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A combinatorial neural code for long-term 
motor memory

Jae-Hyun Kim1,2, Kayvon Daie3 & Nuo Li1,2 ✉

Motor skill repertoire can be stably retained over long periods, but the neural 
mechanism that underlies stable memory storage remains poorly understood1–8. 
Moreover, it is unknown how existing motor memories are maintained as new 
motor skills are continuously acquired. Here we tracked neural representation  
of learned actions throughout a significant portion of the lifespan of a mouse  
and show that learned actions are stably retained in combination with context, 
which protects existing memories from erasure during new motor learning. We 
established a continual learning paradigm in which mice learned to perform 
directional licking in different task contexts while we tracked motor cortex activity 
for up to six months using two-photon imaging. Within the same task context, 
activity driving directional licking was stable over time with little representational 
drift. When learning new task contexts, new preparatory activity emerged to  
drive the same licking actions. Learning created parallel new motor memories 
instead of modifying existing representations. Re-learning to make the same 
actions in the previous task context re-activated the previous preparatory activity, 
even months later. Continual learning of new task contexts kept creating new 
preparatory activity patterns. Context-specific memories, as we observed in the 
motor system, may provide a solution for stable memory storage throughout 
continual learning.

In our lifetime we stably retain a myriad of motor skills. How learned 
actions are stored in motor memory remains poorly understood. In the 
motor cortex, specific learned actions are evoked by distinct patterns 
of preparatory activity7,9–11 (Fig. 1a). Preparatory activity is thought 
to provide the initial conditions for the ensuing dynamics dictating 
movement execution12–16, but its relationship to subsequent action 
remains obscure17–19. For example, it remains unknown whether pre-
paratory activity states are linked to subsequent movement execution 
and therefore fixed for actions with identical kinematics; alternatively, 
preparatory activity might encode other cognitive variables associated 
with learned actions beyond the movement itself4,5,7,8,20.

A related question is how learned actions are maintained by motor 
circuits over time. Motor cortex circuits exhibit considerable plasticity 
during motor learning7,21–32. Given this plasticity, the neural mechanism 
underlying motor memory storage is unclear. Recent studies propose 
memory storage mechanisms based on unstable representations3,33: in 
a redundant neural network in which multiple network configurations 
produce the same output, activity patterns leading to the same motor 
output can change over time34,35. For example, if a pattern of activity 
drives our speech of the word ‘cat’, a different pattern of activity may 
occur when we utter the word ‘cat’ a year later (Fig. 1b, left). This ques-
tion remains under-explored as motor cortical activity has rarely been 
tracked over periods of more than one month36–40.

Moreover, it is unknown how existing motor memories are pro-
tected from modifications by continual learning of new motor skills. 

Theories of learning posit a modular approach, in which multiple 
parallel motor memories are formed for distinct contexts1,4–6, thus 
new learning takes place in separate modules. Neurophysiological 
studies of motor learning mostly examine single tasks. It remains 
poorly understood how neural representation of an action is formed 
and maintained when we learn to utilize the same action in different 
contexts—for example, learning to speak the word ‘cat’ in different 
sentences (Fig. 1b, right).

To address these questions, we developed an automated home-cage 
training paradigm in which mice learned to perform directional licking 
in different task contexts. Learned directional licking is dependent 
on preparatory activity in anterior lateral motor cortex14,41,42 (ALM).  
We tracked ALM activity across continual learning for multiple months 
using two-photon calcium imaging. We found that learned directional 
licking was stably encoded in preparatory activity with little repre-
sentational drift. Across learning multiple task contexts, multiple 
preparatory states were created to encode the same licking action in 
a context-dependent manner. Our results show that motor memories 
encode learned actions in combination with their context, which we call 
a combinatorial code. A feedforward network that stored sensorimotor 
combinations in high-dimensional hidden layers was able to explain 
multiple aspects of the results. Context-specific motor memories may 
help reduce interference of new learning to previously learned repre-
sentations6,8, thus protecting existing motor repertoire from erasure 
in the face of continual learning.
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A continual learning paradigm
To track neural representation of the same movement across con-
tinual learning of new motor skills, we studied a stereotyped and yet 
cortex-dependent movement: goal-directed directional licking in mice. 
We developed a home-cage system in which mice voluntarily engaged 
in head fixation and learned multiple licking tasks without human 
supervision43 (Fig. 1c). In a tactile-instructed licking task, mice dis-
criminated the location of a pole during a sample epoch and reported 
decision using ‘lick left’ or ‘lick right’ after a delay epoch (Fig. 1d). Mice 
initially learned to lick left for anterior pole position and lick right for 
posterior pole position (task context 1; Fig. 1d). After achieving more 
than 75% correct (Methods), the home-cage system automatically 
reversed the contingency between pole locations and lick directions 
(task context 2; Fig. 1d). The delay epoch separated sensory stimuli from 

motor response. Thus in the two tasks, mice made identical actions 
under identical external environment after the delay epoch, but with 
different stimulus history and task rules. We therefore refer to these 
conditions as different ‘task context’.

Mice learned many rounds of reversals over several months (Fig. 1e). 
High-speed videography showed that tongue and jaw movements were 
consistent over time and across contingency reversals (Extended Data 
Fig. 1a,b). Mice were faster to reach criterion performance (>75% cor-
rect) for subsequent reversals (Fig. 1f and Methods). Faster reversal was 
observed when mice re-learned the previously learned sensorimotor 
contingency, but less correlated with overall amount of prior training 
(Extended Data Fig. 1c), consistent with a saving effect typically associ-
ated with motor skill learning2.

The ALM is critical for planning and execution of directional  
licking14,41,44,45. To test whether ALM is required for learned directional 
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Fig. 1 | A behaviour paradigm for continual learning. a, Preparatory states 
for different actions in activity space. b, Possible outcomes of preparatory 
states across time and new task learning. c, Top, mice living in the home-cage 
system voluntarily engage in head fixation and learn directional lick tasks. 
Bottom, behavioural data from an example mouse. Dark bands represent 
epochs of voluntary head fixation; grey bands represent rest. d, Mice report 
pole position using lick left or lick right after a delay epoch. Sensorimotor 
contingency is reversed across task contexts. e, Behaviour performance of an 
example mouse. Contingency reversals are introduced when performance is 
above 75%. Averaging window, 100 trials. f, Number of trials to reach 75% correct 
performance (mean ± s.e.m.). Individual lines show data from individual mice. 
Mice used for in-cage optogenetic (5 mice), imaging (13 mice) and behaviour 
testing only (5 mice) are combined. Learning task context 1 versus 2, *P = 0.0286  
(23 mice); learning task context 2 versus 1′, *P = 0.0431 (19 mice); learning task 
context 1′ versus 2′, P = 0.3425 (13 mice), not significant (NS). Two-tailed paired 
t-test. g, Top, optogenetic approach to silence ALM activity in the home cage. 

Bottom, task and photoinhibition timelines. Photostimulation during  
the sample (S), delay (D) and response (R) epochs; power 0.35, 1.77 and 
3.54 mW mm−2 for each epoch. h, Behaviour performance of an example  
mouse during ALM photoinhibition. Black, control trials. Red, photoinhibition 
during the delay epoch (3.54 mW mm−2). Red shaded area, photoinhibition 
blocks. Photostim., photostimulation. i, Behaviour performance during  
ALM photoinhibition (mean ± s.e.m.). Trial types by instructed lick direction. 
Left ALM photostimulation. Sample epoch, instructed lick right, *P = 0.0248, 
F = 0.7574 (1.77 mW mm−2), *P = 0.0349, F = 0.8402 (3.54 mW mm−2); instructed 
lick left, *P = 0.0360, F = 1.0334 (0.35 mW mm−2). Delay epoch, instructed  
lick right, **P = 0.0054, F = 0.7212 (1.77 mW mm−2), **P = 0.0012, F = 0.3909 
(3.54 mW mm−2). Response epoch, instructed lick right, *P = 0.0249,  
F = 0.4940 (0.35 mW mm−2), **P = 0.0093, F = 0.6863 (3.54 mW mm−2); 
instructed lick left, *P = 0.0423, F = 1.0702 (3.54 mW mm−2). Two-tailed t-test 
against control.
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licking after extended training, we optogenetically silenced ALM activ-
ity during task performance in home cage43 (Fig. 1g and Methods). We 
virally expressed a red-shifted channelrhodopsin46 (ChRmine) in ALM 
GABA (γ-aminobutyric acid)-expressing (GABAergic) neurons and 
photostimulated ALM through a clear skull implant during voluntary 
head fixation (Fig. 1g). ALM photoinhibition during the delay epoch 
disrupted behavioural performance, even after multiple rounds of 
contingency reversal (Fig. 1h). Left ALM photoinhibition biased future 
licking to the ipsilateral direction (lick left) in a light dose-dependent 
manner (Fig. 1i and Extended Data Fig. 1d). These results show that 
directional licking consistently depends on ALM preparatory activity 
over time, thus enabling us to chronically track neural activity that is 
causally driving the learned licking actions.

Stable representation of action
To examine whether neural representations of learned actions drift over 
time (Fig. 2a), we performed longitudinal two-photon calcium imaging 
of ALM (GP4.3 mice; Extended Data Fig. 1e–g; imaging duration, 26–233 
days). After mice attained high performance under task context 1 in the 
home cage, we transferred them to a two-photon microscope where 
they performed the same task in daily sessions (Methods). After brief 
acclimatization, mice maintained stable performance (Fig. 2b), with 
little performance change within session (Extended Data Fig. 1j). We 
imaged the same field of view across multiple days (Fig. 2c and Extended 
Data Fig. 2a; referred to as ‘expert-early’ or ‘expert-late’ sessions), cover-
ing different fields of view on interleaved days (Extended Data Fig. 2b). 
The imaged fields of view were remarkably stable. We identified 42,739 
neurons that could be confidently matched across days based on their 
shapes and centroid locations47 (Extended Data Fig. 2c–i; 50 fields of 
view, 8 mice; Methods).

ALM neurons exhibited task-related activity (dF/F0; Fig. 2d, top). 
We deconvolved dF/F0 to avoid the spillover of slow-decaying calcium 
dynamics across task epochs48 (Extended Data Fig. 2j and Methods). 
Sorting neurons by their peak activities revealed similar task-related 
activity across days (Fig. 2d, bottom). We computed selectivity as the 
difference in activity between trial types divided by their sum (anterior 
versus posterior pole position for the sample epoch; lick left versus 
lick right for the delay and response epochs; correct trials; Methods).  
On error trials, when mice licked in the opposite direction to the instruc-
tion provided by pole location, ALM activity during the delay epoch 
predicted the licking direction (Extended Data Fig. 2k,l). Neurons 
showing significant trial-type selectivity (P < 0.001, two-tailed t-test) in 
expert-early sessions largely maintained their selectivity in expert-late 
sessions (Fig. 2e; Pearson’s correlation, sample epoch: R = 0.9404, 
P = 0; delay epoch: R = 0.8861, P = 0; response epoch: R = 0.9001, P = 0). 
A subset of ALM neurons exhibited altered activity across days, but 
these changes mainly occurred in non-selective neurons (Extended 
Data Fig. 3a–c). This suggests that lick direction encoding is selectively 
maintained.

To investigate lick direction encoding at the population level, we 
analysed ALM activity in an activity space, where each dimension cor-
responds to activity of one neuron14,49. We estimated a ‘coding direc-
tion’ (CDDelay) along which activity maximally discriminated future lick 
direction at the end of the delay epoch (‘preparatory state’; Methods). 
To examine population encoding over time (Fig. 2f), we estimated the 
CDDelay using 50% of the trials in a session (training dataset) and pro-
jected activity in non-overlapping trials from the same session or across 
sessions (testing dataset; Fig. 2g). ALM activity along the CDDelay was 
maintained over time (Fig. 2h), despite moderate changes in population 
activity vector (Extended Data Fig. 3d–f). We used a decision boundary 
on the CDDelay to predict lick direction from ALM activity (Methods).  
A decoder defined in one session could accurately predict lick direction 
in other sessions regardless of the timespan between sessions, even up 
to 2 months apart (Fig. 2i; linear regression: −0.08 ± 0.11, mean ± s.e.m. 

across mice; P = 0.4870, t-test against 0). A decoder from expert-early 
or late sessions could similarly predict lick direction in expert-late or 
early sessions, respectively (Fig. 2j). Individual neurons contributing 
to the CDDelay were highly correlated across sessions (Fig. 2k; Pearson’s 
correlation, R = 0.6053, P = 0).

We analysed ALM activity during the sample and response epochs and 
found similarly stable selectivity along the coding directions (Extended 
Data Fig. 4). These results show that ALM activity is selectively main-
tained along coding directions that encode learned directional licking 
for at least two months.

New representation emerges with learning
We next explored how motor memories form when new motor skills 
are acquired. A key question here is whether existing activity states are 
reused11,31 or whether entirely new activity states are formed (Fig. 3a).  
To address this question, we monitored ALM activity across two differ-
ent task contexts. After imaging in task context 1, we returned mice to 
the home cage to learn reversed sensorimotor contingency then imaged 
them again in task context 2 (Fig. 3b; task context 1→2). Performance 
was similar in the two task contexts (85.59 ± 1.00% versus 84.06 ± 0.99% 
correct rate, mean ± s.e.m.; P = 0.1862, paired t-test), and video analysis 
showed that mice made the same tongue and jaw movements (Extended 
Data Fig. 1a,b, bottom). We identified 1,118 ± 500 matched neurons in 
each field of view (58 fields of view, 10 mice; 31.88 ± 13.88 days between 
imaging sessions, mean ± s.d. across sessions).

We observed a profound reorganization of ALM preparatory activ-
ity in new task context. Many ALM neurons lost or even reversed their 
lick direction selectivity in task context 2 (Fig. 3c, top), whereas other 
neurons retained their selectivity. Also, new selective neurons emerged 
in task context 2 (Fig. 3c, bottom). Across the population, neuronal 
selectivity across the two task contexts were not correlated (Fig. 3d and 
Extended Data Fig. 5e; Pearson’s correlation, R = −0.0057, P = 0.6774).

We examined population encoding of future lick direction by calcu-
lating the CDDelay in each task context (Fig. 3e). Activity projected on 
the CDDelay reliably differentiated lick direction within task context, 
but this activity collapsed when projected on the CDDelay across task 
contexts (Fig. 3f). Across all fields of view, a CDDelay decoder predicted 
lick direction at near chance level on average in the other task context 
(Fig. 3g). Individual neurons supporting the CDDelay vectors in the two 
task contexts were weakly correlated (Fig. 3h; Pearson’s correlation, 
R = 0.3; significantly less than the correlation within task context over 
time in Fig. 2k, P = 0, bootstrap). Thus, different task contexts yielded 
distinct CDDelay vectors. In contrast to the reorganization of ALM pre-
paratory activity, selectivity during the sample and response epochs 
remained remarkably stable across task contexts (Extended Data Fig. 5). 
This ruled out the possibility that the change in preparatory activity 
was due to unstable imaging or changes in motor behaviour.

Although ALM preparatory activity was reorganized across task con-
texts on average, we found substantial individual variability across mice 
(Fig. 3g and Extended Data Fig. 6a–c). In some mice, the CDDelay vectors 
in the two task contexts were nearly orthogonal (Fig. 3f). But in other 
mice, preparatory activity maintained along the same CDDelay (Extended 
Data Fig. 6d), or even reversed direction along the CDDelay (Extended 
Data Fig. 6e). Within each mouse, similar pattern of reorganization was 
consistently observed across different fields of view (Extended Data 
Fig. 6a–c), indicating that the variability was not due to heterogeneous 
sampling of neurons or location of imaging (Extended Data Fig. 6g). 
Task performance, uninstructed movements, task learning speed or 
the time interval between imaging sessions did not explain this indi-
vidual variability (Extended Data Fig. 6f,g). Individual variability may 
result from differences in the underlying circuits (see later modelling).

Thus, new preparatory states form when mice learn to make the 
same licking actions under new task contexts. These results also show 
that distinct preparatory states in motor cortex can drive the same 
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subsequent movement execution. Preparatory states could therefore 
encode a learned action in multiple representations that index distinct 
contexts.

Stable retention of learned representations
Encoding learned actions in combination with context could enable 
stable retention of motor memories over continual learning, because 
learning in different contexts forms parallel new representations with-
out altering previously learned representations. To test this notion, we 
examined whether learned preparatory states in previous contexts 
were retained after intervening learning (Fig. 4a).

After imaging ALM activity in task contexts 1 and 2, mice were 
re-trained in task context 1 (notated as 1′ for re-learning) in the auto-
mated home cage (Extended Data Fig. 1f). We then imaged the same 
neuronal populations again (Fig. 4b; task context 1→2→1′). We observed 
a re-activation of the previous preparatory activity pattern, even though 
task contexts 1 and 1′ were tested 2 months apart on average (32–78 
days; Fig. 4b and Extended Data Fig. 1f,g). Individual neurons showing 

lick direction selectivity in task context 1 were reconfigured in task 
context 2 but reappeared in task context 1′ (Fig. 4c,d and Extended Data 
Fig. 7h; Pearson’s correlation, task context 1 versus 1′, R = 0.7675, P = 0).

We examined whether ALM preparatory activity was re-activated 
along similar coding directions in activity space (Fig. 4e). Activity 
trajectories in lick left and lick right trials were well separated in task 
context 1′ when projected on the CDDelay from task context 1 (Fig. 4f).  
By contrast, the activity trajectories were poorly separated when pro-
jected on the CDDelay from task context 2 (Fig. 4g). Across all fields of 
view, a CDDelay decoder trained on task context 1 predicted lick direction 
at near chance level in task context 2, but performance recovered in 
task context 1′ (Fig. 4h). Together, these data indicate a re-activation 
of the previously learned preparatory states under task context 1′.

We also observed a similar re-activation of ALM preparatory states 
associated with task context 2. In a subset of mice (n = 3), we further 
imaged the same ALM populations across task context 1→2→1′→2′, span-
ning up to 3 months (59–97 days across mice; Extended Data Fig. 1f,g). 
We found consistent reorganization and re-activation of CDDelay vectors 
across the reversals (Fig. 4i). Thus, stable retention of preparatory 
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states was not limited to any specific task context. Unlike preparatory 
activity, selectivity during the sample and response epochs were stably 
maintained across all task contexts (Extended Data Fig. 7).

In addition to the reorganization and re-activation of coding direc-
tions (CDDelay), we also observed activity changes along other dimen-
sions of activity space across task contexts (Extended Data Fig. 8). 
Activity along these dimensions did not discriminate lick direction 
(Extended Data Fig. 8e; ‘movement-irrelevant subspace’), and activity 
did not recover in previous task contexts (Extended Data Fig. 8c,d). 
Therefore, preparatory activity is selectively maintained along coding 
directions encoding behaviour-related information, but activity drifts 
over time along other non-informative directions7,14,50.

Learning creates parallel representations
We next tested whether continual learning in new task contexts will 
keep creating new preparatory states. Experiments so far only tested 
two task contexts. Now we tested whether yet new preparatory states 
would emerge if mice learned to perform directional licking instructed 
by a novel stimulus (Fig. 5a).

We trained mice to perform an auditory-instructed licking task in 
the automated home cage after imaging ALM activity in the tactile 
tasks (Fig. 5b; task context 1→2→3; 40–118 days). Mice discriminated 
frequency of a pure tone, and licked left for 2 kHz and licked right for 
10 kHz. We then imaged the same ALM populations in auditory task. 

Individual neurons with significant lick direction selectivity during 
the delay epoch in tactile task showed distinct pattern of selectivity 
in auditory task (Fig. 5c; Pearson’s correlation, task context 1 versus 3, 
R = 0.3435; significantly less than the correlation within task context 
over time in Fig. 2e, P = 0, bootstrap).

We further examined whether ALM preparatory activity encoded 
tactile- and auditory-instructed lickings along different coding direc-
tions (Fig. 5d). Indeed, we found poor separation between activity 
trajectories in lick left and lick right trials when activities in the auditory 
task were projected on the CDDelay from the tactile task (Fig. 5e). Across 
all fields of view, the CDDelay decoders trained on the tactile tasks pre-
dicted lick direction poorly when tested on the auditory task (Fig. 5f). 
By contrast, a decoder trained within the auditory task could decode 
lick direction significantly better than the decoders from tactile task 
1 and 2 (P = 0.0022 and P = 0.002, two-tailed paired t-test), indicating 
that their poor decoding performances in the auditory task were not 
due to a lack of neuronal selectivity.

Finally, ALM activity during the sample epoch was distinct across 
tactile and auditory tasks (Extended Data Fig. 9a,b). Lick direction 
selectivity during the response epoch remained stable across all task 
contexts (Extended Data Fig. 9e,f), which probably reflected conserved 
licking movement execution across tasks and ruled out the possibility 
of unstable imaging over time.

Together, these results show that motor learning produces 
context-specific preparatory states. Once learned, these activity states 
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are stably stored and can be recalled after several months, despite inter-
vening motor learning involving the same actions in other contexts. 
At the same time, activity related to movement execution remains the 
same across contexts. Preparatory states thus reflect context-specific 
motor memories that are stably retained over continual learning.

Preparatory activity reflects motor memory
We next explored how a context-specific neural code could support 
motor memory behaviour. Mice exhibited faster re-learning in the 
previously learned sensorimotor contingency (Extended Data Fig. 1c). 
We examined whether preparatory states retained a memory trace that 
could facilitate faster re-learning8.

We re-analysed the imaging data from tactile task 1→2→1′ in which 
we imaged ALM activity in the same task context before and after an 
intervening learning. If learning of task context 2 left a memory trace, 
we should observe an activity change in task context 1′ compared 
with task context 1, and this change should support the performance 
of task 2. We calculated the CDDelay for task context 2 and projected 
ALM activity at the end of the delay epoch on the CDDelay (Extended 
Data Fig. 10a). ALM activity in task context 1′ exhibited increased lick 
direction selectivity along the CDDelay compared with task context 1 
(Extended Data Fig. 10b; P = 0.005, paired t-test). To examine whether 
this activity change could support the performance of task 2, we per-
formed decoding of lick direction using activity projected on the CDDelay 
from task context 2. Decoding was near chance level in task context 1 
(52.75 ± 5.24%, mean ± s.e.m. across sessions) but significantly increased 
to 58.66 ± 4.63% in task context 1′ (Extended Data Fig. 10c; P = 0.0199, 
paired t-test). Thus learning of task context 2 left a subtle but persistent 
alteration of ALM preparatory activity along the CDDelay

8.
If each task-specific CDDelay retains a memory trace of previous learn-

ing, distinct CDDelay vectors could provide a place to store task-specific 
motor memories while protecting them from interference. We tested 
this notion by taking advantage of the individual variability that some 

mice exhibited distinct CDDelay vectors across task contexts, whereas 
others exhibited fixed CDDelay vectors (Extended Data Fig. 6a–c). 
Remarkably, mice with distinct CDDelay vectors in different task con-
texts (lower dot product) re-learned the previously learned task faster 
(Extended Data Fig. 10d; P = 0.0002, Pearson’s correlation).

These results suggest that task-specific motor memories are stored 
along distinct coding directions in activity space, which could help 
protect the memories from new learning and support faster re-learning 
of previously learned tasks.

A feedforward network for stable memory storage
We used network modelling to explore network architectures that 
might support the observed memory storage. Preparatory activity is 
mediated by interactions between ALM and multiple brain regions51. 
Our goal was to be agnostic to how models map onto brain regions but 
explore what networks could explain reorganization of preparatory 
activity by learning, specifically: (1) formation of new preparatory 
activity across contingency reversal; and (2) re-activation of learned 
preparatory activity patterns after intervening task learning.

We started with recurrent neural networks52 (RNNs) (Fig. 6a). RNNs 
were trained to generate linear ramps along the correct readout dimen-
sion and no activity along the incorrect readout dimension (Fig. 6b, task 
context 1; Methods). For contingency reversal, we trained the internal 
connections of learned RNNs to generate the opposite responses while 
keeping the input and output connections fixed (Methods). Contrary to 
the neural data in which a new pattern of selectivity emerged after con-
tingency reversal (Fig. 3), RNN activity mostly followed the network out-
put (that is, lick direction; Fig. 6b). Network units similarly contributed 
to the CDDelay defined by lick direction in both task contexts (Fig. 6c). 
We also tested RNNs in which only two internal units contributed to the 
output, yielding similar results (Extended Data Fig. 11a–c). RNN dynam-
ics were therefore constrained to the previously learned CDDelay and the 
networks solved the contingency reversal by re-association (Fig. 6d).
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We next explored a class of amplifying feedforward (AFF) networks 
that generate persistent activity by passing activity through a chain of 
network states53,54 (Fig. 6e and Extended Data Fig. 11d), which can be 
modelled as a series of layers with feedforward connections. AFF net-
works learned feedforward amplifications to generate choice-specific 
persistent activity in response to transient inputs to the early layer 
(Fig. 6f). Feedback connections conveyed output signals to early layers 
and allowed the network to learn (Methods). In the hidden layers, AFF 
networks maintained persistent activity along multiple dimensions 
(Extended Data Fig. 11e,f). AFF networks readily captured both features 
of the neural data: (1) upon contingency reversal, the network learned 
a new CDDelay; (2) re-training in the previous sensorimotor contingency 
re-activated the previous CDDelay (Fig. 6f,g). Resetting the weights of 
the hidden layers before re-training prevented the CDDelay re-activation 
(Extended Data Fig. 11g,h). Thus, AFF networks stored sensorimotor 
mappings in hidden layers.

We next examined the features that allowed AFF networks to create 
new CDDelay vectors upon contingency reversal learning while retaining 
previously learned CDDelay vectors. Owing to feedforward and feedback 
connections, intermediate layers contained mixtures of input and 
output representations. We decompose AFF network activity into dis-
tinct modes. AFF networks learned a persistent stimulus mode and an 
output mode along orthogonal dimensions that together established 
the CDDelay (Extended Data Fig. 12a). Upon contingency reversal, the 
output mode combined with the new stimulus mode to form a new 
CDDelay (Extended Data Fig. 12a). Reversion to the previous contingency 
re-activated the original stimulus and output modes, which re-activated 
the previously CDDelay (Fig. 6g). By contrast, we found that the persistent 
stimulus mode was absent in RNNs, which resulted in CDDelay vectors 
that were aligned to only the output mode (Extended Data Fig. 12b). 
This suggests that a high-dimensional circuit that can maintain multi-
ple persistent activity modes is critical to support context-dependent 
CDDelay reorganization.

This feature of AFF networks could also explain individual variabil-
ity across mice (Extended Data Fig. 6a–c). Individual networks could 
exhibit a range of CDDelay reorganization depending on the relative 
strength of input and output representations in the intermediate layers 
(Extended Data Fig. 12a). Networks with strong stimulus modes (due 
to weak feedback connections) exhibited reorganized CDDelay vectors; 
networks with strong output modes exhibited stable CDDelay vectors 

aligned to the network output (Fig. 6h and Extended Data Fig. 12c). This 
suggests an unexpected role of stimulus activity in the formation of 
motor memory. We tested whether ALM stimulus activity could explain 
the individual variability across mice in our data. Remarkably, stimulus 
activity strength measured in task context 1 predicted whether a mouse 
would exhibit context-dependent reorganization of CDDelay across task 
contexts (Extended Data Fig. 12d). This suggests individual differences 
in their underlying neural circuits.

In summary, an AFF network architecture that maintained multiple 
persistent activity modes to encode sensorimotor combinations in 
high-dimensional hidden layers could explain multiple aspects of the 
neural data. These results suggest that stable motor memory is rooted 
in high-dimensional representations. AFF network is a subclass of RNNs. 
There may be other architectures that could also produce these neural 
dynamics.

Discussion
Our study reveals a combinatorial neural code that stores learned 
actions in combination with their contexts. Within a task context, 
preparatory activity encoding lick direction is stably maintained over 
multiple months (Fig. 2), and even across intervening motor learning 
(Fig. 4). Across task contexts, the same action is preceded by distinct 
preparatory activity (Fig. 3), whereas selectivity related to sensory 
stimulus and movement execution remains remarkably stable over time 
and across task contexts (Extended Data Figs. 4, 5, 7 and 9). These results 
suggest that the same action can be encoded by multiple preparatory 
states. This afforded degree of freedom may allow the motor circuits 
to create parallel representations for the same actions while indexing 
their contexts. Indeed, we find that new task learning continually cre-
ates new preparatory states for learned actions in a context-dependent 
manner (Fig. 5). Motor learning thus forms modular motor memories 
for each context.

Preparatory states in different task contexts are arranged along dis-
tinct coding directions in activity space. Each coding direction retains 
a memory trace of the previous learning in specific tasks (Extended 
Data Fig. 10a–c). Context-specific coding directions could help protect 
existing memories from interference by new learning: mice with distinct 
coding directions across task contexts were faster to re-learn previ-
ously learned tasks—that is, greater saving (Extended Data Fig. 10d). 
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These properties of ALM preparatory activity indicate that it reflects 
motor memory and reveal the underlying neural code for stable motor 
skill retention. Context-specific memory, as we observed in the motor 
system, may provide a solution for stable memory storage throughout 
continual learning. Learning in new contexts produces parallel new 
representations instead of modifying existing representations, thus 
protecting existing motor memories from erasure6,8.

Motor cortical preparatory activity is thought to provide the initial 
conditions for subsequent movement execution16. Our results show that 
preparatory activity is not directly linked to the movement itself but 
reflects motor memories of learned actions and contexts5. Reorgani-
zation of preparatory activity across task contexts shares similarities 
with place cells of hippocampus, which encode space and experience 
within specific context and undergo global remapping across distinct 
contexts55. Context-specific code may be a general feature for learning 
cognitive representations.

Our findings suggest that when movement parameters and task 
context are controlled, neural representation of actions in motor 
cortex shows surprisingly little representational drift. Interestingly, 
preparatory activity is selectively maintained along coding directions, 
but activity drifts over time along other non-informative directions 
(Extended Data Figs. 3 and 8). Preparatory activity is maintained by 
recurrent networks in motor cortex and connected brain areas16,51. Our 
findings suggest that motor memories are stored in stable network 
configurations. Previous studies have reported representational drift in 
sensory, association, and memory-related brain regions34,56,57. However, 
little representational drift has been reported in motor areas38–40. Dif-
ferences in brain areas and behavioural paradigms may explain some 
differences in these findings.

It was recently reported that motor learning induces a persistent 
change in preparatory activity7,8. Notably, this persistent change occurs 
outside of the activity subspace encoding specific movements (coding 
directions), whereas the geometry of activity states encoding specific 
movements is mostly preserved. These studies examine activity change 
within a session or across a few days, thus the stability of the reorganized 
activity remains to be determined. By tracking activity over long-term, 
here we find that learning new task context induces a dramatic reor-
ganization of the coding directions (Figs. 3 and 5), along with changes 
in movement-irrelevant subspace (Extended Data Fig. 8). We also find 
that, once learned, the preparatory states are stably retained and can 
be recalled after multiple months (Fig. 4). Thus multiple concerted 
changes, along both coding directions and movement-irrelevant sub-
spaces, accompany motor skill learning and may work collectively to 
differentiate motor memories.

A combinatorial code requires high-capacity storage for motor mem-
ories owing to potentially many combinations of actions and contexts. 
Standard RNNs mostly reused output activity states in different tasks. 
The delay epoch separating sensory input and network output in time 
and the network training to generate ramping output dynamics dur-
ing the delay epoch might have made it difficult for the RNNs to learn 
sensorimotor combinations. Our network modelling suggests that 
stable motor memory is rooted in high-dimensional representations 
and requires a network architecture that can readily acquire and store 
sensorimotor combinations (Fig. 6e–h). It remains to be determined 
how such high-dimensional representations map onto neural circuits. 
Preparatory activity is maintained by recurrent loops between ALM and 
subcortical regions51,58, including thalamus59, midbrain60, and cerebel-
lum61. The storage locus for such motor memories is unknown. We pro-
pose the cerebellum as a potential candidate. Cerebellar granule cells 
integrate inputs from the neocortex and form the basis for cerebellar 
output that influences preparatory activity62. Cerebellar granule cells 
are the most numerous cell type in the brain, which could provide a 
substrate for high-dimensional representations with minimal interfer-
ence between motor memories63,64. Future work probing mechanisms 
of memory storage in the cerebellum may be of interest.
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Methods

Mice
This study was based on data from 36 mice (age more than postnatal day 
60, both male and female mice). Fifteen GP4.3 mice (Thy1-GCaMP6s; 
Jackson laboratory, JAX 024275) were used for longitudinal two-photon 
calcium imaging. Among them, one mouse was removed from subse-
quent neuronal data analyses due to the low number of matched neu-
rons across days (see ‘Preprocessing of two-photon imaging data’). Five 
GAD2-IRES-Cre mice ( JAX 010802) were used for ALM photoinhibition 
in home cage. Five additional GAD2-IRES-Cre mice were used only for 
behaviour training in home cage. Eleven Slc17a7-Cre mice ( JAX 023527) 
crossed to Cre-dependent GCaMP6f reporter Ai148 mice ( JAX 030328) 
were used for behaviour training but were not used for calcium imaging 
due to poor behavioural performance (Extended Data Fig. 1i).

All procedures were in accordance with protocols approved by the 
Institutional Animal Care and Use Committees at Baylor College of 
Medicine. Mice were housed in a 12:12 reversed light:dark cycle and 
tested during the dark phase. On days not tested, mice received 0.5–1 ml 
of water. On other days, mice were tested in experimental sessions last-
ing 1–2 h where they received all their water (0.5–1 ml). If mice did not 
maintain a stable body weight, they received supplementary water65. 
All surgical procedures were carried out aseptically under 1–2% iso-
flurane anaesthesia. Buprenorphine Sustained Release (1 mg kg−1) and 
Meloxicam Sustained Release (4 mg kg−1) were used for preoperative 
and postoperative analgesia. A mixture of bupivacaine and lidocaine 
was administered topically before scalp removal. After surgery, mice 
were allowed to recover for at least 3 days with free access to water 
before water restriction.

Surgery
Mice were prepared with a clear skull cap and a headpost41,65. The scalp 
and periosteum over the dorsal skull were removed. For ALM photoin-
hibition in GAD2-ires-cre mice, AAV8-Ef1a-DIO-ChRmine-mScarlet46 
(Stanford Gene Vector and Virus Core; titre 8.44 × 1012 viral genomes 
(vg) per ml) was injected in the left ALM (anterior 2.5 mm from bregma, 
lateral 1.5 mm, depth 0.5 and 0.8 mm, 200 nl at each depth) using a 
Nanoliter 2010 injector (World Precision Instruments) with glass 
pipettes (20–30 µm diameter tip and beveled). A layer of cyanoacrylate 
adhesive was applied to the skull. A custom headpost was placed on 
the skull and cemented in place with clear dental acrylic. A thin layer 
of clear dental acrylic was applied over the cyanoacrylate adhesive 
covering the entire exposed skull.

For two-photon calcium imaging in GP4.3 mice, a glass window was 
additionally implanted over ALM. A circular craniotomy with diameter 
3.2 mm was made over the left ALM (anterior 2.5 mm from bregma, 
lateral 1.5 mm). Dura inside craniotomy was removed. A glass assembly 
consisting of a single 4 mm diameter coverslip (Warner Instruments; 
CS-4R) on the top of two 3 mm diameter coverslips (Warner Instru-
ments; CS-3R) was combined using optical adhesive (Norland Products; 
NOA 61) and UV light (Kinetic instruments Inc.; SpotCure-B6). The 
glass window was affixed to the surrounding skull of craniotomy using 
cyanoacrylate adhesive (Elmer; Krazy Glue) and dental acrylic (Lang 
Dental Jet Repair Acrylic; 1223-clear).

Behaviour tasks and training in home cage
Details of behaviour task and training in the autonomous home-cage sys-
tem have been described previously43. In brief, a headport (~20 × 20 mm) 
was in the frontal side of the home cage. The two sides of the headport 
were fitted with widened tracks that guided a custom headpost (26.5 mm 
long, 3.2 mm wide) into a narrow spacing where the headpost could 
trigger two snap action switches (D429-R1ML-G2, Mouser) mounted 
on both sides of the headport. Upon switch trigger, two air pistons 
(McMaster; 6604K11) were pneumatically driven (Festo; 557773) to 
clamp the headpost. A custom 3D-printed platform was placed inside 

the home cage in front of the headport. The stage was embedded with 
a load cell (Phidgets; CZL639HD) to record mouse body weight. This 
body weight-sensing stage was also used to detect struggles during 
head fixations and triggered self-release. A lickport with two lickspouts 
(5 mm apart) was placed in front of the headport. Each of the lickspout 
was electrically coupled to the custom circuit board that detected licks 
via completion of an electrical circuit upon licking contacts41,66. Water 
rewards were dispensed by two solenoid valves (The Lee Company; 
LHDA1233215H). The sensory stimulus for the tactile-instructed licking 
task was a mechanical pole (1.5 mm diameter) on the right side of the 
headport. The pole was motorized by a linear motor (Actuonix; L12-30-
50-12-I) and presented at different locations to stimulate the whiskers. 
The sensory stimuli for the auditory-instructed licking task were pure 
tones (2 kHz or 10 kHz) provided by a piezo buzzer (CUI Devices; CPE-
163) placed in front of the headport. The auditory ‘go’ cue (3.5 kHz) in 
both tactile and auditory tasks was provided by the same piezo buzzer.

Protocols stored on microcontrollers (Arduino; A000062) operated 
the home-cage system and autonomously trained mice in voluntary 
head fixation and behavioural tasks, as well as carrying out optogenetic 
testing. In brief, mice were placed inside the home cage and could freely 
lick both lickspouts that were placed inside the home cage through the 
headport. The rewarded lickspout alternated between the left and right 
lickspouts (3 times each) to encourage licking on both lickspouts. This 
phase of the training acclimatized mice to the lickport and the lickport 
was gradually retracted into the headport away from the home cage. 
The lickport retraction continued until the tip of the lickspouts was 
approximately 14 mm away from the headport. At this point, mice could 
only reach the lickspouts by entering the headport with the headpost 
triggering the head-fixation switches. After 30 successful voluntary 
head-fixation switch triggers, the pneumatic pistons were activated to 
clamp the headpost upon the switch trigger (‘voluntary head fixation’; 
Fig. 1c). The head-fixation training protocol continuously increased 
the pneumatic clamping duration (from 3 s to 30 s). This clamping was 
self-released when the body weight readings from the load-sensing plat-
form exceeded either an upper (30 g) or lower (−1 g) threshold. Overt 
movements of the mice during the head fixation typically produced 
large fluctuations in weight readings exceeding the thresholds. These 
thresholds were dynamically adjusted during the training process.

When mice successfully performed head-fixation training protocol 
by reaching 30 s head-fixation duration, the next training protocol for 
the tactile-instructed licking task began. In the tactile-instructed licking 
task, mice used their whiskers to discriminate the location of a pole and 
reported choice using directional licking for a water reward41,65 (Fig. 1d). 
The pole was presented at one of two positions that were 6 mm apart 
along the anterior–posterior axis. The posterior pole position was 
approximately 5 mm from the right whisker pad. The sample epoch 
was defined as the time between the pole movement onset to 0.1 s after 
the pole retraction onset (sample epoch, 1.3 s). A delay epoch followed 
during which the mice must keep the information in short-term memory 
(delay epoch, 1.3 s). An auditory ‘go’ cue (0.1 s duration) signalled the 
beginning of response epoch and mice reported choice by licking one 
of the two lickspouts. Task training had three subprotocols that shaped 
mice behaviour in stages. First, a ‘directional licking’ subprotocol trained 
mice to lick both lickspouts and switch between the two. Then, a ‘discrimi-
nation’ subprotocol taught mice to report pole position with directional 
licking. Finally, a ‘delay’ subprotocol taught mice to withhold licking 
during the delay epoch and initiate licking upon the ‘go’ cue by gradu-
ally (in 0.2 s steps) increasing the delay epoch duration up to 1.3 s. At the 
end of the delay subprotocol, the head-fixation duration was further 
increased from 30 s to 60 s. The head-fixation duration was increased 
by 2 s after every 20 successful head fixations. This was done to obtain 
more behavioural trials in each head fixation. The program also adjusted 
the probability of each trial type to correct biased licking of the mice.

Mice were first trained in one sensorimotor contingency (Fig. 1b, task 
context 1; anterior pole position→lick left, posterior pole position→ 
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lick right). Then, the correspondence between pole locations and lick 
directions was reversed (task context 2; anterior pole position→lick 
right, posterior pole position→lick left). Over multiple months, mice 
could learn multiple rounds of sensorimotor contingency reversal 
depending on experiment (see ‘Performance criteria for contingency 
reversals and acclimatization to imaging setup’).

For auditory-instructed licking task, mice were trained to perform 
directional licking to report the frequency of a pure tone presented 
during the sample epoch (Fig. 5b, task context 3; 2 kHz (low tone)→lick 
left, 10 kHz (high tone)→lick right). Task structures such as the delay 
epoch (1.3 s) and auditory go cue (3.5 kHz, 0.1 s) were the same as the 
tactile-instructed licking task.

Performance criteria for contingency reversals and 
acclimatization to imaging setup
For mice that underwent optogenetic experiment in home cage, con-
tingency reversal was automatically introduced when mice reached 
performance criteria of >75% correct and <50% early lick for 100 trials 
in a given task contingency (Fig. 1e,h). Mice learned multiple rounds 
of contingency reversals before optogenetic experiment initiated. 
Optogenetic experiment was manually initiated based on inspections 
of behavioural performance (Fig. 1h).

Mice for two-photon imaging were over-trained in each task con-
text to reach performance criteria of >80–85% correct for 100 trials. 
Over-training facilitated faster habituation after transferring to the 
two-photon setup. After mice acquired this high level of task perfor-
mance in home-cage training, we transferred the mice to the imaging 
setup where they performed the same task in daily sessions under the 
two-photon microscope. During this period, mice were singly housed 
outside of the automated home-cage system. A brief acclimatization 
period lasting for a few days was required to habituate the mice to 
perform the task under the microscope (Extended Data Fig. 1e–g).  
We started imaging sessions once mice recovered their task perfor-
mance (typically >75%). After imaging across multiple sessions, mice 
were returned to the automated home cage again in which they learned 
other tasks. In this manner, we repeatedly transferred mice between 
the automated home cage and two-photon setup for as long as possible 
(Extended Data Fig. 1f,g).

For tactile-instructed licking task, mice were first trained and imaged 
in one sensorimotor contingency (Fig. 3b, task context 1). After imaging 
under the two-photon microscope, we transferred the mice back to the 
home cage and reversed the sensorimotor contingency (Fig. 3b, task 
context 2). The mice were over-trained in the new task contingency 
before transferring to the two-photon setup to re-image the same 
ALM populations across task contexts (task context 1→2; 10 mice). 
In a subset of mice, after imaging, we re-trained the mice in the pre-
vious contingency in the home cage (Fig. 4b, task context 1′). After 
achieving proficient task performance, we translocated the mice to 
the two-photon setup and imaged the same ALM populations again 
(task context 1→2→1′; 5 mice). In a subset of mice, we further repeated 
the contingency reversal one more time and imaged across four task 
contexts (task context 1→2→1′→2′; 3 mice).

For auditory-instructed licking task, mice were imaged first in the tac-
tile task contexts 1 and 2 before training in the auditory task to image the 
same ALM populations across task contexts (task context 1→2→3; 8 mice).

ALM photoinhibition in home cage
The procedure for ALM photoinhibition in home cage has been 
described previously43. Light from a 633 nm laser (Ultralaser; 
MRL-III-633L-50 mW) was delivered via an optical fibre (Thorlabs; 
M79L005) placed above the headport (Fig. 1g). Photostimulation of 
the virus injection site was through a clear skull. The photostimulus 
was a 40 Hz sinusoid lasting for 1.3 s, including a 100 ms linear ramp 
during photostimulus offset to reduce rebound neuronal activity67. Pho-
tostimulation was delivered in a random subset of trials (18%) during 

either the sample, delay, or response epoch. Photostimulation started 
at the beginning of the task epoch. Photostimulation power was 2.5, 12.5, 
or 25 mW, randomly selected in each trial. Therefore, the probability 
of each photostimulation condition was 2% (total of 9 conditions). 
The size of the light beam on the skull surface was 7.07 mm2 (3.0 mm 
diameter). 2.5, 12.5, and 25.0 mW power corresponded to 0.35, 1.77, 
and 3.54 mW mm−2 in light intensity. This range of the light intensity 
was much lower than the previous studies41,42 (typically 1.5 mW with  
a light beam diameter of 0.4 mm, corresponding to 11.9 mW mm−2). 
To prevent the mice from distinguishing photostimulation trials from 
control trials using visual cues, a masking flash was delivered using a 
627 nm LED on all trials near the eyes of the mice. The masking flash 
began at the start of the sample epoch and continued through the end 
of the response epoch in which photostimulation could occur.

Videography
Two CMOS cameras (Teledyne FLIR; Blackfly BFS-U3-04S2M) were used 
to measure orofacial movements of the mouse from the bottom and 
side views (Extended Data Figs. 1a,b and 5e). Both the bottom and side 
views were acquired at 224 × 192 pixels and 400 frames per second. Mice 
performed the task in complete darkness, and videos were recorded 
under infrared 940 nm LED illumination (Luxeon Star; SM-01-R9).  
A custom written software controlled the video acquisition68.

Two-photon imaging
A Thorlabs Bergamo II two-photon microscope equipped with a tunable 
femtosecond laser (Coherent; Chameleon Discovery) is controlled by 
ScanImage 2016a (Vidrio). GCaMP6s was excited at 920 nm. Images 
were collected with a 16× water immersion lens (Nikon, 0.8 NA, 3 mm 
working distance) at 2× zoom (512 × 512 pixels, 600 × 600 µm). For all 
imaging sessions, we performed volumetric imaging by serially scan-
ning five planes (30 or 40 μm equally spaced along the z axis) at 6 Hz 
each. The range of depth from all imaging planes was 120–500 μm below 
the pial surface, and the range of laser power was 80–225 mW, measured 
below the objective. To identify the spatial locations of individual field 
of view (FOV), we imaged at the pial surface before imaging during the 
task (Extended Data Fig. 2b). To monitor the same ALM neurons across 
days, we saved 6 reference images with 10 µm interval around the most 
superficial imaging plane for all imaging sessions and identified the 
most similar imaging plane based on visual inspection across sessions.

Multiple FOVs were imaged across multiple days in each task con-
text. The same set of FOVs were imaged across multiple task contexts. 
Across all experiments, the total duration from the first imaging session 
to the last imaging session was 26–233 days (Extended Data Fig. 1g; 
95.86 ± 71.95 days, mean ± s.d. across mice).

Behaviour data analysis
Performance was computed as the fraction of correct choices, exclud-
ing early lick trials and no lick trials. Mice whose performance never 
exceeded 70% after 35–40 days of training were considered unsuc-
cessful in task learning (Extended Data Fig. 1h,i). Chance performance 
was 50%. Behavioural effects of photoinhibition were quantified by 
comparing the performance under photoinhibition with control tri-
als using paired two-tailed t-test (Fig. 1i). To quantify the speed of task 
learning in a given task context (Fig. 1f and Extended Data Figs. 1c, 6g 
and 10d), we calculated the number of trials to reach performance 
criteria of >75% correct and <50% early lick for 100 trials. We excluded 
the trials in the head-fixation training protocol from the initial task 
learning for a fair comparison.

Video data analysis
We used DeepLabCut69 to track manually defined body parts. Separate 
models were used to track tongue and jaw movements (Extended Data 
Fig. 1a,b). The development dataset for model training and validation 
contained manually labelled videos from multiple mice and multiple 



sessions (correct trials only). For tongue network model, 6 markers 
were manually labelled in 500 video frames. For jaw network model, 
5 markers were manually labelled in 300 video frames. The frames 
for labelling were automatically and uniformly selected by the pro-
gram at different timepoints within trials. The labelled frames of the 
training dataset were split randomly into a training dataset (95%) and 
a test dataset (5%). Training was performed using the default settings 
of DeepLabCut. All models were trained up to 500,000 iterations with 
a batch size of one. The trained models tracked the body features in 
the test data with an average tracking error of less than 2.5 pixels68.

To analyse tongue and jaw movements during the response epoch, 
we defined single lick events based on continuous presence of the 
tongue volume in each frame44. Tongue volume was determined from 
the internal area of the four tongue markers (Extended Data Fig. 1a, left), 
which were located at the corners of tongue. Lick events were separately 
grouped based on the lick duration for further time-bin-matched cor-
relation analysis. x and y pixel positions of the tongue tip trajectories 
were calculated by averaging the frontal tongue markers in each frame.  
x and y pixel positions of the jaw tip trajectories were calculated by aver-
aging the three frontal jaw markers in each frame. For each lick event, we 
obtained four time series (x position, y position, x velocity and y velocity) 
for the tongue (or jaw) tip trajectories (Extended Data Fig. 1a,b, middle). 
To calculate the similarity between the tongue (or jaw) tip trajectories 
across lick events (within lick left or lick right), we computed Pearson 
correlation on the time series for all pairwise lick events within and across 
sessions. We then calculated the average correlation for the four para
meters (x position, y position, x velocity and y velocity) and compared 
them within session and across sessions (Extended Data Fig. 1a,b, right).

To examine jaw movements during the delay epoch across task 
contexts, we calculated the x and y displacement jaw tip position by 
subtracting the average jaw position in a baseline period (1.57 s) before 
the sample epoch (Extended Data Fig. 6f).

Preprocessing of two-photon imaging data
Imaging data were preprocessed using Suite2p package70 to perform 
motion correction and extract raw fluorescence signals (F) from auto-
matically identified regions of interest (ROIs). ROIs with >1 skewness 
were used for further analyses. Neuropil corrected trace was estimated 
as Fneuropil_corrected(t) = F(t) – 0.7 × Fneuropil(t). To visualize activity (Fig. 1d, 
top and Extended Data Fig. 2j, left), ΔF/F0 (type 1) was separately cal-
culated in each trial as (F − F0)/F0, where F0 is the baseline fluorescence 
signal averaged over a 1.57 s period immediately before the start of 
each trial. For all other analyses, we calculated deconvolved activity to 
avoid the spillover influence of slow-decaying calcium dynamics across 
task epochs (Extended Data Fig. 2j). To calculate deconvolved activity, 
Fneuropil_corrected from all trials were concatenated and ΔF/F0 (type 2) was 
calculated as (F − F0)/F0, where F0 is a running baseline calculated as the 
median fluorescence within a sliding window of 60 s. Subsequently, 
ΔF/F0 (type 2) was deconvolved using the OASIS algorithm48 (Extended 
Data Fig. 2j) after estimating the time constant by auto-regressive model 
with order p = 1. Deconvolved activities were used for all the analyses in 
this study, except in Fig. 2d (top) and Extended Data Fig. 2j (left) where 
ΔF/F0 (type 1) traces were shown. Type 1 and type 2 ΔF/F0 only differed 
in their F0 calculation.

To track the activity of the same neurons across days, spatial foot-
prints of individual ROIs from the same FOVs were aligned across dif-
ferent imaging days using the CellReg pipeline47. This probabilistic 
algorithm computes the distributions of centroid distance and spatial 
correlation between neuronal pairs of the nearest neighbour and all 
other neighbours within a 10 μm distance (Extended Data Fig. 2g,h). 
Based on the bimodality between distributions (nearest neighbours 
versus other neighbours), CellReg algorithm calculates the estimated 
false positive and false negative probabilities. By minimizing both 
estimated error rates for each pair of ROIs, this probabilistic algo-
rithm identifies co-registered neurons and quantifies registration 

scores for these co-registered neurons (Extended Data Fig. 2i). If the 
mean squared errors of both centroid distance and spatial correla-
tion model are above 0.1 (a pre-determined hyperparameter), CellReg 
algorithm generates an error and the FOV is considered as a failure to 
find co-registered neurons across days. One mouse was removed from 
all subsequent neuronal data analyses due to failures to find matched 
neurons across days from all imaging sessions, primarily due to poor 
imaging window quality. Among co-registered neurons, only neurons 
with reliable responses in at least one imaging session (i.e., Pearson 
correlation between trial-averaged and trial-type-concatenated ΔF/F0 
(type 1) peristimulus time histograms (PSTHs) calculated using the first 
versus second halves of the trials >0.5) were used for further analyses.

In the experiment where we imaged the same FOV across multiple 
sessions in the same task context, we define the sessions as expert-early 
and expert-late sessions (Fig. 2). In cases where we imaged the same 
FOV twice over time, the 2 sessions were defined as expert-early and 
expert-late sessions accordingly. In cases where we imaged more than 2 
sessions from the same FOV over time, the expert-early and expert-late 
sessions were defined for pairs of sessions. Specifically, for single neu-
ron analyses (for example, Fig. 2e,k), we only compared the first and 
second imaging sessions to avoid inclusion of duplicate data points 
from the same session. These two sessions are defined as expert-early 
and expert-late sessions, respectively. For population level activity 
projection and decoding analyses (Fig. 2i,j), we included all the possible 
pairwise comparisons. For each pair, the two sessions used are defined 
as expert-early and expert-late sessions, respectively.

Two-photon imaging data analysis
Neurons were tested for significant trial-type selectivity during the 
sample, delay, and response epochs, using deconvolved activities from 
different trial types (non-paired two-tailed t-test, P < 0.001; correct 
trials only). We used the early sample epoch (first 0.83 s, 5 imaging 
frames), late delay epoch (last 0.67 s, 4 frames), and early response 
epoch (first 1.33 s, 8 frames) as the respective time windows for the 
statistical comparisons and all the following analyses (Extended Data 
Fig. 4a–c). To examine the stability of single neuron selectivity index, 
we first identified significantly selective neurons in each task epoch. 
We then determined each neuron’s preferred trial type (‘lick left’ versus 
‘lick right’) using the earlier imaging session in task context 1. Next, 
selectivity index was calculated as the difference in activity between 
trial types divided by their sum (anterior versus posterior pole position 
for sample epoch selectivity; lick left versus lick right for delay and 
response epoch selectivity; correct trials only). To define preferred 
trial types in earlier sessions, a portion of the trials were used for sta-
tistical tests to determine significant selectivity and the preferred trial 
type, then independent trials were used to calculate selectivity index  
within the same session. We then calculated selectivity for the defined 
neurons in later sessions or across different task contexts.

For error trial analysis (Extended Data Fig. 2k,l), only the imaging 
sessions with more than ten error trials for each trial type were ana-
lysed. Selectivity was calculated as the difference in trial-averaged 
activity (deconvolved calcium activity) between instructed lick right 
and lick left trials, using correct and error trials separately. Selectivity 
was calculated during the early sample epoch, late delay epoch, and 
response epoch.

To analyse the encoding of trial types in ALM population activity, we 
built linear decoders that were weighted sums of ALM neuron activi-
ties to best differentiate trial types. We examined the encoding of four 
kinds of trial types: (1) anterior versus posterior pole position trials for 
stimulus encoding during the sample epoch in the tactile-instructed 
lick task; (2) low tone (2 kHz) versus high tone (10 kHz) for stimulus 
encoding during the sample epoch in the auditory-instructed lick task; 
(3) lick left versus lick right for lick direction encoding during the delay 
epoch; and (4) lick left versus lick right for lick direction encoding dur-
ing the response epoch.
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To build the linear decoder for a population of n ALM neurons, we 

found a n × 1 vector coding direction (CD) in the n dimensional activity 
space that maximally separates response vectors in different trial types 
during defined task epochs—that is, CDSample for stimulus encoding 
during the sample epoch, CDDelay for lick direction encoding during 
the delay epoch, and CDResponse for lick direction encoding during the 
response epoch. To estimate the CD vectors, we first computed CDt at 
different time points as:

(tactile stimulus, sample epoch)

= − for
tCD

x x CDposterior pole anterior pole Sample

CD

x x CDhigh tone low tone Sample

(auditory stimulus, sample epoch)

= − for
t

(lick direction, delay epoch) = − fortCD x x CDlick right lick left Delay

CD

x x CDlick right lick left Response

(lick direction, response epoch)

= − for
t

where x are n × 1 trial-averaged response vectors that described the 
population response for each trial type at each time point, t, during 
the defined task epochs. Next, we averaged the CDt vectors within the 
defined task epoch to separately estimate the CDSample, CDDelay, and 
CDResponse. CDSample, CDDelay, and CDResponse were computed using 50% of 
trials and the remaining trials from the same session or from different 
sessions were used for activity projections and decoding (Fig. 2g; cor-
rect trials only).

To project the ALM population activity along the CDSample, CDDelay, 
and CDResponse, we computed the deconvolved activity for individual 
neurons and assembled their single-trial activity at each time point 
into population response vectors, x (n × 1 vectors for n neurons). The 
activity projection in Figs. 2–5 and Extended Data Figs. 3–5, 7 and 9 
were obtained as CDSample

Tx, CDDelay
Tx, and CDResponse

Tx.
To decode trial types using ALM population activity projected onto 

the CDSample, CDDelay and CDResponse (Figs. 2–5 and Extended Data Figs. 4, 5,  
7 and 9), we calculated ALM activity projections (CDSample

Tx, CDDelay
Tx  

and CDResponse
Tx) within defined time windows and we computed a 

decision boundary (DB) to best separate different trial types:

CD x CD xSample posterior pole Sample anterior pole
σ σ

σ σ

DB(tactile stimulus, sample epoch)

=
+

1/ + 1/

T
posterior pole
2 T

anterior pole
2

posterior pole
2

anterior pole
2

σ σ

σ σ

DB(auditory stimulus, sample epoch)

=
+

1/ + 1/

T
high tone
2 T

low tone
2

high tone
2

low tone
2

CD x CD xSample high tone Sample low tone

σ σ

σ σ

DB(lick direction, delay epoch)

=
+

1/ + 1/

T
lick right
2 T

lick left
2

lick right
2

lick left
2

CD x CD xDelay lick right Delay lick left

CD x CD xResponse lick right Response lick left
σ σ

σ σ

DB(lick direction, response epoch)

=
+

1/ + 1/

T
lick right
2 T

lick left
2

lick right
2

lick left
2

σ2 is the variance of the activity projection CD xT  within each trial 
types. Decision boundaries were computed using the same trials used 
to compute the CD vectors and independent trials were used to predict 
trial types. To examine decoding performance across task contexts, 
we restricted the analysis to decoders with accuracy of >0.7 within the 
session it was trained in (cross-validated performance). This is because 
if a decoder exhibited low decoding performance to begin with, its 
decoding performance will be generally low in other sessions due to 
poor training of the decoder.

To analyse activity changes along other dimensions of activity space 
across task contexts, we defined a ‘uniform shift (US) axis7’ using 
trial-type-averaged activity:
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where R and L are n × 1 response vectors that described the trial-averaged 
population response for lick left and lick right trials at the end of the 
delay epoch. We separately calculated US axes for each task context 
change—that is, US1→2 for task context 1→2, US2→1′ for task context 2→1′, 
US1′→2′ for task context 1′→2′ (Extended Data Fig. 8b). For activity projec-
tions (Extended Data Fig. 8c), the US axes are further orthogonalized 
to the CD vectors using the Gram–Schmidt process to capture activity 
changes along dimensions of activity space that were not selective for 
lick direction (‘movement-irrelevant subspace’). We computed the US 
vectors using 50% of the trials and the remaining 50% of the trials were 
used for activity projections (Extended Data Fig. 8c). The dot products 
in Extended Data Fig. 8d were calculated without any orthogonalization.

Modelling
The instructed directional licking task with a delay epoch was modelled 
with simulations lasting for two seconds. The first second of the simu-
lation was the sample epoch during which time trial-specific external 
inputs were provided and the last second was the delay epoch in which 
the inputs were removed. The coding direction, CDDelay was calculated 
as the difference between network activity on lick left and lick right 
trials at the end of the delay epoch (t = 0), similar to the neural data. 
The trial type was always defined by instructed lick direction in differ-
ent task contexts (across contingency reversals).

Recurrent neural networks
RNNs consisted of 50 units with dynamics governed by the equations
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where r t( )i  is the spike rate of neuron i, the synaptic time constant τ was 
set equal to 200 ms, Wi j,  is the synaptic strength from neuron j to neu-
ron i, I t( )i

TT  is the trial-type (TT)-dependent external input to neuron 
i, and f x x( ) = tanh( ) is the neural activation function.

The connection matrix W was randomly initialized from a Gaussian 
distribution. The network was scaled to have a maximum eigenvalue 
equal to 0.9. To generate persistent activity, networks must have an 
eigenvalue greater than or equal to one. Networks initialized with eigen-
values greater than one tended to learn the task with high-dimensional 
persistent activity, inconsistent with ALM dynamics14. Initializing with 
eigenvalues less than one tended to produce lower dimensional per-
sistent activity.

External input strengths Ii
TT were drawn from a Gaussian distribution 

with mean equal to zero and s.d. of 0.3. Two distinct input vectors were 
used for anterior Ii

A and posterior Ii
P pole position trials.

Behavioural readout B was given by the linear projections 
∑ ∑B r t W r t W= ( = 0) − ( = 0)i i

R
i i

L
out out , where t = 0 is the time at the end 

of the delay epoch, W R
out and W L

out are Gaussian random readout vectors 
corresponding to rightward and leftward movements, respectively.



RNNs were trained using backpropagation through time (BPTT). 
The input (Ii

TT) and readout weights (W R
out and W L

out) were fixed and only 
the recurrent weights Wi j,  internal to the RNN were trained. For each 
trial type, activity along the correct readout direction was trained to 
match a linear ramp of activity starting at the beginning of the sample 
epoch and the incorrect readout direction was trained to have zero 
activation. For task context 1, presentation of Ii

A was associated with 
ramping along W L

out and zero activation along W R
out, presentation of Ii

P 
was associated with the opposite behaviour. These associations were 
reversed for task context 2. Networks were trained for 100 iterations.

In the RNNs, the behaviour readout relied on many units (dense W R
out 

and W L
out). Because only 2 units in the AFF networks contributed to 

behaviour output, this difference in readout may affect how these 
networks learned to produce reversed output. We therefore also  
tested RNNs in which we fixed the behaviour readout to only 2 units 
like the AFF network (sparse W R

out and W L
out), but all results remained 

unchanged.

Amplifying feedforward network
ALM circuitry contains an AFF circuit motif54. The AFF network is a 
recurrent circuit in which preparatory activity during the delay epoch 
flows through a sequence of activity states. Each activity state can be 
modelled as a layer within a feedforward network. In addition, the late 
layers in the network are connected to early layers through feedback 
connections. Here we develop a framework for training AFF networks 
to generate choice-selective persistent activity.

Before detailing the learning rules used for training AFF networks, we 
first introduce several features that make AFF networks advantageous 
for training. Training neural networks require pathways linking input 
units to output units for computation, and pathways linking outputs 
to inputs for learning. In the simplest cases, output to input feedback 
may interfere with the input to output computations. AFF networks, 
and non-normal networks in general, do not generate reverberating 
feedback. For this reason, it is possible to construct AFF networks that 
bidirectionally link inputs to outputs through separate channels that 
do not interfere with each other.

AFF (also commonly referred to as non-normal) networks are con-
structed by applying orthonormal transformations to purely feedfor-
ward networks. Orthonormal transformations to feedforward networks 
serve two useful anatomical purposes: (1) they form feedback connec-
tions from late layers to early layers; and (2) they form stabilizing excita-
tory/inhibitory connections to eliminate any reverberation that may 
result from the newly formed feedback connections. In this model, we 
use the feedback connections from late layers to early layers to convey 
performance feedback signals allowing the AFF network to learn via 
error backpropagation.

We first constructed a purely feedforward network with 4 layers 
referred to as input (n; 30 units), hidden layer 1 (h1; 200 units), hidden 
layer 2 (h2; 5 units) and output (o; 2 units) (Extended Data Fig. 11). 
Trial-type (TT)-dependent external inputs, I t( )i

TT , were provided only 
to the input layer. Feedforward connection matrices (W W,i j

n
i j,

,h1
,
h1,h2 and 

Wi j
o

,
h2, ) conveyed these inputs to downstream layers and were initialized 

from a uniform positive distribution. Next, we added feedback con-
nections from o to h2 (W j i

o
,
,h2) and from h2 to h1 (W j i,

h2,h1) to provide per-
formance feedback for training the feedforward connections. Feedback 
connections were matched to feedforward connections so that 
W W=j i

o
i j

o
,
,h2

,
h2, . These feedback connections provide scaffolding to pre-

cisely implement error backpropagation to train feedforward connec-
tions. However, the presence of feedback connections in the circuit 
will introduce feedback to the network that will interfere with its feed-
forward computations.

To cancel out the reverberations caused by this feedback we incor-
porated additional stabilization hidden layers s1 (200 units) and  
s2 (5 units) (Extended Data Fig. 11). Each hidden unit in layer h1 is 
matched with a stabilizing neuron in the stabilization layer s1 which 

receives the same feedback connections as its paired excitatory neuron 
and projects inhibitory connections of the same strength as its excita-
tory partner. Similarly, each neuron in h2 has a corresponding unit in s2.  
Mathematically this relationship is written as
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Because of the precisely balanced excitation and inhibition, this 
recurrent network is non-normal; all eigenvalues are equal to zero. This 
non-normal network has two independent pathways, one linking the 
input layer to the output layer, useful for computation; and the other 
linking the output layer to the input layer, useful for learning.

The network is trained using error backpropagation; an error signal 
is computed and then sent back into each unit in the output layer. This 
error signal is conveyed to the early layers by the feedback connections. 
The stabilizing network ensures that this error signal does not rever-
berate. The backpropagated signal in neuron i in the hidden layers h1 
and h2 are thus given by the equations
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As in error backpropagation, feedforward weights (that is, Wi j,
h1,h2) 

are updated by taking the product of the forward pass activity and the 
backward pass activity. For example, connections from neuron i in 
layer h1 onto neuron j in layer h2 are updated according to the rule

∑ ∑W r t B t W r t B tΔ = ( ) ( ) and Δ = ( ) ( )i j t i j i j
o

t i j
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This rule is applied to all feedforward connections (that is, n → h1, 
h1 → h2 and oh2 → ). Changing the feedforward weights will necessarily 
disrupt the precise balance in the network. To maintain stability, the 
stabilizing weights must be updated to precisely cancel the changes 
to the feedforward weights

W WΔ = − Δi j i j,
(s1,h2)

,
(h1,h2)

Compensatory weight changes based on this equation are applied 
to all connections in the stabilization layers (that is, s1 → h2 and os2 → ).

The AFF network was trained to form the same associations as the 
RNN. Unlike the RNN, the AFF utilized a linear neuronal activation 
( f x x( ) = ) so that dynamics are governed by the equation
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Additionally, because the AFF naturally generates ramping sig-
nals54, the output units were not trained to match a ramping signal 
at all time points, but rather trained to be activated at a specific level 
at the end of the delay. For example, the target for the lick right out-
put unit (TR) on posterior trials was TR(t = 0) = 6 and TR(t  = 0) = 0 on  
anterior trials.

Analysis of neural dynamics within RNN and AFF networks
For each network, we calculated the selectivity of each unit as the 
activity difference between the lick right and lick left trials in each 
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task context. We calculated eigenvectors of the network selectivity 
matrix using singular value decomposition (SVD). The data for the 
SVD were an n × t matrix containing the selectivity of n units over t 
time bins (selectivity from task contexts 1 and 2 were concatenated). 
Three vectors usually captured most of the network activity variance 
across both task contexts (Extended Data Fig. 11f). We then rotated the 
3 eigenvectors so that the first vector was aligned to the dimension 
that maximized the difference in network selectivity matrix between 
task contexts 1 and 2. Network activity projected on the first vector was 
correlated with the network input across task contexts, thus referred 
to as the stimulus mode (Extended Data Fig. 12a,b). Network activ-
ity projected on the second vector was correlated with the network  
output across task contexts and exhibited ramping activity during 
the delay epoch, thus referred to as the output mode (Extended Data 
Fig. 12a,b).

To examine the CDDelay reorganization across task contexts as a func-
tion of stimulus mode strength (Extended Data Fig. 12c), we summed 
the network activity projected on the stimulus mode across time. This 
activity strength was normalized to the mean activity of each network 
to enable comparisons across different networks.

Statistics and reproducibility
The sample sizes were similar to sample sizes used in the field: for 
behaviour and two-photon calcium imaging, three mice or more per 
condition. No statistical methods were used to determine sample size. 
All key results were replicated in multiple mice. Mice were allocated 
into experimental groups according to their strain or by experimenter. 
Unless stated otherwise, the investigators were not blinded to mouse 
group allocation during experiments and outcome assessment. Trial 
types were randomly determined by a computer program. Statisti-
cal comparisons using t-tests and other statistical tests are described 
above. All statistics are two-sided unless otherwise noted. We used 
Pearson’s correlation for the linear regression. Error bars indicate 
mean ± s.e.m. unless noted otherwise. Representative images in Fig. 2c 
and Extended Data Fig. 2a,c,d were reproduced across all FOVs (n = 78 
fields of view, 14 mice).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Processed data have been deposited on the DANDI (Distributed 
Archives for Neurophysiology Data Integration) archive and can be 
accessed at https://doi.org/10.48324/dandi.001188/0.240912.1925. 
Source data are provided with this paper.

Code availability
All analyses and statistics were performed with MATLAB R2020b using 
custom written code. Code used for data analysis is available at https://
github.com/NuoLiLabBCM/KimEtAl2024.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Behavioral analysis, behavioral training, and 
experimental timeline. a. Top left, representative video frame with 
automatically labeled tongue markers using DeepLabCut. Top middle, 
superimposed tongue tip trajectories and x and y velocities of individual lick 
events during lick left (red) and lick right (blue). Data from an example mouse 
across sessions within the same task context. Tongue tip trajectory scale bar,  
4 pixels (x) and 6 pixels (y). X velocity scale bar, 12 ms and 2 pixels/s. Y velocity 
scale bar, 12 ms and 1.5 pixels/s. Top right, scatter of averaged pairwise 
similarity of single lick events (Pearson’s correlation) calculated within session 
versus across sessions. Data from two mice. Bottom, same as top but for data 
across task contexts 1 and 2. b. Same as a, but for jaw marker analysis. Jaw tip 
trajectory scale bar, 4 pixels (x) and 4 pixels (y). X velocity scale bar, 12 ms and 1 
pixels/s. Y velocity scale bar, 12 ms and 1.5 pixels/s. c. Left, schematics of 
learning speed under two models. Context-specific saving effect (top): faster 
re-learning only for previously learned tasks. Context non-specific saving 
effect (bottom): faster learning each time. Right, faster reversal learning is 
consistent with a context-specific saving effect. Re-learning of task context 2’ is 
significantly faster than initial learning of task context 2 (top). P = 0.0487, 
paired t-test. Circles indicate individual mice (N = 13 mice). Crosses indicate 
mean ± s.e.m. We examine task context 2 because the initial learning of task 
context 1 is confounded by the exposure to home-cage training. To examine 

context non-specific saving effect, we compare the speed of re-learning task 
context 1’ versus re-learning task context 2’ (bottom). The two conditions have 
similar task-specific prior training. No significant difference is observed. 
P = 0.3425, two-tailed paired t-test. d. Same as Fig. 1i, but separately plotting 
photoinhibition results for task context 1 (left) and task context 2 (right).  
e. Experimental timeline of an example mouse imaged within the same task 
context over extended time. Black, behavior training in automated home-cage. 
Gray, habituation in two-photon setup. Red, calcium imaging in two-photon 
setup. All the trials are concatenated. Black triangle indicates the end of 
learning voluntary head-fixation and start of learning in tactile instructed 
licking task. Averaging window, 100 trials. f. Same as e, but for two mice imaged 
across different task contexts. g. Summary plot of experimental timeline from 
all GP4.3 mice used for imaging in this study. h-i. Behavior performance curves 
for the initial learning from GP4.3 mice (h, n = 15 mice, all were trained in 
automated home-cage) and Slc17a7-Cre x Ai148 mice (i, n = 11 mice, 7 mice were 
trained in automated home-cage and 4 mice were manually trained). Different 
colors represent individual mice. Circles indicate end of the learning curves for 
GP4.3 mice and termination of training for Slc17a7-Cre x Ai148 mice. j. Behavior 
performance within imaging sessions across 4 segments of trials. Thin gray 
lines indicate individual sessions. Thick black lines indicate mean ± s.e.m. Data 
from Fig. 2b.
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Extended Data Fig. 2 | Preprocessing of imaging data and ALM preparatory 
activity. a. Mean two-photon fluorescence images from the same field of view 
(FOV) across 3 imaging sessions (Day 1, 17, and 60). b. Left, cranial windows 
from two example mice. Each black box indicates one imaging FOV (600 × 
600 µm). Right, all imaging FOVs (n = 50 from 8 mice). Imaging FOVs cover 
ALM, defined as the area where photoinhibition during the delay epoch impairs 
behavior performance (dotted red line41) and exhibiting enriched choice 
selectivity (gray71). c. Spatial footprints of individual neurons from the same 
FOV across 3 imaging sessions, which are the output of Suite2p (Methods). d. 
Identified co-registered neurons (green) across 3 imaging sessions, which are 
computed by CellReg (Methods). e. The number of neurons from the expert-
early session (n = 1,690 ± 758, mean ± SD), expert-late session (n = 1,704 ± 777), 
and matched neurons in both expert-early and expert-late sessions 
(n = 855 ± 402). 12.80 ± 8.90 (mean ± SD) days between imaging sessions. Data 
from Fig. 2. f. Fraction of match neurons across individual mice. Dots, 
individual FOVs. Error bars, mean ± SD. g. Distribution of centroid distance 
(left) and spatial footprint correlation (right) from nearest neighboring 
neuronal pairs (green) and other neighboring neuronal pairs within 10 µm 
(red). Centroid distance and spatial footprint correlation are parameters used 
to define co-registered neurons across imaging sessions used by CellReg 
package. Data from the same FOV in a, c, d. h. Density map between centroid 

distance and spatial footprint correlation from all co-registered neurons 
(n = 42,739 from 8 mice). Data from Fig. 2. i. Distribution of registration score 
from all co-registered neurons (n = 42,739 from 8 mice). j. dF/F0 activity (left), 
deconvolved activity (middle), and heatmap of single trial deconvolved 
activity (right) from two example neurons. Thick lines represent the mean; thin 
lines represent single trials. k. Single trial deconvolved activity (top) and 
peristimulus time histograms (PSTH, bottom) for correct and error trials are 
shown for three example ALM neurons. Trial types are based on instructed lick 
direction (blue, lick right; red, lick left). Correct trials, solid lines. Error trials, 
dotted lines. mean ± s.e.m. l. Top, comparison of individual neuron trial-type 
selectivity between correct and error trials. Neurons with significant trial- 
type selectivity (P < 0.001, two-tailed t-test). Selectivity is the difference in 
deconvolved activity between instructed lick right and lick left trials during  
the early sample epoch (left), late delay epoch (middle), and response epoch 
(right). On error trials, when mice licked in the opposite direction to the 
instruction provided by object location (Fig. 2a), a majority of ALM neurons 
switched their trial type preference to predict the licking direction during  
the delay and response epochs, as indicated by the negative correlations  
(R, Pearson’s correlation). Bottom, histogram of selectivity angle between 
correct and error trials. A negative angle indicates neuron switching selectivity 
on error trials. Bin size: 2°.



Extended Data Fig. 3 | Activity drift in individual neurons and population 
activity. a. Quantification of PSTH stability. Pearson’s correlation between 
PSTHs of individual neurons from different imaging sessions (expert-early and 
expert-late). b. Relationship between PSTH stability and weight contribution to 
the CDDelay. Dots, individual neurons. Red neurons (n = 3,542) are the top 10% 
weight contributors to the CDDelay. Black neurons (n = 31,878) are the remaining 
90% of neurons. c. Probability density functions of PSTH correlation for the top 
10% weight contributors (red) and the other neurons (black). P = 2.85 × 10−114, 

two-sample Kolmogorov-Smirnov test, two-tailed test. d. Pearson’s correlation 
between vectors of concatenated PSTHs across the whole population as a 
function of delta days between expert-early and expert-late imaging sessions. 
Different colors represent different mice. Dotted lines indicated linear 
regressions of individual mice across days. e. Same as d, but for population 
activity vectors projected onto the CDDelay. f. R values of linear regressions of 
individual mice in panels d and e. P = 0.0156, two-tailed paired t-test. Data from 
Fig. 2 (50 fields of view from 8 mice); mean ± s.e.m.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Task-related activity during the sample, delay, and 
response epochs within the same task context. a-c. Analysis time window  
to estimate coding direction in different task epochs. Early sample epoch  
(a, CDSample), late delay epoch (b, CDDelay), and early response epoch (c, CDResponse) 
were used, respectively. d-f. Scatter plots and histograms of individual neuron 
selectivity index during the sample (d), delay (e), and response epoch (f) 
comparing expert-early and expert-late sessions. Colors indicate neurons with 
significant trial-type selectivity (P < 0.001, two-tailed t-test) during specific 
epochs in expert-early sessions. Neurons are colored based on their preferred 
trial-type in expert-early sessions. Green, neurons preferring anterior pole 
position. Purple, neurons preferring posterior pole position. Red, neurons 
preferring lick left. Blue, neurons preferring lick right. Gray, no preference 
neurons. Pearson’s correlation, sample epoch, R = 0.9404, P = 0 (d); delay 

epoch, R = 0.8861, P = 0 (e); response epoch, R = 0.9001, P = 0 (f). g. Same as 
Fig. 2h, but from the example FOV projected on the CDSample trained on day 1 
(top) or day 23 (bottom) and tested on day 1 (left) or day 23 (right). h. Same as 
Fig. 2h (for CDDelay) replotted here for comparison. i. Same as Fig. 2h, but for 
CDResponse. j-l. Trial-averaged ALM activities projected on the CDSample ( j),  
CDDelay (k), and CDResponse (l) from the same session (left) and across different 
sessions (right). Thin lines represent individual sessions. Thick lines represent 
the mean. m-o. Same as Fig. 2i, but for CDSample (m), CDDelay (n), and CDResponse (o). 
P = 0.4203 (o), P = 0.4870 (n), P = 0.0886 (o), R values of linear regression,  
two-tailed t-test against 0. p-r. Same as Fig. 2j, but for CDSample (p, n = 111 pairs  
of sessions, 8 mice), CDDelay (q, n = 113 pairs of sessions, 8 mice), and CDResponse  
(r, n = 123 pairs of sessions, 8 mice).
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Extended Data Fig. 5 | Task-related activity during the sample, delay, and 
response epochs across different tasks contexts. a-c. Same as Fig. 3c, but 
sorting the same neuronal population based on their selectivity during the 
sample epoch (a, n = 1,043), delay epoch (b, n = 1,112), and response epoch  
(c, n = 654) in task context 1 (top) or task context 2 (bottom). a, b, and c contain 
different fields of views. d-f. Scatter plots and histograms of individual neuron 
selectivity index during the sample (d), delay (e), and response epoch (f) 
comparing task contexts 1 and 2. Colors indicate neurons with significant 
trial-type selectivity (P < 0.001, two-tailed t-test) during specific epochs in task 
context 1. Neurons are colored based on their preferred trial-type in task 
context 1. Green, neurons preferring anterior pole position. Purple, neurons 
preferring posterior pole position. Red, neurons preferring lick left. Blue, 
neurons preferring lick right. Gray, no preference neurons. Pearson’s correlation, 
sample epoch, R = 0.8707, P = 0 (d); delay epoch, R = −0.0057, P = 0.6774 (e); 

response epoch R = 0.6804, P = 0 (f). g-i. Same as Fig. 3f, but for CDSample (g), 
CDDelay (h), and CDResponse (i). j-l. Trial-averaged ALM activities projected on the 
CDSample ( j), CDDelay (k), and CDResponse (l) within the same task context (left) and 
across different task contexts. m-o. Same as Fig. 3g, but for CDSample (m, n = 55 
pairs of sessions, 10 mice), CDDelay (n, n = 58 pairs of sessions, 10 mice), and 
CDResponse (o, n = 58 pairs of sessions, 10 mice). p. Schematic of calculating 
Euclidean distance between selectivity index vectors. q. Euclidean distance 
between the delay epoch selectivity vectors calculated within task context  
(1 vs. 1) and across task contexts (1 vs. 2). Selectivity vectors within task context 
are calculated using split-half trials from the same session. ***P = 4.03 × 10−20, 
two-tailed paired t-test. Mean ± s.e.m. r. Euclidean distance of sample, delay, 
and response epoch selectivity vectors across task contexts (1 vs. 2). Sample vs. 
delay epoch, ***P = 9.21 × 10−13; delay vs. response epoch, ***P = 1.71 × 10−12, 
two-tailed paired t-test. Mean ± s.e.m.



Extended Data Fig. 6 | Individual variability across mice in the degree of 
CDDelay reorganization across task contexts. a. Data from Fig. 3g, but broken 
out by individual mice, sorted by mean decoding accuracy across task contexts 
(train context 1 and test context 2). Individual mice are plotted separately in 
different colors. b. Dot product between CDDelay within the same task context 
(left) and across different task contexts (right). Individual mice are sorted by 
mean dot product of CDDelay across task contexts. Same color scheme as a. Note 
that variability across mice is much higher than variability across FOVs within 
the same mouse. Numbers in brackets indicate pairs of sessions for each 
mouse. c. Left, decoding accuracy of the CDDelay, CDSample, and CDResponse across 
task contexts. Right, decoding accuracy of the CDDelay, normalized by that of 
CDSample and CDResponse. Arrows indicate two outlier data points (y-axis values, 
1.93 and 2.23). d-e. Same as Fig. 3f (top), but data from an example FOV of a 

mouse with stable CDDelay across task contexts (c, JH118; see a-b) and a mouse 
with reversed CDDelay (d, JH123; see a-b). f. Displacement of x and y jaw positions 
in task contexts 1 and 2 from two example mice. Mean ± SD across trials. g. No 
relationship between decoding accuracy of CDDelay across task contexts (x axis) 
versus 7 parameters (y axis) as follows: delta days between imaging sessions; 
matched number of neurons co-registered across imaging sessions; number  
of correct trials from task context 1; behavior performance from task context 1; 
relative learning speed to reach 75% behavior performance (number of trials  
to reach criterion performance in task context 2 relative to task context 1); 
relative AP location of imaging FOVs after subtracting mean AP location of  
each mouse; relative ML location of imaging FOVs after subtracting mean ML 
location of each mouse.
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Extended Data Fig. 7 | Task-related activity during the sample, delay, and 
response epochs across task context 1, 2, and 1’. a. Mean deconvolved 
activities from an example field of view across three task contexts (n = 781 
neurons). b. Scatter plots and histograms of individual neuron selectivity index 
during the sample epoch comparing task contexts 1 and 2 (left) or task contexts 
1 and 1’ (right). Colors indicate neurons with significant trial-type selectivity 
(P < 0.001, two-tailed t-test) during specific epochs in expert-early sessions. 
Neurons are colored based on their preferred trial-type in task context 1.  
Green, neurons preferring anterior pole position. Purple, neurons preferring 
posterior pole position. Gray, no preference neurons. Pearson’s correlation, 
task context 1 vs. 2, R = 0.8912, P = 0; task context 1 vs. 1’, R = 0.8290, P = 0.  
c-f. Same as Fig. 4f–i, but for activity during the sample epoch. In d and f, gray 
circles and lines indicate FOVs imaged across task contexts 1, 2, and 1’ (n = 24 

FOVs, 5 mice); black circles and lines indicate subset of FOVs imaged across task 
contexts 1, 2, 1’, and 2’ (n = 5 FOVs, 2 mice). Bar/errorbar, mean/s.e.m. g-l. Same 
as a-f, but for activity during the delay epoch. h, red indicates neurons 
preferring lick left and blue indicates neurons preferring lick right in task 
context 1. Pearson’s correlation, task context 1 vs. 2, R = −0.1224, P = 1.38 × 10−8; 
task context 1 vs. 1’, R = 0.7675, P = 0. In j and l, FOVs imaged across task contexts 
1, 2, and 1’ (n = 26 FOVs, 5 mice); FOVs imaged across task contexts 1, 2, 1’, and 2’ 
(n = 7 FOVs, 3 mice). Data from Fig. 4, replotted here for comparison. Bar/
errorbar, mean/s.e.m. m-r. Same as g-l, but for activity during the response 
epoch. n, Pearson’s correlation, task context 1 vs. 2, R = 0.6220, P = 0; task 
context 1 vs. 1’, R = 0.7624, P = 0. In p and r, FOVs imaged across task contexts 1, 
2, and 1’ (n = 26 FOVs, 5 mice); FOVs imaged across task contexts 1, 2, 1’, and 2’ 
(n = 5 FOVs, 3 mice). Bar/errorbar, mean/s.e.m.



Extended Data Fig. 8 | Neural activity change in movement-irrelevant 
activity subspace across task contexts. a. Schematic of activity changes 
across task contexts along coding directions (top, CDDelay, estimated from  
task contexts 1 and 2) and movement-irrelevant subspace (bottom, USDelay, 
estimated from task context 1→2 and 2→1’). b. Formula to calculate the CDDelay’s 
and the USDelay’s. CDDelay’s are calculated separately for each task context. 
USDelay’s are calculated separately for each task context change. c. Activity of  
an example FOV across 4 task contexts (1, 2, 1’, and 2’). Top, activity projections 
on the CDDelay’s. The CDDelay of task context 2 is orthogonalized to the CDDelay of 
task context 1 here for visualization purposes. Similar patterns of activity are 
re-activated in the same task context (1 vs. 1’ and 2 vs. 2’). Big solid circles 
represent the mean; small transparent circles represent activity in single trials. 

Bottom, activity projections on the USDelay’s. In contrast to the activity along 
the CDDelay’s, activity along the USDelay’s does not show reliable re-activation in 
the same context. d. Dot products (mean ± s.e.m.) between the CDDelay’s and 
USDelay’s (n = 9 fields of view, 3 mice). Activity along the coding directions shows 
reliable re-activation (consistent CDDelay’s for task context 1 vs. 1’ and 2 vs. 2’). 
Activity in the movement-irrelevant subspace does not show consistent changes 
across re-learning of previous task contexts (1→2 vs. 2→1’ and 1→2 vs. 1’→2’).  
e. Decoding accuracy of the CDDelay and USDelay to predict lick directions  
(58 pairs of imaging sessions, 10 mice). Bar/errorbar, mean/s.d. ***P = 5.64 × 10−39, 
two-tailed paired t-test. Activity projection on the USDelay does not predict lick 
direction.
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Extended Data Fig. 9 | Task-related activity during the sample, delay, and 
response epochs across task context 1, 2, and 3. a-b. Same as Fig. 5e,f, but for 
activity during the sample epoch (n = 4 fields of view, 2 mice). Bar/errorbar, 

mean/s.e.m. c-d. Same as Fig. 5e,f, replotted here for comparison. Bar/errorbar, 
mean/s.e.m. e-f. Same as Fig. 5e,f, but for activity during the response epoch 
(n = 8 fields of view, 3 mice). Bar/errorbar, mean/s.e.m.



Extended Data Fig. 10 | Context-specific preparatory activity retains 
memory trace of previous learning and reduces interference. a. Schematic 
of the memory trace. ALM preparatory activity from task contexts 1, 2, and 1’ is 
projected onto the CDDelay from task context 2. Memory trace is defined as a 
selectivity increase along the CDDelay for task context 2 during performance  
of task context 1’, as shown in black arrows combining blue and red arrows.  
b. Memory trace. Change in delay epoch selectivity along the CDDelay for task 
context 2 from task context 1 to 1’. Bar/errorbar, mean/s.e.m. **P = 0.005, 
two-tailed paired t-test. c. Decoding accuracy of the CDDelay for task context 2 

tested on task contexts 1 (52.75 ± 5.24%) and 1’ (58.66 ± 4.63%). Cross,  
mean ± s.e.m. *P = 0.0199, two-tailed paired t-test. 26 fields of view from 5 mice. 
d. Speed of re-learning task context 1’ as a function of the CDDelay reorganization 
across task contexts 1 and 2. Number of trials to reach criterion performance  
in task context 1’ relative to number of trials during the initial learning of task 
context 1. Mice exhibiting more distinct CDDelay’s across task contexts (i.e. lower 
dot product) re-learned the previously learned task context 1’ faster (i.e. fewer 
trials to reach 75% performance criterion). Each dot shows one field of view 
from one mouse. Dotted line, linear regression; R, Pearson’s correlation.
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Extended Data Fig. 11 | Recurrent neural network (RNN) and amplifying 
feedforward (AFF) network models. a. A schematic of RNN model with sparse 
readout. Only two internal units directly contribute to the output. b-c. Same as 
Fig. 6c,d, but for RNNs with sparse readout. d. A schematic of the AFF networks 
and governing equations. e. Analysis of the AFF network similar to Daie et al.54. 
We identified directions in activity space at different time points that influence 
network activity along the CDDelay at the end of the delay epoch (t = 0 s). We refer 
to these as transitional directions. The plot shows correlation between 
transitional directions at time point t vs time point t’ for all sample and delay 
epoch time points. AFF networks generate persistent activity by passing 

activity through a chain of network states, where early layers influence activity 
in the late layers. This results in network activity sequentially traversing 
multiple directions in activity space, as indicated by the low correlation values 
off diagonal. f. Dimensionality of trial-type selectivity in the AFF networks.  
3 dimensions captured most of the network selectivity. g. Resetting AFF 
network hidden layer weights to random values before re-learning task context 
1’. h. Resetting synaptic weights before re-learning task context 1’ prevented 
the re-activation of the CDDelay. Weight contribution of the AFF units to the 
CDDelay’s from task contexts 1 and 1’.



Extended Data Fig. 12 | Neural dynamics within RNN and AFF networks.  
a. AFF network activity projected on the stimulus mode (top), output mode 
(middle), and in state space (bottom). Trial types are defined by lick direction. 
Blue, lick right. Red, lick left. See Methods for decomposition of network 
activity modes. AFF networks exhibit persistent activity along the stimulus 
mode, which combines with the ramping output mode to produce distinct 
CDDelay’s in each task context (yellow arrows). b. Same as a, but for RNN. RNNs 
do not maintain persistent activity along the stimulus mode, which results in 
stable CDDelay’s across task contexts that are aligned to the output mode. c. The 
strength of network activity along the stimulus mode predicts the degree of 

CDDelay reorganization across task contexts (dot product of the CDDelay’s from 
task contexts 1 and 2). Dots, individual randomly initialized AFFs. R and P 
values, Pearson’s correlation. d. Neural data. Individual variability of CDDelay 
reorganization across task contexts is predicted by the strength of stimulus 
activity in ALM. The strength of ALM stimulus activity is quantified as the 
decoding accuracy of the CDSample in task context 1 (trained and tested within 
task context), or the fraction of neurons with significant trial-type selectivity 
during the sample epoch in task context 1. Dots, individual FOVs. Individual 
mice are plotted separately in different colors. R and P values, Pearson’s 
correlation.
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