associating domains
and compartmental structures observed in Hi-C contact matrices
(Extended Data Fig. 5a-d). Imaging quantification of spatial distance
between genomic locirevealed striking differences between neurons
and non-neuronal cells. In neuronal cell types such as CAl or dentate
gyrus excitatory neurons, genomic regions separated by short genomic
distances (up to 5 Mb) showed a compact spatial distance, which is
indicative of ahighinteraction frequency (Fig. 4i,j,0 and Extended Data
Fig. 5e). By contrast, distal genomic regions showed larger physical
distancesin neuronal cell typesindicating low interaction frequencies
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Fig.4|Multimodalimaging reveals SE chromatin conformationinnewly
differentiated hippocampal neurons. a, Sequentialimaging of 354 genomic
regions on the median-sized chromosome 14 using 119 rounds of hybridization
with three-colourimaging. b, 3D localization of eachgenomic regioninasingle
nucleus. ¢, Reconstruction of single-molecule chromatin conformation for
two chromosome 14 homologuesin asingle nucleus. d, Overview of the tissue
section containing HPC and choroid plexus structures. FIM, fimbria; CP, choroid
plexus. e, Example of multiplexed RNA imaging using MERFISH. f, UMAP
dimensionality reduction of the RNA MERFISH profile and cell-type annotation.
g, Spatiallocalization of annotated cell types. h, Spatial expression patterns

of marker genes for cell types showning.i-n, Reconstruction of chromatin
conformation for CA1 (i), dentate gyrus (j), excitatory neuron, choroid plexus
celltypes (k), ependymal cells (I), RG-1(m) and RG-2 (n). 0,p, Quantification

(Fig. 4i,j,0). An opposite pattern was observed in progenitors and
non-neuronal cell types, for which loci separated by short genomic
distances show anincreased physical distance, whereas distal genomic
loci exhibit reduced spatial distances, compared to that observed in
neuronal cell types (Fig. 4k-o0 and Extended Data Fig. 5e). The imaging
results are consistent with the enrichment of SEand LE conformations
inneurons and non-neuronal cells, respectively. Furthermore, theimag-
ingresults validated the emergence of the SE conformation (increased
short-rangeinteraction and decreased long-range interaction) during
the differentiation of RG to excitatory neurons. A direct comparison
of RG-1and RG-2 has found amore compact configuration of chromo-
some 14 across the whole range of genomic distances in RG-2 (P value
for near-range genomic distances: 2.2 x 1075; Pvalue for long-range
distance: 4 x107%; two-sided rank-sum test; Fig. 4m,n,p and Extended
DataFig. 5f,g).

Recent studies have suggested that nuclear volume variation could
affect cell-type-specific chromatin conformation’®. The large nuclear
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of spatial distance in micrometres as afunction of genomic distance in
megabases for differentiated brain cell types (0) and RG progenitor cells (p).
q,Imaging of nuclear architectural proteins and histone modifications.
r,Correlation of active and repression protein markers across genomic loci
onchromosome14.s,t, Quantification of nuclear volume (s) and mean H3 K9
trimethylationintensity (t) on chromosome 14 indistinct cell types. n =24,099
imaged cells. The centre of the box plot marks the median, with each box
above or below the medianrepresenting 10 percentiles of the data distribution.
u, Correlation of the spatial distance for loci with near-range and long-range
genomicdistance with nuclear volume or meanintensities for protein markers
onchromosome14. Abs., absolute. Scalebars, 5 pm (a,b,q), 250 pum (d,g),

20 um (e).

size of neurons could decrease the probability of long-range chroma-
tin interaction and lead to an SE conformation. Through imaging a
set of nuclear architectural proteins and post-translational modifica-
tions (Fig. 4q-u), we found that the spatial distances of distal regions
were indeed most strongly correlated with nuclear volume (Fig. 4u),
whereas the spatial distances of genomic loci separated by short
genomic distances were best correlated with H3 K9 trimethylation
(Supplementary Note 7). Together, the findings of ourimaging analysis
ofthe mid-gestational HPC demonstrated spatially distinct chromatin
conformation signatures that marked transitions from neural progeni-
tors to mature neurons.

Chromatin compartmental remodelling

In exploring the chromatin compartmental diversity across cell types
and developmental stages, we found that cell types showing the LE
conformation are associated with a stronger compartment strength:



compartmentalization strength scores are inversely correlated with
the ratio of short- to long-range interactions (Pearson’s r = -0.35,
P=8.1x10"* Extended Data Fig. 6a). For example, microglia popula-
tions show the strongest LE conformation and strongest compart-
ment strengths (Extended Data Fig. 6a). The compartment strength
of microglia is primarily contributed by interactions in the inactive
B compartment, whereas the compartment strength of neuronal
populations is more strongly contributed by the active A compart-
ment (Extended Data Fig. 6b,c). The enrichment of A compartment
strength in neuronal cells was validated using published bulk Hi-C
profiles of purified neuronal and non-neuronal nuclei® (Extended
Data Fig. 6d). In addition, compartment strength is developmentally
regulated, whichincludes a substantial loss of compartmentalization
strength score between mid-gestation and late gestation followed by
agradual gain during further development (Extended Data Fig. 6e-g).
We further analysed genomic regions associated with developmen-
tally differential compartments and found regions switching from the
Atothe Bcompartmentaccumulated agreateramount of CG methyla-
tion, supporting the notion that DNA methylation reinforces inactive
chromatin compartments®** (Supplementary Note 8).

Dynamicsin chromatinloops and domains

We identified chromatin loops using scHiCluster, optimized for
single-cell Hi-C profiles”. The number of identified chromatin loops
is positively correlated with the cell-type abundance (Spearman’s
r=0.47, P<2x107?; Extended Data Fig. 7a and Supplementary
Table 6). We further used an approach based on analysis of variance
to identify differential chromatin loops across the differentiation
of cell-type trajectories (Extended Data Fig. 7b-f and Supplemen-
tary Table 6). In all neuronal trajectories, developmentally gained
loops outnumber developmentally lost loops by more than tenfold
(Extended DataFig. 7g), whichis consistent with the strengthening of
the SE conformationinneuronal cell types. By contrast, similar num-
bers of gained and lost loops were found during the differentiation
of astrocytes that show an LE conformation (Extended Data Fig. 7g).
Promoters thatare highly connected through chromatininteractions
or super-interactive promoters (SIPs) have previously been found
to be enriched in lineage-specific genes'. Here we extended the SIP
analysis to multiple development stages and found that prenatal
development and postnatal development were associated with dif*-
ferent SIPs (Extended Data Fig. 7h-k and Supplementary Table 6),
reflecting the distinct biological processes associated with each
stage. SIP-associated genes (for example, POU3F3) found in RG cells
areenrichedin cell proliferation and cortical cell migration functions,
whereas SIP-associated genes (for example, KHDRMS3, also known
asSLM2) found in upper-layer excitatory neuronsininfant brains are
enriched in terms including transmitter-gated channel activity and
synapse (Extended Data Fig. 7h,j,I). We further identified promoters
that are associated with high cumulative scores of differential loops
(Extended DataFig. 7m and Supplementary Table 6). Using the BRAIN-
SPAN developmental transcriptome resource", we found astrong cor-
relation between the developmental decrease of the cumulative loop
score and generepression and between anincrease of the cumulative
loop score and gene activation (Extended Data Fig. 7m). Expanding on
previousstudies that correlated loop strength with CG methylationin
the adult human brain*'®, we found that differential loops across each
cell-type trajectory predominantly show an inverse correlation with
the CG methylation level of loop anchor regions (Extended Data Fig. 8
and Supplementary Note 9). Last, the analysis of differential chroma-
tin domain boundaries has recapitulated the impact of the SEand LE
conformations onlocal chromatinstructures: the strengthening of the
SE conformation during neuronal differentiation led to more gained
domain boundaries thanlosses of boundaries in neuronal trajectories,
whereas the formation of the LE configuration was associated with

more loss of boundaries than gains of boundaries (Extended Data
Fig. 9 and Supplementary Note 10).

Regulatory programs of development

DMRs of CG methylation are a reliable marker of dynamic regulatory
activity, with aloss of methylationindicating anincrease inregulatory
activity and a gain of methylation associated with repression®-’. We
investigated the global regulatory dynamics of human cortical and
hippocampal development by identifying more than 2.5million DMRs
across all celltypes and developmental stages (Fig. 5aand Supplemen-
tary Table 6), followed by the analysis of TF-binding motif enrichment
(Supplementary Note 11). The developmental dataset generated in this
study allows us to infer the temporal sequence of TF activity. We have
identified dynamic DMRs across the stages of cell-type specification
(trajectory-DMRs; Fig. 5Sb—d, Supplementary Note 12, Supplementary
Figs. 7 and 8 and Supplementary Table 6) and DMRs that distinguish
daughter cell populations derived from a common mother cell type
(branch-DMRs; Fig.5e-g, Supplementary Figs. 9 and 10 and Supplemen-
tary Table 6). Using TF-binding motif analysis, we found that the regula-
tory landscape of both excitatory and inhibitory neurons is shaped by
the sequential action of lineage-specific and activity-dependent TFs.
Regulatory elements that become activated (loss of CG methylation)
inmid-gestation are enriched in the binding motifs of lineage-specific
TFssuchasMafand MEF2 forinhibitory cells or neurogenin, MEF2 and
POUS3 for excitatory neurons (Fig. 5d and Supplementary Fig. 7). Fol-
lowing lineage specification, the binding motif of activity-dependent
TFs (FOS,JUN, EGR1 and CREB) is strongly enriched in regulatory ele-
ments activated inlate-gestation to infant stagesin both excitatory and
inhibitory populations®® (Fig. 5d). This result suggests late-gestational
toearly-infant development as akey stage during which the epigenome
isshaped by neuronal activity. The analysis of branch-DMRs associated
with RG-2 differentiation supported the gliogenic characteristic of this
progenitor pool as the binding motif of neurogenic TFs is strongly
depleted in regions losing CG methylation in RG-2 (Fig. Se-g).

Dissection of neuropsychiatric risk loci

Using DMRs and chromatin loopsidentified in this study, we systemati-
cally localized the heritability signals of neuropsychiatric disorders
across developmental stages and cell populations. The polygenic herit-
ability enrichment of annotations defined by DMR and/or chromatin
loops was quantified for each cell type using stratified linkage disequi-
librium score regression® (Supplementary Figs. 11and 12). We found
significantly greater enrichment of heritability inloop-connected DMRs
than in all DMRs (Fig. 5h and Extended Data Fig. 10a-f; P=1.8 x 10™%
through paired t-test), supporting the utility of chromatin loops in
locating potential causal variants. We also overlapped fine-mapped
putative causal loci of schizophrenia*° to DMRs and loop-connected
DMRs (190 independent loci containing 569 high-confidence putative
causal single nucleotide polymorphisms (SNPs) with posterior inclu-
sion probability > 0.1; Supplementary Table 7). Out of 190 schizophre-
nia fine-mapped loci, 111 and 81 loci contain at least 1 putative causal
SNP that overlaps with a DMR or loop-connected DMR, respectively
(Fig. 5i). We found a strong correlation between the odds ratio of over-
lapping with a putative causal SNP and the enrichment of polygenic
heritability across cell types (Fig. 5j; Spearman’s correlation = 0.74,
P=8.6x10"*). Asan example, we showcase rs500102 (posterior inclu-
sion probability = 0.27), a putative causal variant for schizophrenia
that overlaps with aloop-connected DMR in L4-5 excitatory neurons
(Extended Data Fig. 10g). The variant is also a fine-mapped expres-
sion quantitative trait locus of RORB detected in the brain tissue by
Genotype-Tissue Expression studies* (Supplementary Table 7). The
region where rs500102 is localized is connected by a loop domain to
the RORB promoter, specifically in L4-5 excitatory neurons (Extended
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Fig.5|Localizing the heritability signals of neuropsychiatric disorders
using DMRs and chromatinloops. a, k-means clustering of DMRs reveals
specificities for cell lineages and developmental stages. b, Schematic of the
maturation of MGE-derived ERBB4-expressing inhibitory neurons (Inh-MGE-
ERBB4).c, Numbers of trajectory-DMRs identified for Inh-MGE-ERBB4
maturation between adjacent developmental stages. d, Enriched TF-binding
motifsintrajectory-DMRs for the maturation of Inh-MGE-ERBB4 neurons.
Theenrichment of TF-binding motifis determined using hypergeometric tests
withag value threshold of 0.01 for display. e, Schematic of the specification
of RG-1-derived cell types. f, Numbers of branch-DMRs found during RG-1
differentiation. g, TF-binding motif enrichmentsinbranch-DMRs associated
with RG-1differentiation. h, The enrichment of schizophrenia polygenic
heritability in DMRs and loop-connected DMRs. The Pvalue was computed
using atwo-sided paired t-test. i, Numbers of schizophrenia-associated loci
containingatleast one fine-mapped variant that overlaps with DMRs or

DataFig. 10g). The loop domain is associated with cell-type-specific
reduction of CG methylation in the RORB gene body as well asin the
region surrounding rs500102 (Extended Data Fig.10g). This example
demonstrates the utility of single-cell multi-omic profiles to generate
mechanistic hypotheses regarding the function of variants associated
with genome-wide association studies.

Next we assessed the developmental dynamics of enrichment for
neuropsychiatric disorder heritability in various neuronal populations
(Fig.5k,land Extended Data Fig.10h-m). We observed similar patterns
over developmental trajectories for DMRs and loop-connected DMRs
while noting thatloop-connected DMRs show higher overall heritability
enrichment. For schizophrenia and bipolar disorder, the enrichment
of polygenic heritability increases from neuroprogenitors (RG-1) to
early post-mitotic neurons (for example, 2T-Exc-UL-1) and further to
post-mitotic neurons in late-gestational brains for both excitatory
(Fig. 5k,land Extended Data Fig. 10h-k) and inhibitory (Extended Data
Fig.10l,m) populations. We also found a trend of decreased heritability
enrichment in adult neurons for schizophrenia and bipolar disorder,
although the decreases are not statistically significant except forinan
L5-6 excitatory population (Fig. 5k,1). Using meta-analyses of all excita-
tory (Fig. 5m and Extended Data Fig.10n) or inhibitory (Extended Data
Fig.100) populations, we found a consistent developmental increase
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loop-connected DMRs. j, Spearman’s correlation and two-sided P value between
theenrichment of polygenic heritability and fine-mapped schizophrenia
variants. k, Enrichment of polygenic heritability for schizophreniaand
bipolar disorderin PDZRN4-expressing layer 5-6 excitatory neurons across
developmental stages. Error barsindicate standard errors estimated by the
linkage disequilibrium score regression block jackknife method (n=200blocks).
1, Statistical significance of differential heritability enrichment between
development stages. P values were computed using two-sided t-tests. Red

and blue colours show developmentally increased or decreased heritability
enrichment, respectively. NS, not significant. m, Meta-analysis of heritability
enrichment for schizophrenia and bipolar disorder in excitatory neuron
populations. Error barsindicate standard deviations across cell typesincluded
inthe meta-analysis.n =S5 celltypes for the second trimester, n =9 for the third
trimester,n=16forinfant, n=17 for adult.

of enrichment for schizophreniaand bipolar disorder between neuro-
progenitors and neurons ininfant brains, followed by adecreaseinthe
adultbrain. Takentogether, our resultsindicate that the genetic risk of
schizophreniaandbipolar disorder more strongly affects post-mitotic
neurons than the neuroprogenitor population in developing human
brains.

Discussion

Genome-wide rearrangements of the DNA methylome and chromatin
conformation are crucial for the normal development of mammalian
brains. Our study underscores the dynamic shifts from progenitors
to neuronal and glial populations in the second and third trimesters
to the neonatal period, highlighting the importance of using pri-
mary brainspecimensin studies of perinatal development. This work
provides a dataresource to understand the genetic and epigenetic
mechanisms of brain diseases. For example, the single-cell multi-omic
dataset generated by snm3C-seq3 provides cell-type-specific func-
tional annotations (thatis, DMRs and chromatinloops) to more than
half of the fine-mapped schizophrenia-associated loci, highlighting
the application of snm3C-seq3 profiles in dissecting the develop-
mental context and molecular mechanism of non-coding variants


https://www.ncbi.nlm.nih.gov/snp/rs500102

associated with neuropsychiatric disorders. The pervasive remodel-
ling of the neuronal methylome and chromatin conformation during
perinatal development suggests that the human brainis particularly
vulnerable to genetic and environmental perturbations that affect
these developmental stages. Consistent with this conjecture, the
localization of the polygenic risk of schizophrenia and bipolar dis-
order suggests a peak of heritability enrichment during the third
trimester and infancy.

Our study found the temporal separation of DNA methylation and
chromatin conformation reconfigurations, suggesting the asynchrony
across gene regulatory mechanisms (for example, TF binding, DNA
methylation or histone modifications) might be common in dynamic
biological systems such as human brain development. In addition to
the exceptional abundance of non-CG methylation, we found another
layer of unique epigenomic regulationin neurons (thatis, the unusually
strong enrichment of short-range chromatininteractions that s differ-
ent fromthe case for glial cells or non-brain tissues). Using multimodal
single-molecule imaging of chromatin, RNA and nuclear protein mark-
ers, we found that the neuronal-specific SE chromatin configuration
isestablished during early development (for example, mid-gestation)
andis correlated with the histone modification H3 K9 trimethylation,
transcription and a change in the nuclear volume. This finding raises
questions regarding whether cohesin-dependent enhancer-promoter
loops are regulated differently in neurons than in non-neuronal cell
types*, as well as the potential impact of the nuclear volume on chro-
matin folding and gene regulation.
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Methods

Ethics statement

Paediatric tissues obtained from the University of California, San Fran-
cisco (UCSF) were collected from autopsy sources through the UCSF
Pediatric Neuropathology Research Laboratory. Informed consent was
obtained fromthe next of kin for all paediatric samples obtained from
the Pediatric Neuropathology Research Laboratory. Paediatric samples
collected through autopsy were de-identified before acquisition and
thus exempt from Institutional Review Board (IRB) review. For tissues
obtained through the gynaecology clinic, patients were asked about
their interest in donating tissue to research after making the decision
for termination of pregnancy. Patients who agreed signed a written
consent after receiving information, both written and oral, given by
aphysician or midwife. They were informed that agreeing to donate
would not affect their medical care and that neither the donor nor the
clinical team would benefit from the donation. The use of abortion
material was reviewed and approved by the UCSF Committee on Human
Research. Protocols were approved by the Human Gamete, Embryo,
and Stem Cell Research Committee (IRB GESCR number10-02693; IRB
number 20-31968) at UCSF.

Adult humanbrainsamples and a post-mortem GW-35 sample (based
onadjusted age) were banked by the National Institutes of Health (NIH)
NeuroBioBank at the University of Maryland Brain and Tissue Bank
(Supplementary Table 1). Informed consent was obtained from the
patient or next of kinfor all samples obtained from NIH NeuroBioBank.
The tissue collection and repository is overseen by The University of
Maryland IRB with IRB protocol number HM-HP-00042077, as well as
The Maryland Department of Health and Mental Hygiene IRB with IRB
protocol number 5-58. When anindividual of any age dies, the medical
examiner or coroner contacts the next of kin and asks whether they
would be willing to talk to a staff member at the University of Maryland
Brainand Tissue Bank about an NIH-funded tissue procurement project.
Ifthe family agrees, the medical examiner or coroner contacts the bank,
and astaff member obtains arecorded telephone consent from the next
ofkinfor donation. Awritten verification of the consent is then faxed to
the office of the referring medical examiner or coroner. Alternatively,
therecording canalso be played over the telephone for confirmation.
The University of California, Los Angeles IRB has determined that our
study using post-mortem human tissue obtained from the NIH Neu-
roBioBank involves no human participant and requires no IRB review.

Brain specimens

Collections were carried out at post-mortemintervals of less than 24 h.
Tissue was collected through the UCSF, and the NIH NeuroBioBank.
Patient consent was obtained before collection according to institu-
tional ethical regulations. The UCSF Committee on Human Research
reviewed protocols that were approved by the Human Gamete, Embryo
and Stem Cell Research Committee (IRB GESCR number 10-02693) and
associated IRBs (20-31968) at UCSF. For prenatal samples, mothers
gave consent for the related medical procedure before any consent for
donation of tissue. In the tissue consent process, they were informed
thatagreeing to donate would not affect their medical care and that nei-
ther the donor nor the clinical team would benefit from the donation.
Specimens collected from UCSF were evaluated by aneuropathologist
as control samples collected through the UCSF Pediatric Neuropathol-
ogy Research Laboratory. Additional samples were identified from the
NIH NeuroBioBank, according to their IRB approval. Tissues were cut
coronally, and areas of interest were sampled. Tissue blocks of 1 mm
used for the snm3C-seq3 assay were flash-frozen in liquid nitrogen
and stored at -80 °C. Blocks used for histological analyses were fixed
with 4% paraformaldehyde (PFA) for 2 days and cryoprotectedina30%
sucrose gradient. The tissue was then frozen in OCT, and blocks were
cut at 30 pm with a cryostat and mounted onto glass slides. For each
sample used, we cresyl-stained three sections spanning the block to

ensure our position using anatomical landmarks, such as the lateral
ventricle, presence of the caudate, thalamus and HPC.

snm3C-seq3

For prenatal brain samples, snm3C-seq3 was carried out without the
labelling of neuronal nuclei using anti-NeuN antibody, whereas post-
natal samples were labelled by anti-NeuN antibody during the proce-
dure toisolate nuclei. For snm3C-seq3 carried out without labelling,
frozen powder of brain tissue was resuspended in 10 ml of DPBS with
2% formaldehyde and incubated at room temperature for 10 min with
slow rotation. The crosslinking reaction was quenched with 1.17 ml
of 2 M glycine for 5 min at room temperature. The crosslinked tissue
sample was pelleted by centrifugation at 2,000g for 10 minat4 °C.The
same centrifugation condition was used to pellet nuclei throughout
the snm3C-seq3 procedure. The pellet was resuspended in 3 mI NIBT
(10 MM Tris-HCI pH 8.0, 0.25 M sucrose, 5 mM MgCl,, 25 mMKCl,1 mM
dithiothreitol, 0.1% Triton X-100 and 1:100 protease inhibitor cocktail
(Sigmanumber P8340)). The resuspended tissue sample was dounced
with a dounce homogenizer (Sigma number D9063) 40 times with a
loose pestle and 40 times with a tight pestle. For snm3C-seq3 carried
outwith anti-NeuN labelling, anti-NeuN antibody (PE-conjugated, clone
A60, Millipore-Sigma number FCMAB317PE) was added to NIBT at
a1:250 dilution and was incubated with the tissue lysate during the
homogenization steps for a total of 15 min. The lysate was mixed with
2 ml of 50% iodixanol (prepared by mixing OptiPrep density gradient
medium (Sigma number D1556) with diluent (120 mM Tris-Cl pH 8.0,
150 mM KCl and 30 mM MgCl,) with a volume ratio of 5:1). The lysate
was gently layered ontop of a 25% iodixanol cushion and centrifuged at
10,000gfor20 minat4 °Cusingaswingrotor. The pellet of nucleiwas
resuspended in1 ml of cold DPBS followed by quantification of nuclei
using aBiorad TC20 Automated Cell Counter (Biorad number 1450102).

The in situ 3C reaction was carried out using an Arima Genomics
Arima-HiC+kit.Eachinsitu3Creaction used 300,000 to 450,000 nuclei.
Nucleialiquots were pelleted and resuspended in 20 pl H,0 mixed with
24 pl conditioning solution and incubated at 62 °C for 10 min. After
the incubation, 20 pl of stop solution 2 was added to the reaction and
incubated at 37 °Cfor 15 min. Arestriction digestion mix containing 7 pl
of 10x NEB CutSmart buffer (NEB number B7204), 4.5 pl of Nlalll (NEB
number R0125), 4.5 pl of Mbol (NEB number R0147) and 12 pl of 1x NEB
CutSmart buffer was added to the reaction followed by incubation at
37 °Cfor1h.Therestrictiondigestion reaction was stopped by incuba-
tionat 65 °C for 20 min. A ligation mix containing 70 pl of buffer C and
12 pl of enzyme C was added and then incubated at room temperature
for 15 min. The reaction was then kept at 4 °C overnight.

Before fluorescence-activated nucleus sorting, 900 pl cold DPBS
supplemented with 100 pl ultrapure BSA (SO mg ml™, Invitrogen num-
ber AM2618) was added to the in situ 3C reaction. To fluorescently
stainnuclei, 1 pul of 1 mg mlI™ Hoechst 33342 was added before sorting.
Fluorescence-activated nucleus sorting was carried out at the Broad
Stem Cell Research Center Flow Cytometry core of the University of
California, Los Angeles using BD FACSAria sorters. Single nuclei were
sorted into 384-well plates containing 1 il M-Digestion buffer contain-
ing proteinase K and about 0.05 pg lambda DNA isolated from dcm*
Escherichia coli (Promega number D1501).

Single-nucleus DNA methylome library preparation with
snmC-seq3

snmC-seq3 is a modification of snmC-seq2* that provides improved
throughput and reduced cost. Key differences between snmC-seq3
and snmC-seq2include the usage of 384 instead of 8 barcoded degen-
erated (RP-H) primers (Supplementary Table 8) for the initiation of
random-primed DNA synthesis using bisulfite-converted DNA as a
template. The expanded multiplexing allows the combination of 64
single nucleiinto the downstream enzymatic reactions, which provides
an eightfold reduction of the usage of Adaptase and PCR reagents.



In addition, the amounts of Klenow exo", exonuclease 1and rSAP are
reduced by tenfold compared to snmC-seq2, further reducing reagent
cost. A detailed bench protocol for snm3C-seq3 is provided through
protocol.io (https://doi.org/10.17504/protocols.io.kqdg3x6ezg25/v1).

Probe library design for RNA MERFISH and chromatin tracing
We selected 40-bp target sequences for DNA or RNA hybridization
by considering each contiguous 40-bp subsequence of each target of
interest (the mRNA of a targeted gene or the genomic locus of inter-
est) and then filtering out off-targets to the rest of the transcriptome
orgenomeincluding repetitive regions, or too high or low GC content
or melting temperature. More specifically, our probe design algorithm
wasimplemented with three steps: build a17-base index based on refer-
ence genome hsl assembly (DNA) or the hg38 transcriptome (RNA);
quantify 17-base off-target counts for each candidate 40-bp target
sequence; filter and rank target sequences on the basis of predefined
selection criteria as previously described***,

MERFISH gene selection

The MERFISH gene selection was carried out by first using a BICCN
dataset from GW-18-19 brain and using NSForest v2* with default
parameters to identify marker genes for the cell-type clusters in this
data®. This list of genes was supplemented with additional marker
genes from the literature (that is, DCX, GFAP and so on) as well as
genes with differential methylation in the snm3C-seq3 datain HPC of
mid-gestational human brains. The target sequences for each gene were
concatenated with one or two unique readout sequences to facilitate
MERFISH or single-molecule fluorescence in situ hybridization imag-
ing. The final list of encoding probes for RNA imaging used is shown
inSupplementary Table 5.

Design of chromatin probes

We designed probes for DNA hybridization similarly to those for RNA
MERFISH as described inrefs. 30,47. Briefly, we first partitioned chro-
mosome 14 into 50-kb segments and selected forimaging afifth of these
segments uniformly spaced every 250 kb (amounting to 354 target
genomic loci using genome reference hsl). After screening against
off-target binding, GC content and melting temperature, about 150
unique 40-bp target sequences were selected for each 50-kb segment.
We concatenated a unique readout sequence to the target probes of
each segment to facilitate sequential hybridization and imaging of
each locus. The final list of encoding probes for DNA imaging used is
shownin Supplementary Table 4.

Primary probe synthesis

Theencoding probes were synthesized from template oligonucleotide
pools, following the previously described method*®. First, we amplified
the oligonucleotide pools (Twist Biosciences) using a limited cycle
quantitative PCR (approximately 15-20 cycles) with a concentration of
0.6 puM of each primer to create templates. These templates were con-
verted into the corresponding RNAs using thein vitro T7 transcription
reaction (New England Biolabs, E2040S) and the PCR product as the
templates. Theresulting RNAs were then converted to complementary
single-stranded DNA using reverse transcription. During the reverse
transcription step, a primer with a 5’ acrydite-modified end was used
tofacilitate theincorporation of the encoding probesinto a protective
acrylamide gel cast on the sample allowing for more than 100 rounds
of hybridization without substantial probe loss. Subsequently, the
single-stranded DNA oligonucleotides were purified using alkaline
hydrolysis to remove RNA templates and cleaned with columns (Zymo,
D4060). The resulting probes were stored at —20 °C.

Sample preparation for multiplexed imaging experiments
The samples were prepared similarly to previously described for cell
culture samples with notable modifications®°. Briefly, fresh frozen

brain tissues were sectioned into coronal sections of 18 um thickness
at -20 °C using a Leica CM3050S cryostat. Sections were collected
on salinized and poly-L-lysine (Millipore, 2913997)-treated 40-mm,
round number 1.5 coverslips (Bioptechs, 0420-0323-2). The tissue sec-
tions were fixed with 4% PFA (Electron Microscopy Sciences, 15710) in
1x PBS with RNase inhibitors (New England Biolabs, M0314L) for 10 min
at room temperature before being permeabilized with 0.5% Triton
X-100 (Sigma-Aldrich, T8787). Then coverslips were treated with 0.1 M
hydrochloric acid (Thermo Scientific, 24308) for 5 min at room tem-
perature. Tissue sections were nextincubated with pre-hybridization
buffer (40% (vol/vol) formamide (Ambion, AM9342) in 2x SSC (Corn-
ing, 46-020-CM)) for 10 min. Then 50 pl of encoding probe hybridiza-
tion buffer (50% (vol/vol) formamide (Ambion, AM9342),2x SSC,10%
dextransulfate (Millipore, S4030)) containing 15 pg of RNA-encoding
probes for the targeted genes and 150 pg of DNA-encoding probes for
the targeted chromosome 14 loci was incubated with the sample first at
90 °Cfor 3 min, followed by 47 °C for 18 h. The sample was then washed
with 40% (vol/vol) formamide in 2x SSC, 0.5% Tween 20 for 30 min
before being embedded in thin, 4% polyacrylamide gels as described
previously*.

Imaging and adaptor hybridization protocol

MERFISH measurements were conducted on a custom microfluidics-
microscope system with the configuration described previously
described***. Briefly, the system was built around a Nikon Ti-U
microscope body with a Nikon CFI Plan Apo Lambda 60x oil immer-
sion objective with1.4 NA and used a Lumencor CELESTA light engine
and a scientific CMOS camera (Hamamatsu FLASH4.0). The different
components were synchronized and controlled using a National Instru-
ments data acquisition card (NI PCle-6353) and custom software*.

To enable multimodal imaging, we first sequentially hybridized fluo-
rescentreadout probes and thenimaged the targeted genomic lociand
thenthe targeted mRNAs. Then we carried out aseries of antibody stains
and imaging. Specifically, the following protocol was used in order:
118 rounds of hybridization and chromatin tracing imaging, sequen-
tially targeting the 354 chromosome 14 loci using three-colour imaging;
16 rounds of hybridization and MERFISH imaging, combinatorially
targeting 298 genes using three-colourimaging; 3 rounds of sequential
staining for 6 different antibodies using two-colour imaging.

The protocol for each hybridization included the following steps:
incubate the sample with adaptor probes for 30 min for DNA imag-
ing or 75 min for RNA imaging at room temperature; flow wash buffer
and incubate for 7 min; incubate fluorescent readout probes (one for
each colour) for 30 min at room temperature; flow wash buffer and
incubate for 7 min; flow imaging buffer. The imaging buffer was pre-
pared as described previously*® and additionally included 2.5 pg ml™
4’,6-diamidino-2-phenylindole (DAPI).

Following each hybridization, the sample wasimaged, and then the
signal was removed by flowing 100% formamide for 20 min and then
re-equilibrating to 2x SSC for 10 min.

RNA MERFISH measurement of the 298-gene panel was carried out
with an encoding scheme of 48-bit binary barcode and a Hamming
weight of 4. Therefore, in each hybridization round, about 75 adaptor
probeswere pooled together to target aunique subset of the 298 genes.
The genes targeted in each round of hybridization are highlighted in
Supplementary Table 9.

Immunofluorescence staining

Antibody imaging was carried out immediately after completing the
DNA and RNA imaging. The sample was first stained for 4 h at room
temperature using two primary antibodies of two different species
(mouse and rabbit), washed in 2x SSC for 15 min and then stained for
2 husingtwo secondary antibodies for each target species conjugated
with fluorescent dyes. Supplementary Table 10 lists all of the antibod-
ies used in this study.
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MERFISH image acquisition

We imaged approximately 650 fields of view covering the HPC. After
eachround of hybridization, we acquired z-stack images of each field of
viewinfour colours: 750 nm, 647 nm, 560 nmand 405 nm. Consecutive
z-sections were separated by 300 nmand covered 15 pm of the sample.
Images were acquired at a rate of 20 Hz.

Processing of snm3C-seq3 data

Sequencing reads were first demultiplexed by matching the first
8 bp of R1reads to the predefined well barcodes (https://github.com/
luogenomics/demultiplexing). Demultiplexed reads were trimmed
to remove sequencing adaptors using Cutadapt 1.18 with the follow-
ing parameters in paired-end mode: -f fastq -q 20 -m 50 -a AGATCG
GAAGAGCACACGTCTGAAC -A AGATCGGAAGAGCGTCGTGTAGGGA.
Then 18 bp and 10 bp were further trimmed from the 5’- and 3’-end
of the R1reads, respectively; and 10 bp were trimmed from both the
5’-and 3’-ends of the R2 reads. snm3C-seq3 reads were mapped to the
hg38 reference genome using amodified Taurus-MH package (https://
github.com/luogenomics/Taurus-MH)?>. Briefly, each read end (R1or
R2) was mapped separately using Bismark with Bowtiel with readl as
complementary (always G to A converted) and read2 (alwaysCto T
converted) as the original strand. After the first alignment, unmapped
reads wereretained and splitinto three piecesby 40 bp,42 bpand 40 bp
resultinginsix subreads (readland read2). The subreads derived from
unmapped reads were mapped separately using Bismark Bowtiel. All
aligned reads were merged into BAM using the Picard SortSamtool with
query names sorted. For each fragment, the outermost aligned reads
were chosen for the chromatin conformation map generation. The
chromatin contacts with bothends mapped to the same positions were
considered duplicates and removed for further analysis. Duplicated
reads were removed from BAM files using the Picard MarkDuplicates
tool before the generation of allc files using the Allcools bam-to-allc
tool (https://Ihging.github.io/ALLCools/)*.

Single-molecule fluorescence insitu hybridization
Single-molecule fluorescence in situ hybridization was carried out
according to the RNAscope manual (multiplex details). Sequences of
target probes, preamplifiers, amplifiers and label probes are propri-
etary and commercially available (Advanced Cell Diagnostics (ACD)).
Typically, the probes contain 20 ZZ probe pairs (approximately 50 bp
per pair) covering 1,000 bp. Here we used probes against human
genes as single-plex probes, outlined below: Hs-MEF2C (452881),
Hs-GAD1-C2 (404031-C3), Hs-RBFOX3-C2 (415591-C2), Hs-TLL1-C3
(439211), Hs-TRPS1 (831611-C3), Hs-PROX1 (530241), Hs-ALDH1L1-C3
(438881-C3), Hs-LRIG1-C2 (407421-C2).

Slides were dried at 60 °C for 1 h and fixed in 4% PFA for 2 h. After
several washesin PBS, slides were treated with ACD hydrogen peroxide
for 10 min and thenwashed in water twice before treatmentin 1x target
retrieval buffer (ACD) for 5 min (at 95-100 °C). After being washed in
water and then100% alcohol, the slides were baked at 60 °C for 30 min.
After moistening samples with water, protease treatment was carried
out for 15min at40 °Cin a HybEZ oven. Hybridization of probes and
amplification was carried out according to the manufacturer’sinstruc-
tions. Inshort, tissue sections wereincubated in the desired probe (2-3
drops per section) for 2 h at 40 °C in the HybEZ oven. The slides were
washed twice in 1x wash buffer (ACD) for 2 min each and incubated
in 5x SSC at room temperature overnight. Amplification and detec-
tion steps were carried out using the Multiplex kit (ACD, 320293) for
single-plex probes. The following was carried out inrepeated cycles for
each probe. About four drops of AMP x-FL were added to entirely cover
eachsectionandtheslide was placed in the HybEZ oven. The slide was
incubated for 30 min at 40 °C. Slides were removed from the HybEZ
slide rack, and excess liquid was removed before being submerging
theminaTissue-Tek staining dish filled with 1x wash buffer. Slides were

washed in 1x wash buffer for 2 minatroom temperature. The next AMP
x-FL treatment was added, and the cycle was repeated. Slides were
washed in PBST, incubated with DAPI for 30 s at room temperature,
and mounted inaquamount (Lerner). Images were taken using a100x
objective on a Leica Stellaris confocal microscope.

Single-cell bimodal data quality control and preprocessing

Cells were filtered on the basis of several metadata metrics: mCCC
level < 0.03; global CG methylation level > 0.5; global non-CG meth-
ylation level < 0.2; and total 3C interactions >100,000. Methylation
features were calculated as fractions of methylcytosine over total
cytosine across gene bodies +2 kb flanking regions and 100-kb bins
spanning the entire genome. Methylation features were further split
into CGand CH methylationtypes. These features were then filtered on
mean coverage of >10 and values with coverage of <5 wereimputed as
the mean feature value by sample. Principal component analysis (PCA)
was thenrun using Scanpy*’ default parameters followed by k-nearest
neighbours using only the top 20 principal components by the amount
of variance explained and k = 15. Iterative clustering was then carried
outwitha combination of Leiden unsupervised clustering and UMAP
dimensionality reduction, identifying clusters as cell types by marker
gene body CH and CG hypomethylation. We observed certain batch
effects in our dataset that are associated with the time the data were
generated. Harmony* was used on metadata features to mitigate batch
effects occurringbetween samplesin the principal-component feature
space. The developmental trajectories of cortical and hippocampal
cell types were reconstructed using shared CG methylation feature
patterns at cell-type marker genes and integration of cells derived from
different age groups using Harmony?. Cells were first separated by
their L2 (major cell-type groups) annotation using the shared marker
gene approach, and then Harmony integration by pairwise ages for all
L2 groups was used to link L3 cell types across ages.

Integration of snm3C-seq3 data with datasets for single-
nucleus RNA-sequencing or single-nucleus assay for
transposase-accessible chromatin with sequencing

The single-nucleus RNA (snRNA) and prenatal snm3C-seq CG meth-
ylation data were co-embedded by inverting the sign of the methyla-
tion matrix (owing to aninverse correlation of gene expression to CG
methylation). PCA was then applied on the combined data, and Har-
mony?was used to correct for the systematic differences between the
two modalities. The co-embedded UMAP was then generated from
the k-nearest neighbours graph with k= 20 using the top 20 princi-
pal components. Annotation transfer was carried out for each cell
in the CG methylation data by taking the cell’s top snRNA neighbour
and assigning the RNA label to the CG methylation cell. The Jaccard
index was then computed on the CG methylation annotation versus
the snRNA liftover annotation. The correlation of features between the
two modalities was calculated by taking the k = 1 nearest neighbour for
allmethylation cells and computing the Pearson correlation of raw CG
methylation fractionto log-scaled gene expression counts for all genes
across all paired cells. Generalized annotations were then made for the
co-embedding by running Leiden unsupervised clustering and naming
the clusters by their most representative cell type to assess the rela-
tive quantity of similar cellsin each dataset. The co-embedding of the
single-nucleus assay for transposase-accessible chromatin (ATAC) and
snm3C-seq CG methylation data followed the same procedure as the
snRNA co-embedding, but the Pearson correlation was computed on
the raw ATAC gene activity scores versus raw CG methylation fractions.

Pseudotime analysis

Pseudotime analysis was run following the methods outlined inref. 24.
Each pseudotime analysis had clustering preprocessing steps, PCA,
k-nearest neighbours with k=15 using 20 principal components, and
Leiden, recomputed for its respective subset of the data. The computed
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Leiden clusters were then used to initialize a partition-based graph
abstraction. This partition-based graph abstraction is used as the
precomputed initialization coordinates for the visualization with
force-directed graph drawing by the ForceAtlas2 package®. A root
nodeisthensetinthe Leiden cluster furthest from the adult cell types,
and Scanpy’simplementation of diffusion-based pseudotime was used.
Inmultimodal pseudotimes the same cellis set as the root nodeineach
modality. Genes are selected for display compared to the pseudotime
scores by sorting by correlation and anticorrelation to the pseudotime
score as well as requiring the 3CGS to have variance of >0.1and gene
length of >90 kb. For Fig.2n and Supplementary Fig. 4j,u, gene exam-
pleswere selected by highest gene body CG methylation correlation to
the pseudotime and 3CGS anticorrelation. For Fig.20 and Supplemen-
tary Fig. 4k,v, gene examples were selected by highest gene body CG
methylation anticorrelation to the pseudotime and 3CGS correlation
to the pseudotime. Distribution comparisons are computed by the
Wilcoxon rank-sum test.

DMR and TF-binding motif analysis

All CG methylation DMRs were identified from pseudobulk allc files
using Methylpy (https://github.com/yupenghe/methylpy)*2. DMRs
identified from a multi-sample comparison of all cell types were used
for analysesinFig. 5, as well as disease heritability enrichment analy-
ses. Trajectory-DMRs were identified using pairwise comparisons of
adjacent development stages of a cell-type trajectory. Branch-DMRs
were identified using multi-sample comparisons, including the
mother cell population from an earlier developmental stage and
daughter populations from a later developmental stage. TF-binding
motif enrichment analysis was carried out similarly to previously
described”>**, DMR regions were lifted over to the hg19 reference
genome for the TF-binding motif enrichment analysis. TF-binding
motif position weight matrices were obtained from the MEME motif
database and scanned across the human hgl9 reference genome to
identify hits using FIMO (--output-pthresh 1E-5, -- max-stored-scores
500,000 and --max-strand)>**>. DMRs were extended 250 bp both
upstream and downstream for overlapping with TF-binding motif
hits. The overlap between TF-binding motif hits and DMRs (extended
+250 bp) was determined by requiring aminimum of 1-bp overlap. The
enrichment of TF-binding motifs in DMRs was assessed using DMRs
(extended 250 bp from centre) identified across adult human tissues
(tissue DMRs) as the background®. The overlaps between TF-binding
motif hits and the foreground DMR list were compared to the overlaps
between TF-binding motif hits and tissue DMRs (background) using
the hypergeometric test (MATLAB hygecdf).

Single-cell embedding based on chromatin contact

Single-cell contact matrices at 100 kb resolution were imputed by
scHiCluster*® with pad =1. The imputed contacts with distance of
>100 kb and <1 Mb were used as features for singular value decompo-
sition dimension reduction. Principal components were normalized
by singular values and L2 norms per cell and then used for k-nearest
neighbour graph construction (k= 25) and UMAP. A total of 25 dimen-
sionswere used for the full dataset (Fig.1and Extended Data Fig.2b,e),
20 dimensions were used for the RG subtypes (Extended Data Fig. 2f)
and 10 dimensions were used for the MGE or CGE lineage (Extended
DataFig. 2d).

Chromatin loop, differential loop and SIP analysis

Chromatinloops were identified with scHiCluster for each cell type
identified in this study. To identify loops from a group of cells,
single-cell contact matrices at10 kb resolution were imputed by scHi-
Cluster with pad = 2 for the contacts with a distance less than 5.05 Mb
(result denoted as Q). We carried out loop calling only between 50 kb
and 5 Mb, given that increasing the distance leads to only a limited
increase in the number of statistically significant loops. For each

single cell, the imputed matrix of each chromosome (denoted as Q..;))
was log-transformed, Z-score-normalized at each diagonal (result
denoted as E;) and a local background between >30 kb and <50 kb
was subtracted (result denoted as T,;), as in SnapHiC¥. We then gen-
erated pseudobulk matrices for each sample by taking the average
across single cells. To compute the variance of each matrix across
single cellsinloop and differential loop analysis, for each pseudobulk
sample, we saved both the mean and mean of squares. Specifically,
six pseudobulk matrices were generated as Q=2 Qcen/Ncerr
Q2p41 =2 Qe Nceitr Eouik=2 Ecen/ e E2puic =2 Ecen/Meent» Toutc =2 Teetl/ Mceir
T20uk =2 T2/Neen- A pseudobulk-level t-statistic was computed to
quantify the deviation of Eand T from O across single cells from the
cell group, with larger deviations representing higher enrichment
against the global (E) or local (T) background. E; is also shuffled across
each diagonal to generate E, gmecen, then minus local background for
Tehumnecen and further merged into pseudobulks Eg,gebuicr E2shuffiebulir
Tenutiebuik AN T24urmebus tO €Stimate a background of the ¢-statistics.
E2unebuik is defined as Ezshufﬂebulk =2 Es%ufﬂecell/nshufﬂecell' T2y tmebuik is
defined as T 24 mebuik = 2 Tehutfiecell/Mshuffiece - AN empirical false dis-
covery rate (FDR) can be derived by comparing the ¢-statistics of
observed cells versus shuffled cells. We required the pixels to have
average E of >0, fold change of >1.33 against doughnut and bottom
left backgrounds, fold change of >1.2 against horizontal and vertical
backgrounds®, and FDR of <0.01 compared to global and local back-
grounds.

Differential loops were identified between age groups in the same
major lineage. The detailed analysis framework is shown at https://
zhoujt1994.github.io/scHiCluster/hba/loop_majortype/intro.html. To
compare the interaction strength of loops between different groups
of cells, analysis of variance or a Kruskal-Wallis test can be used. This
testis more generalizable, asit does not require the data to be normally
distributed. However, in practice, it is very expensive computationally
toenumerate throughall cellsand allloops to runthe tests. Therefore,
we adoptananalysis of variance framework to compute the F statistics
foreachloopidentified inatleast one cell group usingeither Q. (result
denotedas Fy) or T, (result denoted as Fy). This analysis requires only
Quuie Q2uuie Touand 72, for each pseudobulk sample to capture the
variability across cells rather than the matrices of each single cell, which
makes it feasible across thousands of cells and millions of pixels. We
log-transformed and then Z-scored F, and F; across all of the loops
being tested and selected the ones with both Fy and F; >1.036 (85th
percentile of standard normal distribution) as differential loops. The
threshold was decided by visually inspecting the contact maps as well
asthe correlation ofinteraction and loop anchor CG methylation. These
thresholds selected the top =5% loops as differential for downstream
analyses.

Toidentify SIPs, annotated transcription start sites from GENCODE
v33annotation were intersected with chromatin loops, allowing amaxi-
mum distance of 5 kb. To determine a threshold of cumulative loop
score for SIPs, the cumulative loop score of promoters was modelled
by a half-Gaussian distribution with the mean equal to 0 and standard
deviation equal to the standard deviation of cumulative loop scores.
The threshold for SIP was selected with a Pvalue of 0.001.

Identification of domains and differential domain boundaries
Single-cell contact matrices at 25 kb resolution wereimputed by scHi-
Cluster*®*with pad = 2 for the contacts with distance less than 10.05 Mb.
Domains were identified for each single cell. Insulation scores were
computed ineach cell group (major type or major type in abrainregion)
foreach binwith the pseudobulkimputed matrices (average over single
cells) and a window size of 10 bins. The boundary probability of a bin
is defined as the proportion of cells having the bin called as adomain
boundary among the total number of cells from the group.

To identify differential domain boundaries between n cell groups,
we derived an n x 2 contingency table for each 25-kb bin, in which
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the values in each row represent the number of cells from the group
that has the bin called as aboundary or not as aboundary. We com-
puted the chi-square statistic and P value of each bin and used the
peaks of the statistics across the genome as differential boundaries.
The peaks are defined as the local maximum of chi-square statistics
with an FDR of <1 x 107 (Benjamini and Hochberg procedure). If two
peaks are within less than five bins of each other, we kept only the peak
with a higher chi-square statistic. We also require the peaks to have a
Z-score-transformed chi-square statistic of >1.960 (97.5th percentile of
standard normal distribution), fold-changes between maximum and
minimum insulation score of >1.2, and differences between maximum
and minimum boundary probability of >0.05.

3CGS

3CGS is defined as the sum of off-diagonal values from the row and
column of the transcription start site bin to the row and column of
the transcription end site bin in the imputed 10-kb contact matrices.

Correlation between loop strength and CG methylation
Differential loops for cell-type trajectories were used in these analyses
(Supplementary Table 6), with each trajectory analysed separately.
Single cells were grouped into meta-cells ordered by the developmental
pseudotime scores to boost the power of correlation analyses. Each
meta-celliscomposed of 20 single cells. Specifically, the joint embed-
ding of CG methylation and chromosome conformation for each trajec-
tory was used to generate a k-nearest neighbour (k= 20, self-included)
graph of single cells. Each cell was merged with its other 19 nearest
neighboursto generate ameta-cell. To avoid meta-cells that are highly
similar to each other, we first computed the number of shared cells
between each pair of meta-cells and removed highly similar meta-cells.
We repeated this process until no pairs of meta-cells shared more than
five cells. To further alleviate the bias towards large homogeneous cell
populations, we downsampled the number of meta-cells that originated
from RG-1to half of the number.

The methylation level of a meta-cell at each 10-kb bin was computed
by the sum of methylated basecalls divided by the sum of total base-
callsoverits 20 composed single cells. The average methylation levels
of the two anchors were used to correlate with the loop interaction
strength. Theloop interaction strength of ameta-cell was the average
ofimputed interactions over the 20 composing single cells. The diffu-
sion pseudotime of ameta-cell was also the mean across its composing
single cells. The meta-cells were ordered according to the pseudotime,
and the cross-correlation was used to measure the temporary discrep-
ancy between chromatin conformation and DNA methylation changes
during development. Intuitively, the cross-correlation measures the
correlation between loop strength and CG methylation after shifting
the DNA methylation values along the developmental axis for acertain
distance. We used the argument of the minima of the cross-correlation
for theloops having anegative correlation betweeninteraction and CG
methylation to evaluate their timing differences. If the loop interaction
is changing before DNA methylation, the DNA methylation values need
to be moved backward to maximize its (absolute) correlation with
genome structure, therefore corresponding to a negative shift in our
measurement. A left-skewed distribution indicates that interaction
changes earlier than methylation and vice versa.

Distribution of the distance between interacting loci analysis
To count the number of cis (intra-chromosomal) contacts in each cell
and bulk Hi-C data®®, we divided the contacts into 143 logarithmic bins,
thefirst of which was for contacts that were separated by less than1 kb.
Each subsequent bin covered an exponent step of 0.125, using base 2.
Contactsinbins1-37 were determined to be noisy and were eliminated,
leaving bins 38-141 as valid bins.

The following metrics were used for the following analysis: percent-
age median, the percentage of contacts in bins 38-89 out of all valid

bins; percentage long, the percentage of contacts in bins 90-141 out
ofall valid bins.

Cells were clustered by the distribution of their distance between
interacting loci (k-means, k =10) and reordered by the average value
oflog,[percentage median/percentage long] of each cluster (Fig.3a-d
and Extended Data Fig. 4a-c).

Each cell was assigned to a group by the following criteria (Fig. 3e,f
and Extended Data Fig. 4d-k): SE, log,[percentage median/percentage
long) > 0.4;INT, -0.4 > log,[percentage median/percentage long) > 0.4;
LE, log,[percentage median/percentage long) <-0.4.

To find the clusters enriched in each cell type, we first calculated
the percentage belonging to each cluster by cell type (Extended Data
Fig.4d). The enrichment score was obtained by normalizing the fraction
ofeach celltype by the relative cluster sizes. For each cell type, anaver-
age of log,[percentage near/percentage long] scores (representing the
ratio of median tolong-range interactions) for allindividual cells of that
type was computed to compare with compartmentalization metrics.

We have computed empirical P values to determine the significance
of k-means clusters showing distinct distributions of chromatin contact
distances (Fig. 3aand Extended Data Fig. 4c). For each pair of clusters,
we randomly selected one cell from each cluster. This process was
repeated 1,000 times for each cluster pair. Cell pairs whose chromatin
contractdistributionshowed aPearson’s correlation coefficient greater
than 0.8 were considered similar. For each pair of clusters, we counted
the number of times (out 0of 1,000) that the correlation coefficient
exceeded the threshold. This gave an estimate of the similarity in cell
patterns between the two clusters.

Chromatin compartment detection and analysis

Pseudobulk .cool files for all cell types were generated and balanced
with coolerv0.8.3at1Mb resolution®. For each cell type, compartments
were assigned with cooltools v0.5.1, through eigenvector decomposi-
tion of each chromosome’s cis-interaction matrix*’. Each 1-mb genomic
bin (excluding chromosomes X, Y and M) was assigned to the A or Bcom-
partment by the sign of its chromosome’s eigenvector that has the high-
est Pearson correlation with GC content. A positive sign indicates bin
membership inthe Acompartment; anegative signindicates bin mem-
bershipinthe Bcompartment. We use the magnitude of the eigenvector
value as the strength of compartment assignment. Using cooltools, we
generated saddle plots, which visualize the distribution of observed/
expected (O/E) contact frequency between genomic bins stratified by
their eigenvector value. For pseudobulk files with more than 30 million
contacts, we subset each matrix’s bins whose assignment strengths are
inthe top 20th percentile for their compartment. Then, we find the sum
of O/Evalues of AA, BB, AB and BA interactions between these bins. For
computing AA or BB O/E interaction dominance, we find the fraction
of O/E signal explained by these AA or BB interactions, respectively,
out of the total O/E signal for the pseudobulk matrix (Extended Data
Fig. 6b). Similarly, the formula for compartmentalization strength
score is: (sum(AA O/E) + sum(BB O/E))/(sum(BA O/E) + sum(AB O/E))
(Extended Data Fig. 6a,e). When computed on pseudobulk files with
more than30 million contacts, compartmentalization strength scores
had nosignificant correlation with total pseudobulk contacts (Pearson
correlation = 0.18, P= 0.10). Two-sided Mann-Whitney U-tests were
used to compare distributions of these metrics between groups of cell
types (Extended DataFig. 6b,e).

Differential compartments were identified across all age groups for
eachmajor (L2) lineage using dcHiC v2.1at 100 kb resolution (adjusted
P<0.01)*°. These results were used to identify 100-kb genome bins
that transitioned from the A compartment to the Bcompartment (AB
transition) or vice versa (BA transition) between the earliest and latest
agesineachlineage (Extended DataFig. 6h).For eachlineage, thetran-
sitioning bins’ CG methylation levels were computed at each age and
normalized by subtracting the CG methylation level at the earliest age.
Thedistribution of CG methylation levels for AB versus BA transitions



ateachage andlineage was compared with two-sided Mann-Whitney
U-tests (Extended Data Fig. 6j-I).

Polygenic heritability enrichment analysis

Polygenic heritability enrichment of DMRs and/or chromatin loops
was analysed using a stratified linkage disequilibrium score regression
(S-LDSC)-based partitioned heritability approach®. The genome-wide
association study (GWAS) summary statistics included in this study
were as follows: schizophrenia*’, bipolar disorder®?, major depres-
sive disorder®, attention deficit hyperactivity disorder®*, autism
spectrum disorder®, Alzheimer’s disease®® and height from the UK
Biobank® (downloaded from https://alkesgroup.broadinstitute.org/
sumstats_formatted/). For each cell type, binary annotations were
created using DMR and/or chromatin loop. We considered two types
of genomic region—DMR: including all DMRs for a given cell type;
loop-connected DMR: including the subset of DMRs that overlap with
any of the chromatin loop-called in the matching cell types. To create
binary annotations, SNPs in these genomics regions were assigned
asland otherwise 0. Then we assessed the heritability enrichment of
each of these annotations conditional on the ‘baseline model®’. We
reported heritability enrichment and proportion of heritability using
Enrichment, Enrichment_std_error, Prop._h2, Prop._h2_std_error col-
umnsinS-LDSC results. To assess statistical significance for heritability
enrichment differences across annotations (for example, differences
between cell types in a developmental trajectory), we used a t-test to
test the differences of heritability enrichment of two cell types with
d.f.=200+200 -2, in which 200 corresponds to the number of jack-
knife samples in the S-LDSC block jackknife procedure.

Overlap between fine-mapped variants and DMR and/or
chromatinloop for schizophrenia

We used statistical fine-mapping results that were previously per-
formed inthelatest PGC schizophrenia study*°. We filtered for auto-
somal high-confidence putative causal SNPs with posteriorinclusion
probability of >10%, and retained 190 independent association loci
(containing 569 SNPs in total), with each loci containing a credible set
with 3.0 SNPs on average. We used Fisher’s exact test to assess the over-
lap between these 569 fine-mapped SNPs and DMR and/or chromatin
loop annotations using all SNPs in the GWAS summary statistics as the
background (see above for constructing DMR and/or chromatin loop
annotations). Wereported odds ratios of the overlap. We also assessed
the overlap between 190 schizophrenia fine-mapped loci (as aggre-
gates of 569 putative causal SNPs) and DMR and/or chromatin loop
annotations (Fig. 5i). We define the overlap between fine-mapped loci
and DMR and/or chromatin loop annotations on the basis of whether
any high-confidence putative causal SNP in the fine-mapped loci is
located in the annotation. Furthermore, we overlapped putative causal
SNP and DMR and/or chromatin loop annotations to Genotype-Tissue
Expression high-confidence fine-mapped cis-expression quantitative
trait locus (eQTL) data (downloaded from https://www.gtexportal.
org/home/downloads/adult-gtex/qtl): we first identified SNP-gene
pairs such that the putative causal SNP is located in DMRs and con-
nected to the transcription start site of any gene through chromatin
loops, and then we overlapped these SNP-gene pairs with cis-eQTL-
eGene pairs.

Chromatin tracing analysis

Localization of fluorescent spots. To calculate fluorescent spot lo-
calizations for chromatin tracing data, we carried out the following
computational steps: we computed a point spread function for our
microscope and amedianimage across all fields of view for each colour
channelbased on the first round of imaging to be used for homogeniz-
ing theilluminationacross the field of view (called flat-field correction);
to identify fluorescent spots, the images were flat-field-corrected,
deconvoluted with the custom point spread function, and then local

maxima were computed on the resulting images. A flat-field correction
was carried out for each colour channel separately.

Image registration and selection of chromatin traces. Imaging
registration was carried out by aligning the DAPI channel of each
image from the same field of view across imaging rounds. First, the local
maxima and local minima of the flat-field-corrected and deconvolved
DAPI signal were calculated. Next, a rigid translation was calculated
using afast Fourier transform to best align the local maxima or minima
betweenimaging rounds.

Nuclear segmentation was carried out on the DAPI signal of the first
round ofimaging using the Cellpose algorithm®® with the ‘nuclei’ neural
network model. Following image registration, chromatin traces were
computed from the drift-corrected local maxima of eachimaged locus
as previously described*®.

RNA MERFISH analysis

The MERFISH decoding followed a similar strategy to that of the MERIin
algorithm but operated on spots identified in the images rather than
individual pixels. Briefly, the drift-and chromatic-aberration-corrected
localmaxima (spots) were grouped into clusters, with each cluster con-
taining all spots from allimaging rounds ina2-pixel radius of ananchor
spot. Clusters were generated for every possible anchor spot. Any clus-
ter containing spots fromat least fourimages was then assigned a gene
identity by best matching the MERFISH codebook. Each cluster was
ranked by the average brightness and the interdistance between the
contained spots. These measures were used to filter the decoded cluster
and best separate the more confident spots from the less confident.

Protein density quantification

The antibody images were flat-field-corrected, deconvolved and then
registered to the chromatintraces using the DAPIsignal as described pre-
viously. Foreach chromatintrace, the fluorescent signal of each antibody
was sampled at the 3D location corresponding to each genomiclocus.

Refinement of the nuclear segmentation
Refined 3D nuclear segmentation was carried out using the 3D Cellpose
‘nuclei’ model based on the NUP98 fluorescent stain.

Integration of snmC-seq3 and RNA MERFISH

RNA profiles generated by MERFISH were unbiasedly clustered using
the Leiden method and annotated on the basis of known marker genes
showninSupplementaryFig. 5a. The MERFISH transcriptomic datawere
thenintegrated with the datafrom mid-gestation HPC snmC-seq3 meth-
ylation samples by subsampling a set of 220 shared genes, inverting
the methylation matrix and using Harmony? to correct the systematic
differences between the two modalities. RG-1and RG-2 annotations
were generated by label transfer from the methylation datausingk=9
nearest-neighbour majority voting in the batch-corrected UMAP space.
Label transfer was blocked in mature cell types (dentate gyrus, CAland
CA2-3)andthose not derived from hippocampal RG cells (ependyma
and choroid plexus).

MERFISH data availability
Raw imaging data will be provided on request owing to the extraor-
dinary file sizes. Processed data are available at the Gene Expression
Omnibus under the accession number GSE213950 as a scanpy.h5ad
file. The main X’ matrix of the object contains log-normalized counts.
Thefull contents of the scanpy object are described below. For brevity,
standard contents added by scanpy (for example, connectivities and
distances added by sc.pp.neighbors) are not listed.
* obs

« volm: total pixel volume of the cell based on DAPI segmentation;

- x_um_abs,y um_abs: global xand y coordinates of the cell in micro-

metres;
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* z¢, xc, yc: pixel coordinates of the cell centre relative to the field
of view;

« Leiden: unsupervised Leiden clustering;

« L1: excitatory versus inhibitory;

 dpt_pseudotime: pseudotime calculated from RG-1;

- Final_anno_v3: annotation used in figures;

 Hpc_regional: spatial subset of cells restricted to the HPC;

« hpcRG: RG-1and RG-2 annotation in this zone;

 Fimbria_regional: spatial subset of cells restricted to the HPC;

« fimbriaRG: RG-1and RG-2 annotation in this zone;

- Ventricular_regional: spatial subset of cells restricted to the
ventricular zone;

« ventricularRG: RG-1and RG-2 annotation in this zone;

« Refined_volume: Recalculated cell volume based on Nup98
antibodies.

e var

« mean: average expression of the gene across cells;

- std: standard deviation of the gene expression across cells.
e uns

« X_h_score_shape: original shape of X_h_score in obsm;

- antibody_shape: original shape of each antibody matrix in obsm.
» obsm

« X_fov: the field-of-view identifier each cell wasimaged in;

 X_raw: raw count matrix;

- X_spatial: the spatial coordinates of the cells;

« blank: the count of each blank barcode per cell;

« X_h_score: a csr sparse matrix containing chromatin trace results.
Thematrix should be reshaped to 50,374 x4 x 354 x 5, representing
the number of cells, maximum number of homologues, number
of chromatin regions, and the z, x, y coordinates followed by the
brightness and score of the fluorescent spot. Missing data (that
is, containing fewer than four homologues or missing regions) are
filled withO's;

* H3 K9 trimethylation, Pol2PSer2, SRSF2, K27Ac, LAMAI, NUP98:
antibody signals localized at each chromatin region. Stored as a
csr sparse matrix and can be reshaped to 50,374 x 4 x 354, similar
to X_h_score.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Datasets generated by this study can be accessed interactively through
https://brain-epigenome.cells.ucsc.edu/ and https://genome.ucsc.
edu/s/luogenomics/hs-brain-epigenome. Processed chromatin con-
formation datafor all samples, processed single-cell DNA methylation
datafor samples with unrestricted access and processed multimodal
MERFISH data are available at the National Center for Biotechnology
Information Gene Expression Omnibus under the accession number
GSE213950. Raw sequencing reads for all samples and processed
DNA methylation data for controlled access samples can be down-
loaded from the NeMO Archive (https://assets.nemoarchive.org/
dat-obec38w). Access to raw data for prenatal specimens analysed
in this study is controlled as specified in the consent for tissue dona-
tion. Requests for controlled data hosted by the NeMO Archive canbe
made through the NIMH Data Archive (https://nda.nih.gov/). Access
to controlled data associated with this study is permitted for general
research use. Instructions for requesting access to controlled data
hosted by NeMO are provided at https://nemoarchive.org/resources/
accessing-controlled-access-data. Single-cell RNA-sequencing data for
prenatal human cortical specimens were published inref. . Data from
the single-nucleus ATAC approach for prenatal human cortical speci-
menswere published in ref. . Bulk Hi-C data for multiple human tissues

were published inref. ?®, Bulk Hi-C data for neuronal and non-neuronal
nuclei isolated from adult human brains were published in ref. %, The
BRAINSPAN developmental transcriptome dataset was published in
ref. 11. The GWAS summary statistics included in this study were as fol-
lows: schizophrenia*®, bipolar disorder®?, major depressive disorder®?,
attention deficit hyperactivity disorder®, autism spectrum disorder®,
Alzheimer’s disease®® and height from the UK Biobank®” (downloaded
from https://alkesgroup.broadinstitute.org/sumstats_formatted/).

Code availability

Codes for the demultiplexing of snm3C-seq3 fastq files are available
at https://github.com/luogenomics/demultiplexing. A modified ver-
sion of TAURUS-MH (version 0.1) for mapping of snm3C-seq3 data is
available at https://github.com/luogenomics/Taurus-MH. Codes for
the generationand imputation of methylation features are available at
https://github.com/luogenomics/snm3Cseq_feature_processing. Cus-
tom code used for analysing chromatin tracing and MERFISH datasets
inthis study are available at https://github.com/cfg00/MERFISH_Chro-
matin_Tracing_2024.
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Extended DataFig.1|See next page for caption.



Extended DataFig.1|Multi-modal classification of brain celltypesin
developmental specimens. (a) Brainregional specificity of identified cell
types. (b-c) Inversed correlations between gene expression and gene body CG
methylation (b) and between chromatin accessibility (gene activity score) and
genebody CG methylation (c). (d-g) UMAP dimensionality reduction of the
integration of snm3C-seq3 and snRNA-seq datasets with the visualization of
snRNA-seq clusters (d), snm3C-seq3 clusters (e), joint clusters (f), and assay
type (g). (h) Comparison of cell type classification using snm3C-seq3 and
snRNA-seq using a confusion matrix. (i) Comparison of cell type composition

insnm3C-seq3 and snRNA-seq datasets. (j-m) UMAP of the Integration of
snm3C-seq3 and snATAC-seq datasets with the visualization of snATAC-seq
clusters (j), snm3C-seq3 clusters (k), joint clusters (I), and assay type (m). (n)
Comparison of cell type classification using snm3C-seq3 and snATAC-seq using
aconfusion matrix. (0) Comparison of cell type compositioninsnm3C-seq3
and snATAC-seq datasets. (p-q) Genome-wide Euclidian distance of gene body
CGmethylation (p) and chromatininteraction (q) between developmental
stages for each major cell type group. (r) Reconstructed developmental
hierarchy ofinhibitory neurons and non-neuronal cells.
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Extended DataFig. 6 | Chromatin compartment dynamics across cell types
and developmental stages. (a) Relationship between compartmentalization
and the dominance of medianvs.long-range interactions across cell types.
(b-c) Differing dominance of chromatininteractionsinthe active Acompartment
ortheinactive Bcompartment between neuronal (Exc+Inh) and microglia
(MGC) populations. (d) Comparison of chromatin compartment strength
between neuronal and non-neuronal cells using Hi-C data (Hu et al., 2021)
generated fromisolated nuclei30. (e-f) Decrease in compartment strength
from 2T to 3T.Saddle plots are shown in (f) to quantify the interactioninside or
betweentheactive Acompartment and theinactive Bcompartment. (g) A/B
compartmentsaddle-plots for 4 cell trajectories, showing ageneral decrease

incompartmentalization from mid-gestation to late-gestation, as well as

the dominance of interactionsin the inactive Bcompartmentin HPC-
MGC-1(bottom row). (h) Number of genomicregions switchingfromAtoB
compartmentor fromBto Acompartmentineach cell-type development
trajectory. (i) Compartmental and CG methylation dynamics at SOX2 and GLI3
loci during the differentiation of cortical upper layer excitatory neurons.

(j-) Correlation between developmental changes of CG methylationand
compartmental dynamics. Changes in CG methylation compared to the earliest
developmental stage were shown for (j) excitatory neurons, (k) astrocytes, and
(I) inhibitory neurons.



Article

a b c g

Number of Differential Loops

Diff. loop between lineage in Adult Diff. loop between lineage in Midgestation o O & PR o N
60000 P d P g g &P O
50000 . ExcUL ExeDL Inh-CGE Inh-MGE  Astro ExcUL ExcDL Inh-CGE Inh-MGE  Astro
40000 H 32 3.06 222 2.18 2.08 3.15 275 6 1.83 223 .
30000 -100k =2 = K3
o 20000 . 2 2 £
S L +100k| @ a 2
o 10000 249 2.91 20 1.94 1.99 241 295 )
S . o | o 8
u - =3 a a S
5 4 6E E E @ ! 6@ @ 2
e 2 2 2
13 . 3 | Y “ B
-g . o 194 1.89 3.19 2.52 2.34 157 1.55 . . . Ko}
c |y w 4
S £ |a Q
: | 1.88 1.87 262 337 2.03 = 1 0‘? £ & @e 00@\&@?9\&0
_ 3 wrk d X § i . R ¥ . . & & z(j- \(,\Q &
. €
250 R . 8 E ‘ m Gainofloop m Loss of loop |
. 1.59 1.54 174 1.54 432
PSS 3
S P o S :!!EE
Number of Cells
x x
d e 8 8 f
' +
Diff. loop between ages in Exc-UL Diff. loop between ages in Astro Diff. loop between Inh-MGE cell types in Infant
RG-1 21 3T infant adult RG-1 RG-2 Eul |n1ant adult Inh-MGE-ChC-UNCSB  Inh-MGE-ERBB4
3.92 255 123 1.68 2.03 344 289 209 2.06 8 i MGE-RBFOX1 Inh-MGE-MANTAL
6 E E _ ! ! : E E ! ! ! 5 y = = =
4 4 S
" 2
=3 3.07 376 R ¥ 223 3.34 2 e |:|
2 o 0 X
3 = 9} =z 9 12 357 1.3 1.27
o = £ g
i 2.34 2.69 1.79 237 3.94 292 3.19 v
5}
]
= =
|- [o] LI EEE | = o =
£ 2.1 2.02 X X 15 2.1 2.85 4.15 3.64 I
8 = = - g - Norm.
& 8 ’} z < Interaction
= = e £z 1714 1.65 142 30 Frequency
2.14 172 X X 1.65 238 3.06 3.85 4.32 §
B . g 0.8
s E]
3 E 2
=
0.2
Gene Expresslon Gene Expression
h | Prefrontal Cortex (PFC) log2(TPM) ' k log2(TPM)
Gene Expresslon 0_:- Pre Frontal Cortex (PFC) 0-_7
PFC-RG-1 POU3F3 : PFC-adult-Exc-UL FLRT2
~25 SOX11 5 N = ~25 KHDRBS3
> POLR3A > DDX1
< POU3F2 e < BRINP1
o 20 D2 % = o 20 KLF6
S KCNUT <] FOXG1
a 15 ABCC12 2@ - 3 15 PLK2 o
3 4
o Foxet § o NR2F1 8
S EPHBI o + 8 ORSB21 o
= 10 MMADHC & = 10 OLFM1 &
2 3 2 8
'% = = = ﬁ =
= ] -
: — :
5 _ 5
[SHN) — [ =
0 500 1000 1500 2000 2500 0 2000 4000 6000 8000
Ranking of anchor promoters Ranking of anchor promoters
S s P
& & AY (HO®
RO ) oY ¥
m POU3F3 (BRN1)
FHL2 |
Czorf4g |
Developmental Increase TGFBRAP1 NCK2
of Loop Score GPR45| KHDRBS3 (SLM2)
3 e MRPS9 ] sz
< Prefrontal Cortex (PFC) X PFC-2T-RG PFC-2T-RG
o 014 Gene Expression
g, o012
23
o+ 01
o =
S 3 o008
5 < 006 PFC-2T-UL I PFC-2T-UL
§ o004 4
£ o002
a 0
0 500 1000 1500 2000 2500 = PFC.3T-UL
Developmental Decrease 3 L 5
_ g of Loop Score a . e
2 N . e
< 001 3 - Aaat
°§’ -0.02
& K003
S
85 -0.04
43
g <005
k=
S -006
Qo
E 4
g oo
300 250 200 150 100 50 O

500 kbp 200 kbp

Extended DataFig.7|See next page for caption.



Extended DataFig.7 | Chromatinloop dynamicacross cell typesand
developmentalstages. (a) Correlation between the number of cellsin

each cell population and the number of chromatin loops identified.

(b-f) Aggregated chromatin contact signals at differential loopsidentified
across celltypesinthe adultbrain (b), cell typesin the mid-gestational brain (c),
developmental stages for the Exc-UL trajectory (d), developmental stages for
theastrocyte trajectory (e), and subtypes of MGE derived inhibitory neuronsin
theinfantbrain (f). The value above each aggregated profile indicates the APA
score toevaluate theenrichment ofidentified loops withrespect to the lower
leftbackground. (g) Numbers of gainor lost loops across the trajectories of cell

type differentiation. (h) Identification of SIPs in PFC-2T-RG-1. (i) Gene
expression patterns of the top 250 genes whose promoter is associated with
the highest cumulative loop scores in PFC-2T-RG-1. (j) Identification of SIPsin
PFC-adult-Exc-UL. (k) Gene expression pattern of top 250 genes whose
promoter associated with the highest cumulative loop scoresin PFC-adult-Exc-
UL. (I) Chromatin loops dynamics at POU3F3 (BRN1) and KHDRBS3 (SLM2) loci
across developmental stages. (m) Identification of dev-SIPs associated with the
differentiation of Exc-UL. Gene expression patterns of dev-SIPs showing either
developmentalincrease or decrease of loop scores were shown on the left.
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Extended DataFig. 8| Correlation between chromatinloop dynamics and
CGmethylationlevel of theloop anchor regions. (a) Distribution of the
Pearson’s correlation coefficients betweenloop strength and CG methylation
ofloop anchor regions for developmentally differential loops. (b-e) Correlation
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Extended DataFig. 9| Cell-type and developmental dynamics of chromatin
domainboundaries. (a) Aggregated chromatin contact signals at differential
chromatin domainboundaries identified in the differentiation of Exc-UL and
Astro. The value above eachaggregated plotindicates 1/(insulation score), soa
greater score indicates stronger insulation. (b) Numbers of gain or lost domain
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Extended DataFig.10 | Heritability enrichment analysis of neuropsychiatric
disorders. (a-b) The enrichment of polygenic heritability for bipolar disorder
(a), major depression (b), ADHD (c), ASD (d), Alzheimer’s disease (e), and height
(f)inDMRs and loop-connected DMRs. (g) The genomic region overlapping
witha putative causal variant for schizophreniars500102is connected to the
RORB promoter through a cell-type-specificloop domain. (h-m) Enrichment of

polygenic heritability for neuropsychiatric disorders across developmental
stagesin PFC-Exc-L5-6-PDZRN4 (h), PFC-Exc-L1-3-CUX2 (i), PFC-Exc-L4-5-FOXP2
(j), HPC-Exc-CA1 (k), PFC-Inh-MGE-ERBB4 (1), PFC-Inh-CGE-CHRNA2 (m).
(n-o0) Meta-analysis of heritability enrichment for neuropsychiatric disorders
inexcitatory (n) and inhibitory (o) neuron populations.
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through the National Institute of Mental Health (NIMH) Data Archive (NDA) (https://nda.nih.gov/). Controlled data associated with this study is permitted for
General Research Use (GRU). Instructions for requesting access to controlled data hosted by NeMO are provided at https://nemoarchive.org/resources/accessing-
controlled-access-data. Single-cell RNA-seq data for prenatal human cortical specimens were published in ref. 22. Single-nucleus ATAC-seq data for prenatal human
cortical specimens were published in ref. 14. Bulk Hi-C data for multiple human tissues was published in ref. 29. Bulk Hi-C data for neuronal and non-neuronal nuclei
isolated adult human brains was published in ref. 30. BRAINSPAN developmental transcriptome dataset was published in ref. 11. GWAS summary statistics included
Schizophrenia 41, Bipolar disorder 63, Major Depressive Disorder 64, ADHD 65, ASD 66, Alzheimer’s disease 67, Height GWAS in UK Biobank 68 (downloaded from
https://alkesgroup.broadinstitute.org/sumstats_formatted/).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Our study includes no human subject. De-identified Prenatal and post-mortem human tissues were used in the study and
were not considered as human subjects as determined by IRBs at UCLA ad UCSF.

Population characteristics The prefrontal cortex dataset included four mid-gestational donors (GW18-23), two late-gestational donors (GW35-29),
two infant donors (4-7 months) and five adult donors (21-37 yrs old). The hippocampus dataset included 3 mid-gestational
donors (GW18-23), two late-gestational donors (GW35-39), two infant donors (4-7 months) and two adult donors (29-55

yrs old).
Recruitment No Recruitment involved.
Ethics oversight Cases obtained from UCSF were collected from autopsy sources via the UCSF Pediatric Neuropathology Research Laboratory

(PNRL) and gynecology clinic. Patients were asked about their interest in donating the aborted tissue to research (Table S1).
Patients that agreed, signed a written consent after receiving information, both written and oral, given by a physician or
midwife. Age (post-conception) of the embryos and fetuses was estimated using clinical information (last menstrual period,
ultrasound), true crown-rump-length and anatomical landmarks. The use of abortion material was reviewed and approved by
the University of California, San Francisco (UCSF) Committee on Human Research. Protocols were approved by the Human
Gamete, Embryo and Stem Cell Research Committee (Institutional Review Board GESCR# 10-02693) at UCSF. Samples
collected through autopsy were de-identified before acquisition and thus exempt from IRB review.

Adult human brain samples and a post-mortem GW35 sample (based on adjusted age) were banked by NIH NeuroBioBank at
the University of Maryland Brain and Tissue Bank (Table S1). The tissue collection and repository is overseen by The
University of Maryland Institutional Review Board (IRB) with IRB Protocol Number HM-HP-00042077, as well as The Maryland
Department of Health and Mental Hygiene IRB with IRB Protocol Number 5-58. When an individual of any age dies, the
Medical Examiner or Coroner contacts the next of kin and asks if they would be willing to talk to a staff member at the
University of Maryland Bank and Tissue Bank about an NIH-funded tissue procurement project. If the family agrees, the
Medical Examiner or Coroner contacts the Bank and a staff member will obtain a recorded telephone consent from the next
of kin for donation. A written verification of the consent is then faxed to the referring Medical Examiner’s or Coroner’s office.
Alternatively, the recording can also be played over the telephone for confirmation. University of California Los Angeles
(UCLA) IRB has determined our study using post-mortem human tissue obtained from NIH NeuroBioBank involves no human
subject and requires no IRB review.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size (n>=3) for each age group was determined based on our previous studies (e.g. Luo et al., 2022 Cell Genomics) showing brain
cell types identified using single-cell methylation signatures are highly consistent between donors of similar age. Therefore n>=3 for each age
group is sufficient for robust classifications of cell types. We analyzed n=14 frontal cortex samples and n=11 hippocampus samples. In spite of
the challenge associated with acquiring pre-natal and post-mortem developmental brain samples, we aimed to include at least 3 cases for
each developmental stage (i.e. mid-gestation, late-gestation, infancy and adulthood) including both male and female samples

Data exclusions  As described in the method section, cells were filtered on the basis of several metadata metrics: (1) mCCC level <0.03; (2) global mCG level
>0.5; (3) global mCH level < 0.2; and (4) Total chromatin interactions >100,000.

Replication Multiple cases in each developmental stage were always analyzed independently and serve as biological replicates.
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Randomization  Randomization was not used in this study. This study does not involve any case/control design but instead compared molecular differences
between samples of different ages. Therefore randomization was not applicable.

Blinding Investigators were not blinked in this study as quantitative measures were used to measure our results. The cell types were determined using
unbiased and unsupervised clustering approaches and thus any potential human bias has little impact on the reported results.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|Z Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
[] clinical data

[ ] pual use research of concern

XX XXX s

Antibodies

Antibodies used anti-NeuN antibody (PE-conjugated, clone A60, Millipore-Sigma #FCMAB317PE)
Mouse Histone H3 trimethylated at lysine 9 (H3K9me3) (Diagenode, Cat# C15200146, RRID:AB_2927650)
Rabbit Anti-RNA polymerase Il CTD repeat YSPTSPS (phospho S2) antibody [EPR18855] (Abcam, Cat# ab193468, RRID:AB_2905557)
Mouse monoclonal [SC-35] to SC35 - Nuclear Speckle Marker (Abcam, Cat# ab11826, RRID:AB_298608)
Rabbit Histone H3K27ac antibody (pAb) (Active Motif, Cat# 39133, RRID:AB_2561016)
Mouse Lamin A/C (E-1) (Santa Cruz Biotechnology, Cat# sc-376248, RRID:AB_10991536)
NUP98 (C39A3) Rabbit mAb (Cell Signaling Technology, Cat# 2598, RRID:AB_2267700)
Alexa Fluor® 790 AffiniPure Donkey Anti-Mouse IgG (H+L) (Jackson ImmunoResearch Labs, Cat# 715-655-150)
Alexa Fluor® 647 AffiniPure Donkey Anti-Rabbit IgG (H+L) (Jackson ImmunoResearch Labs, Cat# 111-605-144)

Validation Each antibody was experimentally validated by the Bintu/Zhu lab before being used for multi-modal imaging data experiments For
each antibody, immunofluorescence images were generated from cultured IMR90 cells and compared to the published dataset (Su et
al., 2020 Cell) generated using the same antibody product and using the same cell type (IMR90). The anti-NeuN antibody used in
study is a monoclonal antibody (clone A60) used in many of our previous studies. The staining of adult human cortial tissue using the
anti-NeuN antibody labeled the expected 1:3 ratio of NeuN+(neuron) and NeuN- (non-neuron) populations. For antibodies used for
the imaging experiment, the pattern of the immunofluorescent staining was compared to previous publications to ensure the
consistency of antibody specificity.
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