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Motor skill repertoire can be stably retained over long periods, but the neural
mechanism that underlies stable memory storage remains poorly understood'®,
Moreover, it is unknown how existing motor memories are maintained as new
motor skills are continuously acquired. Here we tracked neural representation
oflearned actions throughout a significant portion of the lifespan of amouse

and show that learned actions are stably retained in combination with context,
which protects existing memories from erasure during new motor learning. We
established a continual learning paradigm in which mice learned to perform
directional licking in different task contexts while we tracked motor cortex activity
for up to six months using two-photon imaging. Within the same task context,
activity driving directional licking was stable over time with little representational
drift. When learning new task contexts, new preparatory activity emerged to

drive the same licking actions. Learning created parallel new motor memories
instead of modifying existing representations. Re-learning to make the same
actionsin the previous task context re-activated the previous preparatory activity,
even months later. Continual learning of new task contexts kept creating new
preparatory activity patterns. Context-specific memories, as we observed in the
motor system, may provide a solution for stable memory storage throughout

continual learning.

In our lifetime we stably retain a myriad of motor skills. How learned
actionsare stored in motor memory remains poorly understood. Inthe
motor cortex, specific learned actions are evoked by distinct patterns
of preparatory activity”® ™ (Fig. 1a). Preparatory activity is thought
to provide the initial conditions for the ensuing dynamics dictating
movement execution?¢, but its relationship to subsequent action
remains obscure” ™, For example, it remains unknown whether pre-
paratory activity states are linked to subsequent movement execution
and therefore fixed for actions withidentical kinematics; alternatively,
preparatory activity might encode other cognitive variables associated
with learned actions beyond the movement itself*>73%,

Arelated question is how learned actions are maintained by motor
circuits over time. Motor cortex circuits exhibit considerable plasticity
during motor learning’? 32, Given this plasticity, the neural mechanism
underlying motor memory storageis unclear. Recent studies propose
memory storage mechanisms based on unstable representations®*:in
aredundant neural network in which multiple network configurations
produce the same output, activity patterns leading to the same motor
output can change over time***, For example, if a pattern of activity
drives our speech of the word ‘cat’, a different pattern of activity may
occur whenwe utter the word ‘cat’ ayear later (Fig. 1b, left). This ques-
tion remains under-explored as motor cortical activity has rarely been
tracked over periods of more than one month®4°,

Moreover, it is unknown how existing motor memories are pro-
tected from modifications by continual learning of new motor skills.

Theories of learning posit a modular approach, in which multiple
parallel motor memories are formed for distinct contexts"*, thus
new learning takes place in separate modules. Neurophysiological
studies of motor learning mostly examine single tasks. It remains
poorly understood how neural representation of an actionis formed
and maintained when we learn to utilize the same action in different
contexts—for example, learning to speak the word ‘cat’ in different
sentences (Fig. 1b, right).

Toaddressthese questions, we developed an automated home-cage
training paradigm in which mice learned to performdirectional licking
in different task contexts. Learned directional licking is dependent
on preparatory activity in anterior lateral motor cortex****? (ALM).
We tracked ALM activity across continual learning for multiple months
using two-photon calciumimaging. We found that learned directional
licking was stably encoded in preparatory activity with little repre-
sentational drift. Across learning multiple task contexts, multiple
preparatory states were created to encode the same licking action in
acontext-dependent manner. Our results show that motor memories
encode learned actions in combination with their context, which we call
acombinatorial code. A feedforward network that stored sensorimotor
combinations in high-dimensional hidden layers was able to explain
multiple aspects of the results. Context-specific motor memories may
help reduce interference of new learning to previously learned repre-
sentations®3, thus protecting existing motor repertoire from erasure
inthe face of continual learning.
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Fig.1|Abehaviour paradigm for continuallearning. a, Preparatory states
for differentactionsinactivity space. b, Possible outcomes of preparatory
states across time and new task learning. ¢, Top, mice livingin the home-cage
systemvoluntarily engage in head fixation and learn directional lick tasks.
Bottom, behavioural datafroman example mouse. Dark bands represent
epochsofvoluntary head fixation; grey bands represent rest.d, Micereport
pole positionusinglick left or lick right after a delay epoch. Sensorimotor
contingency isreversed across task contexts. e, Behaviour performance of an
example mouse. Contingency reversals areintroduced when performance is
above 75%. Averaging window, 100 trials. f, Number of trials to reach 75% correct
performance (mean ts.e.m.). Individual lines show data fromindividual mice.
Mice used for in-cage optogenetic (5 mice), imaging (13 mice) and behaviour
testing only (5 mice) are combined. Learning task context1versus2,*P=0.0286
(23 mice); learning task context 2 versus 1/, *P= 0.0431 (19 mice); learning task
context1’versus2’,P=0.3425 (13 mice), not significant (NS). Two-tailed paired
t-test.g, Top, optogenetic approach to silence ALM activity in the home cage.

A continual learning paradigm

To track neural representation of the same movement across con-
tinual learning of new motor skills, we studied a stereotyped and yet
cortex-dependent movement: goal-directed directional licking in mice.
We developed ahome-cage systemin which mice voluntarily engaged
in head fixation and learned multiple licking tasks without human
supervision* (Fig. 1¢). In a tactile-instructed licking task, mice dis-
criminated thelocation of a pole during asample epoch and reported
decision using ‘lick left’ or ‘lick right’ after a delay epoch (Fig. 1d). Mice
initially learned to lick left for anterior pole position and lick right for
posterior pole position (task context 1; Fig. 1d). After achieving more
than 75% correct (Methods), the home-cage system automatically
reversed the contingency between pole locations and lick directions
(task context 2; Fig.1d). The delay epoch separated sensory stimuli from
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Bottom, task and photoinhibition timelines. Photostimulation during

the sample (S), delay (D) and response (R) epochs; power 0.35,1.77 and

3.54 mW mm™foreachepoch. h, Behaviour performance of an example
mouse during ALM photoinhibition. Black, control trials. Red, photoinhibition
during the delay epoch (3.54 mW mm™). Red shaded area, photoinhibition
blocks. Photostim., photostimulation. i, Behaviour performance during

ALM photoinhibition (mean +s.e.m.). Trial types by instructed lick direction.
Left ALM photostimulation. Sample epoch, instructed lick right, *P = 0.0248,
F=0.7574 (1.77 mW mm2),*P=0.0349, F= 0.8402 (3.54 mW mm2); instructed
lick left, *P=0.0360, F=1.0334 (0.35 mW mm™). Delay epoch, instructed
lickright,**P=0.0054, F=0.7212 (1.77 mW mm),**P=0.0012, F= 0.3909
(3.54 mW mm™). Response epoch, instructed lick right, *P = 0.0249,
F=0.4940(0.35mW mm),*P=0.0093, F=0.6863 (3.54 mW mm™);
instructed lick left, *P=0.0423, F=1.0702 (3.54 mW mm2). Two-tailed t-test
against control.

motor response. Thus in the two tasks, mice made identical actions
under identical external environment after the delay epoch, but with
different stimulus history and task rules. We therefore refer to these
conditions as different ‘task context’.

Micelearned many rounds of reversals over several months (Fig.1e).
High-speed videography showed that tongue and jaw movements were
consistent over time and across contingency reversals (Extended Data
Fig.1a,b). Mice were faster to reach criterion performance (>75% cor-
rect) for subsequent reversals (Fig. 1f and Methods). Faster reversal was
observed when mice re-learned the previously learned sensorimotor
contingency, butless correlated with overallamount of prior training
(Extended DataFig.1c), consistent with a saving effect typically associ-
ated with motor skill learning?.

The ALM is critical for planning and execution of directional
licking!***+*, To test whether ALMis required for learned directional



licking after extended training, we optogenetically silenced ALM activ-
ity during task performance in home cage* (Fig. 1g and Methods). We
virally expressed ared-shifted channelrhodopsin*® (ChRmine) in ALM
GABA (y-aminobutyric acid)-expressing (GABAergic) neurons and
photostimulated ALM through a clear skullimplant during voluntary
head fixation (Fig. 1g). ALM photoinhibition during the delay epoch
disrupted behavioural performance, even after multiple rounds of
contingency reversal (Fig.1h). Left ALM photoinhibition biased future
licking to the ipsilateral direction (lick left) in a light dose-dependent
manner (Fig. li and Extended Data Fig. 1d). These results show that
directional licking consistently depends on ALM preparatory activity
over time, thus enabling us to chronically track neural activity that is
causally driving the learned licking actions.

Stable representation of action

Toexamine whether neural representations of learned actions drift over
time (Fig. 2a), we performed longitudinal two-photon calciumimaging
of ALM (GP4.3 mice; Extended DataFig. le-g; imaging duration, 26-233
days). After mice attained high performance under task contextlin the
home cage, we transferred them to a two-photon microscope where
they performed the same task in daily sessions (Methods). After brief
acclimatization, mice maintained stable performance (Fig. 2b), with
little performance change within session (Extended Data Fig. 1j). We
imaged the same field of view across multiple days (Fig. 2c and Extended
DataFig.2a; referred to as ‘expert-early’ or ‘expert-late’ sessions), cover-
ing different fields of view oninterleaved days (Extended Data Fig. 2b).
Theimaged fields of view were remarkably stable. We identified 42,739
neurons that could be confidently matched across days based on their
shapes and centroid locations*” (Extended Data Fig. 2c—i; 50 fields of
view, 8 mice; Methods).

ALM neurons exhibited task-related activity (dF/F,; Fig. 2d, top).
We deconvolved dF/F,to avoid the spillover of slow-decaying calcium
dynamics across task epochs*® (Extended Data Fig. 2j and Methods).
Sorting neurons by their peak activities revealed similar task-related
activity across days (Fig. 2d, bottom). We computed selectivity as the
differenceinactivity betweentrial types divided by their sum (anterior
versus posterior pole position for the sample epoch; lick left versus
lick right for the delay and response epochs; correct trials; Methods).
Onerror trials, when mice licked in the opposite direction to the instruc-
tion provided by pole location, ALM activity during the delay epoch
predicted the licking direction (Extended Data Fig. 2k,I). Neurons
showingsignificant trial-type selectivity (P< 0.001, two-tailed ¢-test) in
expert-early sessionslargely maintained their selectivity in expert-late
sessions (Fig. 2e; Pearson’s correlation, sample epoch: R=0.9404,
P=0;delayepoch:R=0.8861,P=0; response epoch:R=0.9001,P=0).
A subset of ALM neurons exhibited altered activity across days, but
these changes mainly occurred in non-selective neurons (Extended
DataFig.3a-c). Thissuggests thatlick directionencoding is selectively
maintained.

To investigate lick direction encoding at the population level, we
analysed ALM activity in an activity space, where each dimension cor-
responds to activity of one neuron*°, We estimated a ‘coding direc-
tion’ (CDp.,y) along which activity maximally discriminated future lick
directionatthe end of the delay epoch (‘preparatory state’; Methods).
To examine population encoding over time (Fig. 2f), we estimated the
CDy,y Using 50% of the trials in a session (training dataset) and pro-
jected activity in non-overlapping trials from the same session or across
sessions (testing dataset; Fig. 2g). ALM activity along the CDp,y,, Was
maintained over time (Fig. 2h), despite moderate changesin population
activity vector (Extended Data Fig. 3d-f). We used adecision boundary
on the CDp,,, to predict lick direction from ALM activity (Methods).
Adecoder definedin onesession could accurately predictlick direction
inother sessions regardless of the timespan between sessions, even up
to2months apart (Fig. 2i; linear regression: -0.08 + 0.11, mean + s.e.m.

across mice; P=0.4870, t-test against 0). A decoder from expert-early
or late sessions could similarly predict lick direction in expert-late or
early sessions, respectively (Fig. 2j). Individual neurons contributing
to the CDp,,, were highly correlated across sessions (Fig. 2k; Pearson’s
correlation, R=0.6053, P=0).

We analysed ALM activity during the sample and response epochs and
found similarly stable selectivity along the coding directions (Extended
Data Fig. 4). These results show that ALM activity is selectively main-
tained along coding directions that encode learned directional licking
for atleast two months.

New representation emerges with learning

We next explored how motor memories form when new motor skills
areacquired. Akey question hereis whether existing activity states are
reused or whether entirely new activity states are formed (Fig. 3a).
Toaddress this question, we monitored ALM activity across two differ-
ent task contexts. Afterimaging intask context1, wereturned mice to
thehome cage tolearnreversed sensorimotor contingency thenimaged
them again in task context 2 (Fig. 3b; task context 1>2). Performance
was similarin the two task contexts (85.59 +1.00% versus 84.06 + 0.99%
correctrate, mean +s.e.m.; P=0.1862, paired t-test), and video analysis
showed that mice made the same tongue and jaw movements (Extended
DataFig.1a,b, bottom). We identified 1,118 + 500 matched neurons in
eachfield of view (58 fields of view, 10 mice; 31.88 + 13.88 days between
imaging sessions, mean + s.d. across sessions).

We observed a profound reorganization of ALM preparatory activ-
ity in new task context. Many ALM neurons lost or even reversed their
lick direction selectivity in task context 2 (Fig. 3¢, top), whereas other
neurons retained their selectivity. Also, new selective neurons emerged
in task context 2 (Fig. 3¢, bottom). Across the population, neuronal
selectivity across the two task contexts were not correlated (Fig.3d and
Extended DataFig. 5e; Pearson’s correlation, R=-0.0057, P = 0.6774).

We examined population encoding of future lick direction by calcu-
lating the CDp,,, in each task context (Fig. 3e). Activity projected on
the CDyp,,y reliably differentiated lick direction within task context,
but this activity collapsed when projected on the CDyy,, across task
contexts (Fig. 3f). Across all fields of view, a CDp,j,y decoder predicted
lick direction at near chance level on average in the other task context
(Fig.3g). Individual neurons supporting the CDp,,, vectorsin the two
task contexts were weakly correlated (Fig. 3h; Pearson’s correlation,
R =0.3;significantly less than the correlation within task context over
timeinFig. 2k, P= 0, bootstrap). Thus, different task contexts yielded
distinct CDyp,,y Vectors. In contrast to the reorganization of ALM pre-
paratory activity, selectivity during the sample and response epochs
remained remarkably stable across task contexts (Extended DataFig. 5).
This ruled out the possibility that the change in preparatory activity
was due to unstable imaging or changes in motor behaviour.

Although ALM preparatory activity was reorganized across task con-
texts on average, we found substantial individual variability across mice
(Fig.3g and Extended DataFig. 6a—c).Insome mice, the CDy,,, vectors
inthe two task contexts were nearly orthogonal (Fig. 3f). But in other
mice, preparatory activity maintained along the same CDy,,, (Extended
DataFig. 6d), or even reversed direction along the CDp,,, (Extended
DataFig. 6e). Within each mouse, similar pattern of reorganization was
consistently observed across different fields of view (Extended Data
Fig.6a-c), indicating that the variability was not due to heterogeneous
sampling of neurons or location of imaging (Extended Data Fig. 6g).
Task performance, uninstructed movements, task learning speed or
the time interval between imaging sessions did not explain this indi-
vidual variability (Extended Data Fig. 6f,g). Individual variability may
result from differences in the underlying circuits (see later modelling).

Thus, new preparatory states form when mice learn to make the
same licking actions under new task contexts. These results also show
that distinct preparatory states in motor cortex can drive the same
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Fig.2|Stable task-related activity over time within the same task context.
a, Left, possible outcomes of preparatory states over time. Right, task context
1.b, Behaviour performance during imaging sessions. Each data point shows
average performance in one imaging session. Coloursindicate individual mice.
¢, Examplefield of view. Scale bar, 50 pm.d, Top, dF/F, from two example
neurons. Thick lines are the mean and thin lines show individual trials. Bottom,
mean deconvolved activities froman example field of view (n =386 neurons).
Neuronsare sorted based on their peak activities from different days. e,
Selectivity index in expert-early and expert-late sessions for neurons showing
significant selectivity (P < 0.001, two-tailed t-test) during the sample (top),
delay (middle) and response epoch (bottom). Green, neurons preferring
anterior pole position. Purple, neurons preferring posterior pole position. Red,
neurons preferringlick left; blue, neurons preferring lick right. Significant
selectivity and trial-type preferences are determined in expert-early session.

f, Schematic of movement-specificactivity trajectoriesinactivity space. Coding
direction (CDy,,,) is estimated using activities during the late delay epoch
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Delay
(expert-early session)

(inset, yellow shade). Red and blue shading indicates preparatory states for lick
leftandlickright, respectively. g, Decoding scheme. Non-overlapping trials for
training and testing within (solid arrows) and across sessions (dashed arrows).
h, ALMactivities froman examplefield of view projected on the CDyp,,, from
day1(top) or day 16 (bottom). Thicklines are the mean and thin lines show
single trials. a.u., arbitrary units. i, Lick direction decoding using the CD .,y
asafunction of deltadays betweenimaging sessions. Colours represent
different mice. Within session decoding shows the mean of two conditions
(trainexpert-early and test expert-early, train expert-late and test expert-late).
Across sessions decoding shows the mean of two conditions (train expert-early
andtestexpert-late, train expert-late and test expert-early). Dashed lines are
linear regressions of individual mouse data. Inset graph shows R values of
linear regressions. FOVs, fields of view. j, Decoding accuracy withinand across
imaging sessions. n =113 pairs of sessions, 10 mice. Dataare mean ts.e.m.

k, Weight contributions of individual neurons to the CDy,,y vectors from
expert-early and expert-late sessions (35,420 neurons from 8 mice).
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Fig.3|New preparatory activity emerges by learning new task context.

a, Possible outcomes of preparatory states across different task contexts.

b, Task contexts1and 2. Time interval betweenimaging sessions, 31.88 +13.88
days, mean +s.d. across fields of view. c, Mean deconvolved activities froman
examplefield of view (n=1,112 neurons). Neurons are sorted on the basis of
their selectivity during the delay epochin either task context1(top) or 2
(bottom).d, Selectivity index in task context1 (left) and 2 (right) for neurons
showingsignificant trial-type selectivity (P<0.001, two-tailed ¢-test) during
the delay epoch. Red, neurons preferring lick left; blue, neurons preferring lick
right. Significant selectivity and trial-type preferences are determined in task

subsequent movement execution. Preparatory states could therefore
encodealearned actionin multiple representations thatindex distinct
contexts.

Stable retention of learned representations

Encoding learned actions in combination with context could enable
stable retention of motor memories over continual learning, because
learningin different contexts forms parallel new representations with-
outaltering previously learned representations. To test this notion, we
examined whether learned preparatory states in previous contexts
were retained after intervening learning (Fig. 4a).

After imaging ALM activity in task contexts 1 and 2, mice were
re-trained in task context 1 (notated as 1’ for re-learning) in the auto-
mated home cage (Extended Data Fig. 1f). We then imaged the same
neuronal populations again (Fig. 4b; task context1>2->1"). We observed
are-activation of the previous preparatory activity pattern, even though
task contexts 1and 1’ were tested 2 months apart on average (32-78
days; Fig. 4b and Extended Data Fig. 1f,g). Individual neurons showing

Time from go cue (s)

Weight on CDp,,
(context 1)

context 1. e, Schematic of movement-specific activity trajectoriesin activity
space and CDy,,,y vectors across task contexts. Red and blue shading indicates
preparatory states for lick left and lick right, respectively. f, ALM activities from
anexample field of view projected on the CDy,,, from task context1(top) or 2
(bottom). Thicklines are the meanand thinlines show single trials. g, Decoding
accuracy of the CDp,,, Withinand across task contexts. n =58 pairs of sessions,
10 mice. Dataare mean = s.e.m. Circles representindividual fields of view. h,
Weight contribution ofindividual neurons to the CDy,,y vectors from task
contextsland?2 (44,409 neurons from10 mice).

lick direction selectivity in task context 1 were reconfigured in task
context2but reappearedintask context1’ (Fig.4c,d and Extended Data
Fig.7h; Pearson’s correlation, task context1versus1’,R = 0.7675,P = 0).
We examined whether ALM preparatory activity was re-activated
along similar coding directions in activity space (Fig. 4e). Activity
trajectories in lick left and lick right trials were well separated in task
context 1’when projected on the CDy,,, from task context 1 (Fig. 4f).
By contrast, the activity trajectories were poorly separated when pro-
jected on the CDpy,, from task context 2 (Fig. 4g). Across all fields of
view, a CDy,,, decoder trained on task context1predicted lick direction
at near chance level in task context 2, but performance recovered in
task context 1’ (Fig. 4h). Together, these data indicate are-activation
ofthe previously learned preparatory states under task context 1’.
We also observed a similar re-activation of ALM preparatory states
associated with task context 2. In a subset of mice (n =3), we further
imaged the same ALM populations across task context1->2->1>2’,span-
ning up to 3 months (59-97 days across mice; Extended Data Fig. 1f,g).
We found consistent reorganization and re-activation of CDp,, vectors
across the reversals (Fig. 4i). Thus, stable retention of preparatory

Nature | Vol 637 | 16 January 2025 | 667



Article

a . e .
Action A Neuron 1 Previous Context 1 Pole Context 2 Context 1
ction : -
Context 1 @ mlsi)r;\tcf?ry Neuron 1 New representation of CDDBI“ Reactivation of CDneIay
Neuronn ———— Right cD. Right Right cD,
New task Delay Contingency Contingency Delay
Neuron 2 learning / reversal reversal
Neuron 3 Action A Basel Neuron n Baseli —> Baseli
context 2
Left --- Left
b . Neuron 2
Context 1 Context 2 Context 1 Neuron 3 =
Contingency Contingency
Ly Ly reversal 11! " reversal 7 LAY
Posterior  Anterior Posterior  Anterior Posterior  Anterior Contexté . tCQomeXt 1 COﬂtEX‘é ! tCzomex‘ 1 Context(;] . tC;Jntext 1
icK ri i ick ri i i ontex ontexi ontexi
Lick right  Lick left Lick left  Lick right Lick right  Lick left Train " . Train B _ " ® Train m-__m . 5
(imaged 30.65 + 8.73 days later) (imaged 57.19 + 12.89 days later) AN RN @
Test O o o Test O o O Test O o =] £
3
c c . 3 8 { Lickleft 3 3
ontext 1 Context 2 Context 1 3 MR K bt &
Right Left Right Left Right Left = B 9 2
Posterior  Anterior Anterior Posterior Posterior  Anterior Event rate 36 \ 'g
’ _ - Q% o 0
= == 1 0.10 o8 . 2
& I3 ' a
B~ g g -2 T t | -2
5% c 2 0 2 Train Context1 1 1 1
a8 o 0.05 " Test Context1 2 17 27
25 5 Time from go cue (s)
go 2
5 -
2 g9 Context 1 Context 1" Context 1 Context 1”  Context 1 Context 1 1 Fokk Kkk %
0 Context 2 Context 2 Context 2
Train B _ m Train = ®  Train @ N =] 5,
d Test “ O o Test O | o Test O o Yo g
Context1 —— Context2 —— Context 1 = 35. . . Lickleft 37: 8
= E] .., Hoxie .
S 100 200 .S 11 Lickright g
5 . i A £
g . 50 100 ag 0 -.Qm—- o i 8
c o T ” 1 o
§ 100 Lick left °s Do S g
3 Lick right b : L
2 0 0 0 & -2 f ) 2 f 2 f )

-1

-1 0 1
Delay selectivity index

-1

Fig.4 |Previous task contextre-activateslearned preparatory activity.

a, Possible outcomes of preparatory states for re-learning. b, Task contexts1,
2and1.Task contextsland1 areidentical. Timeinterval,30.65 + 8.73 days
between task contextsland2,57.19 +12.89 days between task contextsland1’;
mean +s.d. across fields of view. ¢, Mean deconvolved activities from an
examplefield of view (n = 608 neurons). Neurons are sorted on the basis of
their selectivity during the delay epochin task context1.d, Selectivity index in
task context1(left), 2 (middle) and 1’ (right) for neurons showing significant
trial-typeselectivity (P< 0.001, two-tailed t-test) during the delay epoch. Red,
neurons preferringlick left; blue, neurons preferring lick right. Significant
selectivity and trial-type preferences are determined in task context1.e,
Schematic of movement-specificactivity trajectoriesin activity space and
CDy,.1oy Vectors across task contexts. Red and blue shades, preparatory states

states was not limited to any specific task context. Unlike preparatory
activity, selectivity during the sample and response epochs were stably
maintained across all task contexts (Extended Data Fig. 7).

In addition to the reorganization and re-activation of coding direc-
tions (CDp.,y), We also observed activity changes along other dimen-
sions of activity space across task contexts (Extended Data Fig. 8).
Activity along these dimensions did not discriminate lick direction
(Extended Data Fig. 8e; ‘movement-irrelevant subspace’), and activity
did not recover in previous task contexts (Extended Data Fig. 8c,d).
Therefore, preparatory activity is selectively maintained along coding
directionsencodingbehaviour-related information, but activity drifts
over time along other non-informative directions”**,

Learning creates parallel representations

We next tested whether continual learning in new task contexts will
keep creating new preparatory states. Experiments so far only tested
two task contexts. Now we tested whether yet new preparatory states
would emerge if mice learned to performdirectional licking instructed
by anovel stimulus (Fig. 5a).

We trained mice to perform an auditory-instructed licking task in
the automated home cage after imaging ALM activity in the tactile
tasks (Fig. 5b; task context 1-2-3; 40-118 days). Mice discriminated
frequency of a pure tone, and licked left for 2 kHz and licked right for
10 kHz. We then imaged the same ALM populations in auditory task.
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forlick leftand lick right, respectively. f, ALM activities from an example field
of view projected on the CDp,,, fromtask context 1. Thick lines are the mean
and thinlines show single trials. g, Same asf, but for the CDy,,, from task
context 2. h,Decodingaccuracy of the CDy,,,, from task context1tested on
task contexts1,2,1’and 2". Grey circles and lines indicate fields of views imaged
acrosstask contexts1,2and1’ (n =26 fields of view, 5mice). Black circles and
linesindicate fields of views imaged across task contexts1,2,1’,and 2’ (n=7
fields of view, 3 mice). Task context1versus 2, ***P=1.12 x 10'%; task context 2
versus1’,***P=3.46 x107; task context 1’ versus 2’,**P=0.0091. Two-tailed
paired t-test. Dataare mean s.e.m.i,Sameas h, but for the CDy,,, from task
context 2. Task context1versus 2, ***P=4.87 x 107'%; task context 2 versus ',
“**p=740x107%; task context1’ versus 2’,*P=0.0496. Two-tailed paired t-test.

Individual neurons with significant lick direction selectivity during
the delay epochin tactile task showed distinct pattern of selectivity
inauditory task (Fig. 5c; Pearson’s correlation, task context1versus 3,
R =0.3435; significantly less than the correlation within task context
over time in Fig. 2e, P= 0, bootstrap).

We further examined whether ALM preparatory activity encoded
tactile-and auditory-instructed lickings along different coding direc-
tions (Fig. 5d). Indeed, we found poor separation between activity
trajectoriesinlick leftandlick right trialswhenactivitiesin the auditory
task were projected on the CDp,,, from the tactile task (Fig. 5e). Across
allfields of view, the CDyp,,y decoders trained on the tactile tasks pre-
dictedlick direction poorly when tested on the auditory task (Fig. 5f).
By contrast, a decoder trained within the auditory task could decode
lick direction significantly better than the decoders from tactile task
land 2 (P=0.0022and P=0.002, two-tailed paired t-test), indicating
that their poor decoding performances in the auditory task were not
dueto alack of neuronal selectivity.

Finally, ALM activity during the sample epoch was distinct across
tactile and auditory tasks (Extended Data Fig. 9a,b). Lick direction
selectivity during the response epoch remained stable across all task
contexts (Extended DataFig. 9e,f), which probably reflected conserved
licking movement execution across tasks and ruled out the possibility
of unstable imaging over time.

Together, these results show that motor learning produces
context-specific preparatory states. Once learned, these activity states
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duringthe delay epoch. Red, neurons preferring lick left; blue, neurons
preferringlick right. Significant selectivity and trial-type preferences are
determinedintask context1.d, Schematic of movement-specificactivity
trajectoriesinactivity space and CDyp,,y vectors across task contexts. Red and

arestably stored and canbe recalled after several months, despite inter-
vening motor learning involving the same actions in other contexts.
Atthe same time, activity related to movement execution remains the
same across contexts. Preparatory states thus reflect context-specific
motor memories that are stably retained over continual learning.

Preparatory activity reflects motor memory

We next explored how a context-specific neural code could support
motor memory behaviour. Mice exhibited faster re-learning in the
previously learned sensorimotor contingency (Extended Data Fig. 1c).
We examined whether preparatory states retained amemory trace that
could facilitate faster re-learning®.

We re-analysed the imaging data from tactile task 121’ in which
we imaged ALM activity in the same task context before and after an
intervening learning. If learning of task context 2 left amemory trace,
we should observe an activity change in task context 1’ compared
with task context 1, and this change should support the performance
of task 2. We calculated the CDp,,, for task context 2 and projected
ALM activity at the end of the delay epoch on the CDy,, (Extended
Data Fig.10a). ALM activity in task context 1’ exhibited increased lick
direction selectivity along the CDy,,,, compared with task context 1
(Extended Data Fig.10b; P=0.005, paired t-test). To examine whether
this activity change could support the performance of task 2, we per-
formed decoding of lick direction using activity projected on the CDp,,
from task context 2. Decoding was near chance level in task context 1
(52.75+5.24%, mean + s.e.m. across sessions) but significantly increased
t058.66 + 4.63% in task context 1’ (Extended Data Fig.10c; P= 0.0199,
paired t-test). Thus learning of task context 2 left a subtle but persistent
alteration of ALM preparatory activity along the CDp,,".

If each task-specific CDp.,y retains amemory trace of previous learn-
ing, distinct CDp,,, vectors could provide aplace to store task-specific
motor memories while protecting them from interference. We tested
this notion by taking advantage of the individual variability that some

0 2 -2 0 2 Train Context1 1 1

Time from go cue (s) Test Context1 2 3

blueshades, preparatory states for lick left and lick right, respectively. e, ALM
activities from an example field of view projected on the CDyy,, from task
context 1. Thicklinesare the mean and thinlines showsingletrials. f, Decoding
accuracy of the CDy,,, from task context1tested on task contexts1,2and 3
(n=8fields of view, 3 mice). Task context 1versus 3, ***P=5.56 x 10~. Decoding
accuracy of the CDyp,,y from task context 2 (n = 8 fields of view, 3 mice). Task
context2versus3,***P=6.08 x10"*. Decoding accuracy of the CDp,, from task
context 3 (n =8 fields of view, 3 mice). Comparing to task context 1decoder,
**P=0.0022; comparingto task context2 decoder, **P=0.002. Two-tailed
paired t-test. Dataare mean +s.e.m.

mice exhibited distinct CDy,, vectors across task contexts, whereas
others exhibited fixed CDy,,y vectors (Extended Data Fig. 6a—c).
Remarkably, mice with distinct CDy,,, vectors in different task con-
texts (lower dot product) re-learned the previously learned task faster
(Extended Data Fig.10d; P=0.0002, Pearson’s correlation).

Theseresults suggest that task-specific motor memories are stored
along distinct coding directions in activity space, which could help
protect the memories from new learning and support faster re-learning
of previously learned tasks.

Afeedforward network for stable memory storage

We used network modelling to explore network architectures that
might support the observed memory storage. Preparatory activity is
mediated by interactions between ALM and multiple brain regions®..
Our goal was to be agnostic to how models map onto brainregions but
explore what networks could explain reorganization of preparatory
activity by learning, specifically: (1) formation of new preparatory
activity across contingency reversal; and (2) re-activation of learned
preparatory activity patterns after intervening task learning.

We started with recurrent neural networks® (RNNs) (Fig. 6a). RNNs
were trained to generate linear ramps along the correct readout dimen-
sionand no activity along theincorrect readout dimension (Fig. 6b, task
context 1; Methods). For contingency reversal, we trained the internal
connections oflearned RNNs to generate the opposite responses while
keepingtheinputand output connections fixed (Methods). Contrary to
the neural datain which anew pattern of selectivity emerged after con-
tingency reversal (Fig.3), RNNactivity mostly followed the network out-
put (thatis, lick direction; Fig. 6b). Network units similarly contributed
to the CDp,,, defined by lick direction in both task contexts (Fig. 6¢).
We also tested RNNs in which only two internal units contributed to the
output, yielding similar results (Extended Data Fig.11a-c). RNN dynam-
icswere therefore constrained to the previously learned CDp,,, and the
networks solved the contingency reversal by re-association (Fig. 6d).
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We next explored a class of amplifying feedforward (AFF) networks
that generate persistent activity by passing activity through a chain of
network states*>** (Fig. 6e and Extended Data Fig. 11d), which can be
modelled as aseries of layers with feedforward connections. AFF net-
works learned feedforward amplifications to generate choice-specific
persistent activity in response to transient inputs to the early layer
(Fig. 6f). Feedback connections conveyed output signals to early layers
and allowed the network tolearn (Methods). Inthe hiddenlayers, AFF
networks maintained persistent activity along multiple dimensions
(Extended Data Fig.11e,f). AFF networks readily captured both features
ofthe neural data: (1) upon contingency reversal, the network learned
anew CDy,,,; (2) re-training in the previous sensorimotor contingency
re-activated the previous CDp.,, (Fig. 6f,g). Resetting the weights of
the hiddenlayers before re-training prevented the CDy,, re-activation
(Extended Data Fig. 11g,h). Thus, AFF networks stored sensorimotor
mappingsin hidden layers.

We nextexamined the features thatallowed AFF networks to create
new CDy,,,, vectors upon contingency reversal learning while retaining
previously learned CDy,,, vectors. Owing to feedforward and feedback
connections, intermediate layers contained mixtures of input and
outputrepresentations. We decompose AFF network activity into dis-
tinct modes. AFF networks learned a persistent stimulus mode and an
output mode along orthogonal dimensions that together established
the CDp,1,y (Extended Data Fig. 12a). Upon contingency reversal, the
output mode combined with the new stimulus mode to form a new
CD,.,y (Extended Data Fig.12a). Reversion to the previous contingency
re-activated the original stimulus and output modes, which re-activated
the previously CDy,,, (Fig. 6g). By contrast, we found that the persistent
stimulus mode was absent in RNNs, which resulted in CDy,, vectors
that were aligned to only the output mode (Extended Data Fig. 12b).
This suggests that a high-dimensional circuit that can maintain multi-
ple persistentactivity modesis critical to support context-dependent
CD,,,,, reorganization.

This feature of AFF networks could also explain individual variabil-
ity across mice (Extended Data Fig. 6a—c). Individual networks could
exhibit a range of CDp,,y reorganization depending on the relative
strengthof input and outputrepresentationsintheintermediate layers
(Extended Data Fig. 12a). Networks with strong stimulus modes (due
toweak feedback connections) exhibited reorganized CDp,,, Vectors;
networks with strong output modes exhibited stable CDyp,,, vectors
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(right).d, Dot product between the CDyy,, vectors from task contexts1and 2.
Datafrom 50 randomlyinitialized RNNs. e, Schematic of the AFF network. f-h,
Sameasb-d, except for the AFF networks. Data from 50 randomly initialized
AFF networks.

aligned to the network output (Fig. 6h and Extended DataFig.12c). This
suggests an unexpected role of stimulus activity in the formation of
motor memory. We tested whether ALM stimulus activity could explain
theindividual variability across micein our data. Remarkably, stimulus
activity strength measuredin task context 1 predicted whether amouse
would exhibit context-dependent reorganization of CDy,,, across task
contexts (Extended Data Fig.12d). This suggestsindividual differences
intheir underlying neural circuits.

Insummary, an AFF network architecture that maintained multiple
persistent activity modes to encode sensorimotor combinations in
high-dimensional hidden layers could explain multiple aspects of the
neural data. These results suggest that stable motor memory isrooted
in high-dimensional representations. AFF networkis asubclass of RNNs.
There may be other architectures that could also produce these neural
dynamics.

Discussion

Our study reveals a combinatorial neural code that stores learned
actions in combination with their contexts. Within a task context,
preparatory activity encodinglick directionis stably maintained over
multiple months (Fig. 2), and even across intervening motor learning
(Fig. 4). Across task contexts, the same action is preceded by distinct
preparatory activity (Fig. 3), whereas selectivity related to sensory
stimulus and movement execution remains remarkably stable over time
andacrosstask contexts (Extended DataFigs. 4, 5,7 and 9). These results
suggest that the same action can be encoded by multiple preparatory
states. This afforded degree of freedom may allow the motor circuits
to create parallel representations for the same actions while indexing
their contexts. Indeed, we find that new task learning continually cre-
ates new preparatory states for learned actions ina context-dependent
manner (Fig.5). Motor learning thus forms modular motor memories
for each context.

Preparatory states in different task contexts are arranged along dis-
tinct coding directionsinactivity space. Each coding direction retains
amemory trace of the previous learning in specific tasks (Extended
DataFig.10a-c). Context-specific coding directions could help protect
existingmemories frominterference by newlearning: mice with distinct
coding directions across task contexts were faster to re-learn previ-
ously learned tasks—that is, greater saving (Extended Data Fig. 10d).



These properties of ALM preparatory activity indicate that it reflects
motor memory and reveal the underlying neural code for stable motor
skill retention. Context-specific memory, as we observed in the motor
system, may provide asolution for stable memory storage throughout
continual learning. Learning in new contexts produces parallel new
representations instead of modifying existing representations, thus
protecting existing motor memories from erasure®®,

Motor cortical preparatory activity is thought to provide the initial
conditions for subsequent movement execution'. Our results show that
preparatory activity is not directly linked to the movement itself but
reflects motor memories of learned actions and contexts’. Reorgani-
zation of preparatory activity across task contexts shares similarities
with place cells of hippocampus, which encode space and experience
within specific context and undergo global remapping across distinct
contexts®. Context-specific code may be a general feature for learning
cognitive representations.

Our findings suggest that when movement parameters and task
context are controlled, neural representation of actions in motor
cortex shows surprisingly little representational drift. Interestingly,
preparatory activity is selectively maintained along coding directions,
but activity drifts over time along other non-informative directions
(Extended Data Figs. 3 and 8). Preparatory activity is maintained by
recurrent networks in motor cortex and connected brain areas'**". Our
findings suggest that motor memories are stored in stable network
configurations. Previous studies have reported representational driftin
sensory, association, and memory-related brain regions****¥’, However,
little representational drift has been reported in motor areas® *°, Dif-
ferencesin brain areas and behavioural paradigms may explain some
differencesin these findings.

It was recently reported that motor learning induces a persistent
change in preparatory activity”®. Notably, this persistent change occurs
outside of the activity subspace encoding specific movements (coding
directions), whereas the geometry of activity states encoding specific
movements is mostly preserved. These studies examine activity change
withinasession or across afew days, thus the stability of the reorganized
activity remainsto be determined. By tracking activity over long-term,
here we find that learning new task context induces a dramatic reor-
ganization of the coding directions (Figs. 3 and 5), along with changes
inmovement-irrelevant subspace (Extended Data Fig. 8). We also find
that, once learned, the preparatory states are stably retained and can
be recalled after multiple months (Fig. 4). Thus multiple concerted
changes, along both coding directions and movement-irrelevant sub-
spaces, accompany motor skill learning and may work collectively to
differentiate motor memories.

A combinatorial code requires high-capacity storage for motor mem-
ories owing to potentially many combinations of actions and contexts.
Standard RNNs mostly reused output activity statesin different tasks.
The delay epoch separating sensory input and network outputintime
and the network training to generate ramping output dynamics dur-
ing the delay epoch might have made it difficult for the RNNs to learn
sensorimotor combinations. Our network modelling suggests that
stable motor memory is rooted in high-dimensional representations
andrequires anetworkarchitecture that canreadily acquire and store
sensorimotor combinations (Fig. 6e-h). It remains to be determined
how such high-dimensional representations map onto neural circuits.
Preparatory activity ismaintained by recurrent loops between ALM and
subcortical regions™*®, including thalamus®*’, midbrain®®, and cerebel-
lum®., The storage locus for such motor memories is unknown. We pro-
pose the cerebellum as a potential candidate. Cerebellar granule cells
integrate inputs from the neocortex and form the basis for cerebellar
output that influences preparatory activity®’. Cerebellar granule cells
are the most numerous cell type in the brain, which could provide a
substrate for high-dimensional representations with minimal interfer-
ence between motor memories®***, Future work probing mechanisms
of memory storage in the cerebellum may be of interest.
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Methods

Mice

This study was based on datafrom 36 mice (age more than postnatal day
60, both male and female mice). Fifteen GP4.3 mice (Thyl-GCaMPé6s;
Jacksonlaboratory,JAX 024275) were used for longitudinal two-photon
calciumimaging. Among them, one mouse was removed from subse-
quent neuronal data analyses due to the low number of matched neu-
rons across days (see ‘Preprocessing of two-photonimaging data’). Five
GAD2-IRES-Cre mice (JAX 010802) were used for ALM photoinhibition
inhome cage. Five additional GAD2-IRES-Cre mice were used only for
behaviour trainingin home cage. Eleven Slc17a7-Cre mice (JAX 023527)
crossed to Cre-dependent GCaMP6freporter Ail48 mice (JAX 030328)
were used for behaviour training but were not used for calcium imaging
due to poor behavioural performance (Extended Data Fig. 1i).

All procedures were in accordance with protocols approved by the
Institutional Animal Care and Use Committees at Baylor College of
Medicine. Mice were housed in a12:12 reversed light:dark cycle and
tested during the dark phase. On days not tested, mice received 0.5-1ml
of water. On other days, mice were tested in experimental sessions last-
ing1-2 hwhere they received all their water (0.5-1 ml). If mice did not
maintain a stable body weight, they received supplementary water®.
All surgical procedures were carried out aseptically under 1-2% iso-
flurane anaesthesia. Buprenorphine Sustained Release (1mg kg™) and
Meloxicam Sustained Release (4 mg kg™) were used for preoperative
and postoperative analgesia. A mixture of bupivacaine and lidocaine
was administered topically before scalp removal. After surgery, mice
were allowed to recover for at least 3 days with free access to water
before water restriction.

Surgery

Mice were prepared with a clear skull cap and a headpost**®*. The scalp
and periosteum over the dorsal skull were removed. For ALM photoin-
hibition in GAD2-ires-cre mice, AAV8-Efla-DIO-ChRmine-mScarlet*
(Stanford Gene Vector and Virus Core; titre 8.44 x 10% viral genomes
(vg) per ml) wasinjected in the left ALM (anterior 2.5 mm frombregma,
lateral 1.5 mm, depth 0.5 and 0.8 mm, 200 nl at each depth) using a
Nanoliter 2010 injector (World Precision Instruments) with glass
pipettes (20-30 pm diameter tip and beveled). A layer of cyanoacrylate
adhesive was applied to the skull. A custom headpost was placed on
the skull and cemented in place with clear dental acrylic. A thin layer
of clear dental acrylic was applied over the cyanoacrylate adhesive
covering the entire exposed skull.

For two-photon calciumimagingin GP4.3 mice, a glass window was
additionallyimplanted over ALM. A circular craniotomy with diameter
3.2 mm was made over the left ALM (anterior 2.5 mm from bregma,
lateral 1.5 mm). Durainside craniotomy was removed. A glass assembly
consisting of a single 4 mm diameter coverslip (Warner Instruments;
CS-4R) on the top of two 3 mm diameter coverslips (Warner Instru-
ments; CS-3R) was combined using optical adhesive (Norland Products;
NOA 61) and UV light (Kinetic instruments Inc.; SpotCure-B6). The
glass window was affixed to the surrounding skull of craniotomy using
cyanoacrylate adhesive (EImer; Krazy Glue) and dental acrylic (Lang
Dental Jet Repair Acrylic; 1223-clear).

Behaviour tasks and training in home cage

Details of behaviour task and training in the autonomous home-cage sys-
temhave been described previously®. Inbrief, aheadport (-20 x 20 mm)
was inthe frontal side of the home cage. The two sides of the headport
werefitted withwidened tracks that guided acustomheadpost (26.5 mm
long, 3.2 mm wide) into a narrow spacing where the headpost could
trigger two snap action switches (D429-RIML-G2, Mouser) mounted
on both sides of the headport. Upon switch trigger, two air pistons
(McMaster; 6604K11) were pneumatically driven (Festo; 557773) to
clamp the headpost. A custom 3D-printed platform was placed inside

the home cage in front of the headport. The stage was embedded with
aload cell (Phidgets; CZL639HD) to record mouse body weight. This
body weight-sensing stage was also used to detect struggles during
head fixations and triggered self-release. A lickport with two lickspouts
(5 mm apart) was placedin front of the headport. Each of the lickspout
was electrically coupled to the custom circuit board that detected licks
viacompletion of an electrical circuit upon licking contacts* ¢, Water
rewards were dispensed by two solenoid valves (The Lee Company;
LHDA1233215H). The sensory stimulus for the tactile-instructed licking
task was a mechanical pole (1.5 mm diameter) on the right side of the
headport. The pole was motorized by alinear motor (Actuonix; L12-30-
50-12-1) and presented at different locations to stimulate the whiskers.
The sensory stimuli for the auditory-instructed licking task were pure
tones (2 kHz or 10 kHz) provided by a piezo buzzer (CUI Devices; CPE-
163) placed in front of the headport. The auditory ‘go’ cue (3.5 kHz) in
bothtactile and auditory tasks was provided by the same piezo buzzer.
Protocols stored on microcontrollers (Arduino; AO0O0062) operated
the home-cage system and autonomously trained mice in voluntary
head fixation and behavioural tasks, as well as carrying out optogenetic
testing. In brief, mice were placed inside the home cage and could freely
lick bothlickspouts that were placed inside the home cage through the
headport. Therewarded lickspout alternated between the left and right
lickspouts (3 times each) to encourage licking on both lickspouts. This
phase of the training acclimatized mice to the lickport and the lickport
was gradually retracted into the headport away from the home cage.
The lickport retraction continued until the tip of the lickspouts was
approximately 14 mmaway from the headport. At this point, mice could
onlyreachthelickspouts by entering the headport with the headpost
triggering the head-fixation switches. After 30 successful voluntary
head-fixation switch triggers, the pneumatic pistons were activated to
clamp the headpost upon the switch trigger (‘voluntary head fixation’;
Fig. 1c). The head-fixation training protocol continuously increased
the pneumatic clamping duration (from3 sto 30 s). This clamping was
self-released when the body weight readings from the load-sensing plat-
form exceeded either an upper (30 g) or lower (-1 g) threshold. Overt
movements of the mice during the head fixation typically produced
large fluctuations in weight readings exceeding the thresholds. These
thresholds were dynamically adjusted during the training process.
When mice successfully performed head-fixation training protocol
by reaching 30 s head-fixation duration, the next training protocol for
thetactile-instructed licking task began. Inthe tactile-instructed licking
task, mice used their whiskers to discriminate thelocation of apole and
reported choice using directional licking for awater reward*** (Fig.1d).
The pole was presented at one of two positions that were 6 mm apart
along the anterior-posterior axis. The posterior pole position was
approximately 5 mm from the right whisker pad. The sample epoch
was defined as the time between the pole movement onset to 0.1 s after
the poleretraction onset (sample epoch, 1.3 s). A delay epoch followed
during which the mice must keep theinformationinshort-termmemory
(delay epoch, 1.3 s). An auditory ‘go’ cue (0.1 s duration) signalled the
beginning of response epoch and mice reported choice by licking one
ofthetwo lickspouts. Task training had three subprotocols that shaped
mice behaviourinstages.First, a‘directional licking’ subprotocol trained
micetolickboth lickspouts and switch between the two. Then, a‘discrimi-
nation’subprotocol taught mice toreport pole position with directional
licking. Finally, a ‘delay’ subprotocol taught mice to withhold licking
during the delay epoch and initiate licking upon the ‘go’ cue by gradu-
ally (in 0.2 ssteps) increasing the delay epoch durationup to1.3 s. At the
end of the delay subprotocol, the head-fixation duration was further
increased from 30 s to 60 s. The head-fixation duration was increased
by 2 s after every 20 successful head fixations. This was done to obtain
morebehavioural trialsineach head fixation. The programalso adjusted
the probability of each trial type to correct biased licking of the mice.
Mice were first trained in one sensorimotor contingency (Fig. 1b, task
context 1; anterior pole position-lick left, posterior pole position->
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lickright). Then, the correspondence between pole locations and lick
directions was reversed (task context 2; anterior pole position-lick
right, posterior pole position-lick left). Over multiple months, mice
could learn multiple rounds of sensorimotor contingency reversal
depending on experiment (see ‘Performance criteria for contingency
reversals and acclimatization to imaging setup’).

For auditory-instructed licking task, mice were trained to perform
directional licking to report the frequency of a pure tone presented
duringthe sample epoch (Fig. 5b, task context 3; 2 kHz (low tone)~>lick
left, 10 kHz (high tone)~lick right). Task structures such as the delay
epoch (1.3 s) and auditory go cue (3.5 kHz, 0.1s) were the same as the
tactile-instructed licking task.

Performance criteria for contingency reversals and
acclimatization toimaging setup

For mice that underwent optogenetic experiment in home cage, con-
tingency reversal was automatically introduced when mice reached
performance criteria of >75% correct and <50% early lick for 100 trials
in a given task contingency (Fig. 1e,h). Mice learned multiple rounds
of contingency reversals before optogenetic experiment initiated.
Optogenetic experiment was manually initiated based oninspections
of behavioural performance (Fig. 1h).

Mice for two-photon imaging were over-trained in each task con-
text to reach performance criteria of >80-85% correct for 100 trials.
Over-training facilitated faster habituation after transferring to the
two-photon setup. After mice acquired this high level of task perfor-
mance in home-cage training, we transferred the mice to the imaging
setup where they performed the same taskin daily sessions under the
two-photon microscope. During this period, mice were singly housed
outside of the automated home-cage system. A brief acclimatization
period lasting for a few days was required to habituate the mice to
perform the task under the microscope (Extended Data Fig. le-g).
We started imaging sessions once mice recovered their task perfor-
mance (typically >75%). After imaging across multiple sessions, mice
werereturned to the automated home cage againin which they learned
other tasks. In this manner, we repeatedly transferred mice between
the automated home cage and two-photon setup for as long as possible
(Extended DataFig. 1f,g).

For tactile-instructed licking task, mice were first trained and imaged
inone sensorimotor contingency (Fig.3b, task context1). Afterimaging
under the two-photon microscope, we transferred the mice back to the
home cage and reversed the sensorimotor contingency (Fig. 3b, task
context 2). The mice were over-trained in the new task contingency
before transferring to the two-photon setup to re-image the same
ALM populations across task contexts (task context 1->2; 10 mice).
In a subset of mice, after imaging, we re-trained the mice in the pre-
vious contingency in the home cage (Fig. 4b, task context 1’). After
achieving proficient task performance, we translocated the mice to
the two-photon setup and imaged the same ALM populations again
(task context1-2~>1; 5mice). In asubset of mice, we further repeated
the contingency reversal one more time and imaged across four task
contexts (task context 1-2->1>2’; 3 mice).

Forauditory-instructed licking task, mice wereimaged firstin the tac-
tile task contexts1and 2 before trainingin the auditory task toimage the
same ALM populations across task contexts (task context1->2-3; 8 mice).

ALM photoinhibitionin home cage

The procedure for ALM photoinhibition in home cage has been
described previously*. Light from a 633 nm laser (Ultralaser;
MRL-11I-633L-50 mW) was delivered via an optical fibre (Thorlabs;
M79L005) placed above the headport (Fig. 1g). Photostimulation of
the virus injection site was through a clear skull. The photostimulus
was a 40 Hz sinusoid lasting for 1.3 s, including a 100 ms linear ramp
during photostimulus offset to reduce rebound neuronal activity®”. Pho-
tostimulation was delivered in arandom subset of trials (18%) during

either the sample, delay, or response epoch. Photostimulation started
atthebeginning of the task epoch. Photostimulation power was2.5,12.5,
or 25 mW, randomly selected in each trial. Therefore, the probability
of each photostimulation condition was 2% (total of 9 conditions).
The size of the light beam on the skull surface was 7.07 mm? (3.0 mm
diameter). 2.5,12.5, and 25.0 mW power corresponded to 0.35,1.77,
and 3.54 mW mmin light intensity. This range of the light intensity
was much lower than the previous studies**? (typically 1.5 mW with
alight beam diameter of 0.4 mm, corresponding to 11.9 mW mm™).
To prevent the mice from distinguishing photostimulation trials from
control trials using visual cues, a masking flash was delivered using a
627 nm LED on all trials near the eyes of the mice. The masking flash
began at the start of the sample epoch and continued through the end
of the response epoch in which photostimulation could occur.

Videography

Two CMOS cameras (Teledyne FLIR; Blackfly BFS-U3-04S2M) were used
to measure orofacial movements of the mouse from the bottom and
side views (Extended DataFigs.1a,b and 5e). Both the bottom and side
views were acquired at 224 x 192 pixels and 400 frames per second. Mice
performed the task in complete darkness, and videos were recorded
under infrared 940 nm LED illumination (Luxeon Star; SM-01-R9).
A custom written software controlled the video acquisition®®,

Two-photonimaging
AThorlabs Bergamo Il two-photon microscope equipped with atunable
femtosecond laser (Coherent; Chameleon Discovery) is controlled by
Scanlmage 2016a (Vidrio). GCaMPé6s was excited at 920 nm. Images
were collected with a16x water immersion lens (Nikon, 0.8 NA,3 mm
working distance) at 2x zoom (512 x 512 pixels, 600 x 600 pm). For all
imaging sessions, we performed volumetric imaging by serially scan-
ning five planes (30 or 40 um equally spaced along the z axis) at 6 Hz
each. Therange of depth fromallimaging planes was 120-500 pmbelow
the pial surface, and the range of laser power was 80-225 mW, measured
below the objective. Toidentify the spatial locations of individual field
of view (FOV), we imaged at the pial surface before imaging during the
task (Extended DataFig.2b). To monitor the same ALM neurons across
days, we saved 6 reference images with 10 pminterval around the most
superficial imaging plane for all imaging sessions and identified the
most similarimaging plane based on visual inspection across sessions.
Multiple FOVs were imaged across multiple days in each task con-
text. The same set of FOVs were imaged across multiple task contexts.
Across all experiments, the total duration from the firstimaging session
to the last imaging session was 26-233 days (Extended Data Fig. 1g;
95.86 + 71.95 days, mean * s.d. across mice).

Behaviour data analysis

Performance was computed as the fraction of correct choices, exclud-
ing early lick trials and no lick trials. Mice whose performance never
exceeded 70% after 35-40 days of training were considered unsuc-
cessfulintasklearning (Extended DataFig.1h,i). Chance performance
was 50%. Behavioural effects of photoinhibition were quantified by
comparing the performance under photoinhibition with control tri-
alsusing paired two-tailed t-test (Fig. 1i). To quantify the speed of task
learning in a given task context (Fig. 1f and Extended Data Figs. 1c, 6g
and 10d), we calculated the number of trials to reach performance
criteria of >75% correct and <50% early lick for 100 trials. We excluded
the trials in the head-fixation training protocol from the initial task
learning for a fair comparison.

Video data analysis

We used DeepLabCut® to track manually defined body parts. Separate
models were used to track tongue and jaw movements (Extended Data
Fig.1a,b). The development dataset for model training and validation
contained manually labelled videos from multiple mice and multiple



sessions (correct trials only). For tongue network model, 6 markers
were manually labelled in 500 video frames. For jaw network model,
5 markers were manually labelled in 300 video frames. The frames
for labelling were automatically and uniformly selected by the pro-
gram at different timepoints within trials. The labelled frames of the
training dataset were split randomly into a training dataset (95%) and
atest dataset (5%). Training was performed using the default settings
of DeepLabCut. Allmodels were trained up to 500,000 iterations with
abatch size of one. The trained models tracked the body features in
the test data with an average tracking error of less than 2.5 pixels®,

To analyse tongue and jaw movements during the response epoch,
we defined single lick events based on continuous presence of the
tongue volume in each frame*. Tongue volume was determined from
theinternal area of the four tongue markers (Extended DataFig.1a, left),
whichwerelocated at the corners of tongue. Lick events were separately
grouped based on the lick duration for further time-bin-matched cor-
relation analysis. x and y pixel positions of the tongue tip trajectories
were calculated by averaging the frontal tongue markersin each frame.
xandypixel positions of thejaw tip trajectories were calculated by aver-
agingthethree frontaljaw markersin each frame. For eachlick event, we
obtained four time series (x position, y position, x velocity and y velocity)
forthetongue (orjaw) tip trajectories (Extended Data Fig. 1a,b, middle).
To calculate the similarity between the tongue (or jaw) tip trajectories
across lick events (within lick left or lick right), we computed Pearson
correlation on the time series for all pairwise lick events within and across
sessions. We then calculated the average correlation for the four para-
meters (x position, y position, x velocity and y velocity) and compared
themwithinsessionand across sessions (Extended Data Fig.1a,b, right).

To examine jaw movements during the delay epoch across task
contexts, we calculated the x and y displacement jaw tip position by
subtracting the average jaw position in abaseline period (1.57 s) before
the sample epoch (Extended Data Fig. 6f).

Preprocessing of two-photon imaging data

Imaging data were preprocessed using Suite2p package” to perform
motion correction and extract raw fluorescence signals (F) from auto-
matically identified regions of interest (ROIs). ROIs with >1 skewness
were used for further analyses. Neuropil corrected trace was estimated
as Foeyropil corrected(£) = F(£) = 0.7 X Foop(8). To visualize activity (Fig. 1d,
top and Extended Data Fig. 2j, left), AF/F, (type 1) was separately cal-
culatedineachtrial as (F - F,)/F,, where F,is the baseline fluorescence
signal averaged over a1.57 s period immediately before the start of
eachtrial. For all other analyses, we calculated deconvolved activity to
avoid the spilloverinfluence of slow-decaying calcium dynamics across
task epochs (Extended Data Fig. 2j). To calculate deconvolved activity,
Freuropil correctea fTrom all trials were concatenated and AF/F, (type 2) was
calculated as (F - F,)/F,, where Fyis arunning baseline calculated as the
median fluorescence within a sliding window of 60 s. Subsequently,
AF/F, (type 2) was deconvolved using the OASIS algorithm*® (Extended
DataFig. 2j) after estimating the time constant by auto-regressive model
with order p =1.Deconvolved activities were used for all the analysesin
this study, exceptinFig.2d (top) and Extended Data Fig. 2j (left) where
AF/F, (typel) traces were shown. Typeland type 2 AF/F,only differed
intheir F, calculation.

To track the activity of the same neurons across days, spatial foot-
prints of individual ROIs from the same FOVs were aligned across dif-
ferentimaging days using the CellReg pipeline*. This probabilistic
algorithm computes the distributions of centroid distance and spatial
correlation between neuronal pairs of the nearest neighbour and all
other neighbours within a10 um distance (Extended Data Fig. 2g,h).
Based on the bimodality between distributions (nearest neighbours
versus other neighbours), CellReg algorithm calculates the estimated
false positive and false negative probabilities. By minimizing both
estimated error rates for each pair of ROIs, this probabilistic algo-
rithm identifies co-registered neurons and quantifies registration

scores for these co-registered neurons (Extended Data Fig. 2i). If the
mean squared errors of both centroid distance and spatial correla-
tionmodelare above 0.1 (a pre-determined hyperparameter), CellReg
algorithm generates an error and the FOV is considered as a failure to
find co-registered neurons across days. One mouse was removed from
allsubsequent neuronal data analyses due to failures to find matched
neurons across days from all imaging sessions, primarily due to poor
imaging window quality. Among co-registered neurons, only neurons
withreliable responses in at least one imaging session (i.e., Pearson
correlation between trial-averaged and trial-type-concatenated AF/F,
(typel) peristimulus time histograms (PSTHs) calculated using the first
versus second halves of the trials >0.5) were used for further analyses.

In the experiment where we imaged the same FOV across multiple
sessionsin the same task context, we define the sessions as expert-early
and expert-late sessions (Fig. 2). In cases where we imaged the same
FOV twice over time, the 2 sessions were defined as expert-early and
expert-late sessions accordingly. In cases where we imaged more than 2
sessions from the same FOV over time, the expert-early and expert-late
sessions were defined for pairs of sessions. Specifically, for single neu-
ron analyses (for example, Fig. 2e, k), we only compared the first and
second imaging sessions to avoid inclusion of duplicate data points
fromthe same session. These two sessions are defined as expert-early
and expert-late sessions, respectively. For population level activity
projection and decoding analyses (Fig. 2i,j), weincluded all the possible
pairwise comparisons. For each pair, the two sessions used are defined
as expert-early and expert-late sessions, respectively.

Two-photonimaging data analysis

Neurons were tested for significant trial-type selectivity during the
sample, delay, and response epochs, using deconvolved activities from
different trial types (non-paired two-tailed ¢-test, P < 0.001; correct
trials only). We used the early sample epoch (first 0.83 s, 5 imaging
frames), late delay epoch (last 0.67 s, 4 frames), and early response
epoch (first1.33 s, 8 frames) as the respective time windows for the
statistical comparisons and all the following analyses (Extended Data
Fig.4a-c). To examine the stability of single neuron selectivity index,
we first identified significantly selective neurons in each task epoch.
Wethendetermined eachneuron’s preferred trial type (‘lick left’ versus
‘lick right’) using the earlier imaging session in task context 1. Next,
selectivity index was calculated as the difference in activity between
trialtypes divided by their sum (anterior versus posterior pole position
for sample epoch selectivity; lick left versus lick right for delay and
response epoch selectivity; correct trials only). To define preferred
trial types in earlier sessions, a portion of the trials were used for sta-
tistical tests to determine significant selectivity and the preferred trial
type, thenindependent trials were used to calculate selectivity index
withinthe same session. We then calculated selectivity for the defined
neurons in later sessions or across different task contexts.

For error trial analysis (Extended Data Fig. 2k,l), only the imaging
sessions with more than ten error trials for each trial type were ana-
lysed. Selectivity was calculated as the difference in trial-averaged
activity (deconvolved calcium activity) between instructed lick right
and lick left trials, using correct and error trials separately. Selectivity
was calculated during the early sample epoch, late delay epoch, and
response epoch.

Toanalyse the encoding of trial types in ALM population activity, we
built linear decoders that were weighted sums of ALM neuron activi-
tiesto best differentiate trial types. We examined the encoding of four
kinds of trial types: (1) anterior versus posterior pole position trials for
stimulus encoding during the sample epoch in the tactile-instructed
lick task; (2) low tone (2 kHz) versus high tone (10 kHz) for stimulus
encoding during the sample epochintheauditory-instructed lick task;
(3) lick left versus lick right for lick direction encoding during the delay
epoch;and (4) lick left versus lick right for lick direction encoding dur-
ing the response epoch.
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To build the linear decoder for a population of n ALM neurons, we
foundan x 1vector codingdirection (CD) in the ndimensional activity
space that maximally separates response vectors in different trial types
during defined task epochs—that is, CDgpmpie fOr stimulus encoding
during the sample epoch, CDy,,, for lick direction encoding during
the delay epoch, and CDgegponse fOT lick direction encoding during the
response epoch. To estimate the CD vectors, we first computed CD, at
different time points as:

CD,(tactile stimulus, sample epoch)

= Xposterior pole ianterior pole for CDSample

CD,(auditory stimulus, sample epoch)

= ihigh tone iIow tone for CDSample

CD,(lick direction, delay epoch) = Xjick right ~ Xiickiefe fOT CDpelay

CD,(lick direction, response epoch)

= Xiick right — Xiicklefe for CDResponse

where X are n x 1 trial-averaged response vectors that described the
population response for each trial type at each time point, ¢, during
the defined task epochs. Next, we averaged the CD,vectors within the
defined task epoch to separately estimate the CDg,mptes CDperay, and
CDgesponse: CDsampter CDpetay, ANd CDgegponse WETE computed using 50% of
trials and the remaining trials from the same session or from different
sessions were used for activity projections and decoding (Fig. 2g; cor-
rect trials only).

To project the ALM population activity along the CDg,mptes CDpefay,
and CDgesponse: WE computed the deconvolved activity for individual
neurons and assembled their single-trial activity at each time point
into population response vectors, x (n x 1vectors for n neurons). The
activity projection in Figs. 2-5 and Extended Data Figs. 3-5,7 and 9
were obtained as CDsmpie' X, CDpeiay X, aNd CDgesponse X-

Todecodetrial types using ALM population activity projected onto
the CDgympies CDpetay AN CDgegponse (Figs. 2-5and Extended DataFigs. 4, 5,
7and 9), we calculated ALM activity projections (CDs,mpie' X, CDperay' X
and CDpgesponse X) Within defined time windows and we computed a
decision boundary (DB) to best separate different trial types:

DB(tactile stimulus, sample epoch)

T 2 T 2
<CDSample xposterior pole >/0posterior pole + <CDSample xanterior pole >/0anteri0r pole

2 2
l/aposterior pole + 1/O'anterior pole

DB(auditory stimulus, sample epoch)

T 2 T 2
<CDSample xhigh t0“e>/0high tone T <CDSample xlowtone>/olow tone

2 2
1/ohigh tone T 1/Olow tone

DB(lick direction, delay epoch)

T 2 T 2
B <CDDelay xlickright>/olickright+ <CDDelay x“ckleft>/olickleft

= 2 2
Y0ijickright * 1/ Oickefe

DB(lick direction, response epoch)

T 2 T 2
<CDResponse xlickright>/aliCk right+ <CDResponse xlickleft>/0“0k left

2 2
Y0ijick right + V0iick et

o%is the variance of the activity projection CD'x within each trial
types. Decision boundaries were computed using the same trials used
to compute the CD vectors and independent trials were used to predict
trial types. To examine decoding performance across task contexts,
werestricted the analysis to decoders with accuracy of >0.7 within the
sessionitwas trainedin (cross-validated performance). Thisis because
if a decoder exhibited low decoding performance to begin with, its
decoding performance will be generally low in other sessions due to
poor training of the decoder.

Toanalyse activity changes along other dimensions of activity space
across task contexts, we defined a ‘uniform shift (US) axis” using
trial-type-averaged activity:

us _ Rcontextz + l-contextz _ Rcontextl + l-contextl
context1->2 ~ 2 2

whereRandLarenx1response vectors that described the trial-averaged
population response for lick left and lick right trials at the end of the
delay epoch. We separately calculated US axes for each task context
change—thatis, US,,, for task context1->2, US, ., for task context 2>1’,
US,.., fortask context1’>2’ (Extended Data Fig. 8b). For activity projec-
tions (Extended Data Fig. 8c), the US axes are further orthogonalized
tothe CD vectors using the Gram-Schmidt process to capture activity
changes along dimensions of activity space that were not selective for
lick direction (‘movement-irrelevant subspace’). We computed the US
vectors using 50% of the trials and the remaining 50% of the trials were
used for activity projections (Extended DataFig. 8c). The dot products
in Extended Data Fig. 8d were calculated without any orthogonalization.

Modelling

Theinstructed directional licking task with a delay epoch was modelled
with simulations lasting for two seconds. The first second of the simu-
lation was the sample epoch during which time trial-specific external
inputs were provided and the last second was the delay epoch in which
theinputs were removed. The coding direction, CDp.,, Was calculated
as the difference between network activity on lick left and lick right
trials at the end of the delay epoch (t=0), similar to the neural data.
Thetrial type was always defined by instructed lick directionin differ-
ent task contexts (across contingency reversals).

Recurrent neural networks
RNNs consisted of 50 units with dynamics governed by the equations

)

J

wherer(t)is the spike rate of neuron, the synaptic time constant T was
setequal to 200 ms, W ;is the synaptic strength from neuronjj to neu-
roni, ['T(¢) is the trial-type (TT)-dependent external input to neuron
i,and f(x) =tanh(x)is the neural activation function.

The connection matrix Wwas randomly initialized from a Gaussian
distribution. The network was scaled to have a maximum eigenvalue
equal to 0.9. To generate persistent activity, networks must have an
eigenvalue greater than or equal to one. Networks initialized with eigen-
values greater than one tended tolearn the task with high-dimensional
persistent activity, inconsistent with ALM dynamics™. Initializing with
eigenvalues less than one tended to produce lower dimensional per-
sistent activity.

Externalinputstrengths /" were drawn from a Gaussian distribution
withmeanequaltozeroands.d. of 0.3. Two distinct input vectors were
used for anterior /* and posterior /” pole position trials.

Behavioural readout B was given by the linear projections
B=Y r(t=0)Wxk.~ Y r(t=0)W,,, wheret=0is the time at the end
ofthe delay epoch, WX . and W/, are Gaussian randomreadout vectors
corresponding to rightward and leftward movements, respectively.



RNNs were trained using backpropagation through time (BPTT).
Theinput (/") and readout weights (W .andWL,,) were fixed and only
the recurrent weights W, ; internal to the RNN were trained. For each
trial type, activity along the correct readout direction was trained to
matchalinear ramp of activity starting at the beginning of the sample
epoch and the incorrect readout direction was trained to have zero
activation. For task context 1, presentation of [ was associated with
ramping along W’ and zero activation along WX , presentation of I”
was associated with the opposite behaviour. These associations were
reversed for task context 2. Networks were trained for 100 iterations.

Inthe RNNs, the behaviour readout relied on many units (dense W% .
and WX,,). Because only 2 units in the AFF networks contributed to
behaviour output, this difference in readout may affect how these
networks learned to produce reversed output. We therefore also
tested RNNs in which we fixed the behaviour readout to only 2 units
like the AFF network (sparse W2 andW%,), but all results remained
unchanged.

Amplifying feedforward network

ALM circuitry contains an AFF circuit motif**. The AFF network is a
recurrentcircuitin which preparatory activity during the delay epoch
flows through a sequence of activity states. Each activity state can be
modelled as alayer within afeedforward network. Inaddition, the late
layers in the network are connected to early layers through feedback
connections. Here we develop aframework for training AFF networks
to generate choice-selective persistent activity.

Before detailing the learning rules used for training AFF networks, we
firstintroduce several features that make AFF networks advantageous
for training. Training neural networks require pathways linking input
units to output units for computation, and pathways linking outputs
toinputs for learning. In the simplest cases, output to input feedback
may interfere with the input to output computations. AFF networks,
and non-normal networks in general, do not generate reverberating
feedback. For this reason, itis possible to construct AFF networks that
bidirectionally link inputs to outputs through separate channels that
donotinterfere with each other.

AFF (also commonly referred to as non-normal) networks are con-
structed by applying orthonormal transformations to purely feedfor-
ward networks. Orthonormal transformations to feedforward networks
serve two useful anatomical purposes: (1) they form feedback connec-
tions fromlate layers to early layers; and (2) they form stabilizing excita-
tory/inhibitory connections to eliminate any reverberation that may
result fromthe newly formed feedback connections. In this model, we
use the feedback connections fromlate layers to early layers to convey
performance feedback signals allowing the AFF network to learn via
error backpropagation.

We first constructed a purely feedforward network with 4 layers
referred to asinput (n; 30 units), hiddenlayer 1(h1; 200 units), hidden
layer 2 (h2; 5 units) and output (o; 2 units) (Extended Data Fig. 11).
Trial-type (TT)-dependent external inputs, £''(¢), were provided only
totheinputlayer. Feedforward connection matrices (W™, W/"">and
Wif}z"’) conveyed these inputs to downstream layers and were initialized
from a uniform positive distribution. Next, we added feedback con-
nections fromoto h2 (W ¢") and from h2 to h1 (W 7™ to provide per-
formance feedback for training the feedforward connections. Feedback
connections were matched to feedforward connections so that
Wj‘f'ihz = Wif}z"’. These feedback connections provide scaffolding to pre-
ciselyimplementerror backpropagationto train feedforward connec-
tions. However, the presence of feedback connections in the circuit
willintroduce feedback to the network that will interfere with its feed-
forward computations.

To cancel out the reverberations caused by this feedback we incor-
porated additional stabilization hidden layers s1 (200 units) and
s2 (5 units) (Extended Data Fig. 11). Each hidden unit in layer hlis
matched with a stabilizing neuron in the stabilization layer s1 which

receives the same feedback connections as its paired excitatory neuron
and projectsinhibitory connections of the same strength as its excita-
tory partner. Similarly, eachneuronin h2 hasacorresponding unitins2.
Mathematically this relationship is written as

(s1,h2) _ _ (h1,h2) (s2,0) _ _ (h2,0)
Wi == W and W30 = - Wij=°

and

M/ﬁ}z,sl)= Wj(_lhiz,hl) and Wj('?i'SZ)z Wj(_fii,hZ)

Because of the precisely balanced excitation and inhibition, this
recurrent network isnon-normal; all eigenvalues are equal to zero. This
non-normal network has two independent pathways, one linking the
input layer to the output layer, useful for computation; and the other
linking the output layer to the input layer, useful for learning.

The network is trained using error backpropagation; anerror signal
iscomputed and then sentbackinto each unitinthe outputlayer. This
error signalis conveyed to the early layers by the feedback connections.
The stabilizing network ensures that this error signal does not rever-
berate. The backpropagated signal in neuroniin the hidden layers h1
and h2 are thus given by the equations

dB(t)
r’dit( =-BM(e)+ Y e (W
J
dB"(z) hi n2 h2,h1
T dt :_Bi (t)+sz (t)Wj,i'

J

Asin error backpropagation, feedforward weights (that is, Wit‘,.l'hz)
areupdated by taking the product of the forward pass activity and the
backward pass activity. For example, connections from neuroniin
layer hl1 onto neuronjinlayer h2 are updated according to the rule

AWSD=Y OB and AWV =) 0B

This rule is applied to all feedforward connections (that is,n~> h1,
hl->h2andh2 - 0). Changing the feedforward weights will necessarily
disrupt the precise balance in the network. To maintain stability, the
stabilizing weights must be updated to precisely cancel the changes
to the feedforward weights

1,h2) _ h1,h2
AM/I(/S )__Am/ifj )

Compensatory weight changes based on this equation are applied
toall connectionsin thestabilization layers (thatis,s1 > h2ands2 - o).
The AFF network was trained to form the same associations as the
RNN. Unlike the RNN, the AFF utilized a linear neuronal activation

(f(x) =x) so that dynamics are governed by the equation
Tdn(t) =—f;(t) + z W,Jr(t) +IiTT(t)

de 7

Additionally, because the AFF naturally generates ramping sig-
nals®, the output units were not trained to match a ramping signal
atall time points, but rather trained to be activated at a specific level
at the end of the delay. For example, the target for the lick right out-
put unit (7;) on posterior trials was Tz(t =0) =6 and Tr(t =0)=0o0n
anterior trials.

Analysis of neural dynamics within RNN and AFF networks
For each network, we calculated the selectivity of each unit as the
activity difference between the lick right and lick left trials in each
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task context. We calculated eigenvectors of the network selectivity
matrix using singular value decomposition (SVD). The data for the
SVD were an n x t matrix containing the selectivity of n units over t
time bins (selectivity from task contexts 1 and 2 were concatenated).
Three vectors usually captured most of the network activity variance
across both task contexts (Extended DataFig. 11f). We then rotated the
3 eigenvectors so that the first vector was aligned to the dimension
that maximized the difference in network selectivity matrix between
task contexts1and 2. Network activity projected on thefirst vector was
correlated with the network input across task contexts, thus referred
to as the stimulus mode (Extended Data Fig. 12a,b). Network activ-
ity projected on the second vector was correlated with the network
output across task contexts and exhibited ramping activity during
the delay epoch, thus referred to as the output mode (Extended Data
Fig.12a,b).

To examine the CDy,,, reorganization across task contexts as afunc-
tion of stimulus mode strength (Extended Data Fig. 12c), we summed
the network activity projected on the stimulus mode across time. This
activity strength was normalized to the mean activity of each network
to enable comparisons across different networks.

Statistics and reproducibility

The sample sizes were similar to sample sizes used in the field: for
behaviour and two-photon calcium imaging, three mice or more per
condition. No statistical methods were used to determine sample size.
All key results were replicated in multiple mice. Mice were allocated
into experimental groups according to their strain or by experimenter.
Unless stated otherwise, the investigators were not blinded to mouse
group allocation during experiments and outcome assessment. Trial
types were randomly determined by a computer program. Statisti-
cal comparisons using t-tests and other statistical tests are described
above. All statistics are two-sided unless otherwise noted. We used
Pearson’s correlation for the linear regression. Error bars indicate
mean + s.e.m. unless noted otherwise. Representativeimages in Fig. 2c
and Extended DataFig. 2a,c,d were reproduced across all FOVs (n =78
fields of view, 14 mice).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Processed data have been deposited on the DANDI (Distributed
Archives for Neurophysiology Data Integration) archive and can be
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Extended DataFig.1|Behavioral analysis, behavioral training, and
experimental timeline. a. Top left, representative video frame with
automatically labeled tongue markers using DeepLabCut. Top middle,
superimposed tongue tip trajectories and x and y velocities of individual lick
events duringlick left (red) and lick right (blue). Data from an example mouse
across sessions within the same task context. Tongue tip trajectory scalebar,
4 pixels (x) and 6 pixels (y). X velocity scale bar,12 ms and 2 pixels/s. Y velocity
scalebar,12 msand 1.5 pixels/s. Top right, scatter of averaged pairwise
similarity of single lick events (Pearson’s correlation) calculated within session
versus across sessions. Data from two mice. Bottom, same as top but for data
acrosstask contextsland2.b.Same as a, but for jaw marker analysis. Jaw tip
trajectory scalebar, 4 pixels (x) and 4 pixels (y). X velocity scale bar,12msand 1
pixels/s. Y velocity scale bar,12 ms and 1.5 pixels/s. c. Left, schematics of
learning speed under two models. Context-specific saving effect (top): faster
re-learning only for previously learned tasks. Context non-specific saving
effect (bottom): faster learning each time. Right, faster reversal learning is
consistent with a context-specific saving effect. Re-learning of task context 2’ is
significantly faster thaninitial learning of task context 2 (top). P = 0.0487,
pairedt-test. Circlesindicate individual mice (N =13 mice). Crosses indicate
mean +s.e.m. We examine task context 2because theinitial learning of task
context1is confounded by the exposure to home-cage training. To examine

context non-specific saving effect, we compare the speed of re-learning task
context1 versus re-learning task context 2’ (bottom). The two conditions have
similar task-specific prior training. No significant differenceis observed.
P=0.3425, two-tailed paired t-test. d. Same as Fig. 1i, but separately plotting
photoinhibition results for task context1 (left) and task context 2 (right).
e.Experimental timeline of an example mouse imaged within the same task
context over extended time. Black, behavior trainingin automated home-cage.
Gray, habituation in two-photon setup. Red, calciumimagingin two-photon
setup. Allthetrials are concatenated. Black triangle indicates the end of
learning voluntary head-fixation and start of learningin tactile instructed
licking task. Averaging window, 100 trials. f. Same as e, but for two mice imaged
across different task contexts. g. Summary plot of experimental timeline from
all GP4.3 mice used forimagingin this study. h-i. Behavior performance curves
for theinitial learning from GP4.3 mice (h, n =15mice, allwere trained in
automated home-cage) and Slc17a7-Cre x Ail48 mice (i, n =11 mice, 7 mice were
trained in automated home-cage and 4 mice were manually trained). Different
colorsrepresentindividual mice. Circles indicate end of the learning curves for
GP4.3 mice and termination of training for Slc17a7-Cre x Ail48 mice. j. Behavior
performance withinimaging sessions across 4 segments of trials. Thin gray
linesindicateindividual sessions. Thick blacklinesindicate mean +s.e.m.Data
from Fig. 2b.
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Extended DataFig.2|Preprocessing ofimaging dataand ALM preparatory
activity. a. Mean two-photon fluorescenceimages from the same field of view
(FOV) across 3imaging sessions (Day1,17,and 60). b. Left, cranial windows
from two example mice. Each black box indicates oneimaging FOV (600 x

600 pum). Right, allimaging FOVs (n = 50 from 8 mice). Imaging FOVs cover
ALM, defined as the area where photoinhibition during the delay epoch impairs
behavior performance (dotted red line*) and exhibiting enriched choice
selectivity (gray”). c. Spatial footprints of individual neurons from the same
FOVacross 3imagingsessions, whichare the output of Suite2p (Methods). d.
Identified co-registered neurons (green) across 3imaging sessions, which are
computed by CellReg (Methods). e. The number of neurons from the expert-
early session (n=1,690 + 758, mean = SD), expert-late session (n =1,704 + 777),
and matched neuronsinbothexpert-early and expert-late sessions
(n=855+402).12.80 + 8.90 (mean + SD) days betweenimaging sessions. Data
fromFig.2.f.Fraction of match neuronsacrossindividual mice. Dots,
individual FOVs. Error bars, mean + SD. g. Distribution of centroid distance
(left) and spatial footprint correlation (right) from nearest neighboring
neuronal pairs (green) and other neighboring neuronal pairs within 10 pm
(red). Centroid distance and spatial footprint correlation are parameters used
todefine co-registered neurons across imaging sessions used by CellReg
package.DatafromthesameFOVina,c, d. h. Density map between centroid

distance and spatial footprint correlation fromall co-registered neurons
(n=42,739 from 8 mice). Data from Fig. 2. i. Distribution of registration score
fromall co-registered neurons (n =42,739 from 8 mice). j. dF/F, activity (left),
deconvolved activity (middle), and heatmap of single trial deconvolved
activity (right) from two example neurons. Thick lines represent the mean; thin
linesrepresentsingletrials. k. Single trial deconvolved activity (top) and
peristimulus time histograms (PSTH, bottom) for correctand error trials are
shown for three example ALM neurons. Trial types are based oninstructed lick
direction (blue, lickright; red, lick left). Correct trials, solid lines. Error trials,
dottedlines. mean +s.e.m.l. Top, comparison of individual neuron trial-type
selectivity between correct and error trials. Neurons with significant trial-
typeselectivity (P < 0.001, two-tailed t-test). Selectivity is the difference in
deconvolved activity betweeninstructed lick right and lick left trials during
the early sample epoch (left), late delay epoch (middle), and response epoch
(right). Onerror trials, when mice licked in the opposite directionto the
instruction provided by objectlocation (Fig. 2a), amajority of ALM neurons
switched their trial type preference to predict the licking direction during
thedelay and response epochs, asindicated by the negative correlations

(R, Pearson’s correlation). Bottom, histogram of selectivity angle between
correctand error trials. A negative angle indicates neuron switching selectivity
onerror trials. Binsize: 2°.
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regressions of individual mice across days. e. Same asd, but for population
activity vectors projected onto the CDy,,,. f. Rvalues of linear regressions of
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Fig.2 (50 fields of view from 8 mice); mean+s.e.m.
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Extended DataFig. 4 |Task-related activity during the sample, delay, and
response epochs within the same task context. a-c. Analysis time window

to estimate coding directionin different task epochs. Early sample epoch

(@, CDg,mpie), late delay epoch (b, CDyp,,y), and early response epoch (€, CDgegponse)
were used, respectively. d-f. Scatter plots and histograms of individual neuron
selectivity index during the sample (d), delay (e), and response epoch (f)
comparing expert-early and expert-late sessions. Colors indicate neurons with
significant trial-type selectivity (P < 0.001, two-tailed t-test) during specific
epochsinexpert-early sessions. Neurons are colored based on their preferred
trial-typeinexpert-early sessions. Green, neurons preferring anterior pole
position. Purple, neurons preferring posterior pole position. Red, neurons
preferringlick left. Blue, neurons preferringlick right. Gray, no preference
neurons. Pearson’s correlation, sample epoch, R=0.9404,P =0 (d); delay

epoch,R=0.8861,P=0 (e);responseepoch,R=0.9001,P =0 (f).g.Sameas
Fig.2h, but from the example FOV projected on the CDg,pye trained on day 1
(top) or day 23 (bottom) and tested on day 1 (left) or day 23 (right). h. Same as
Fig. 2h (for CDp.,,) replotted here for comparison. i. Same as Fig. 2h, but for
CDgesponse-J-1- Trial-averaged ALM activities projected on the CDgppre (§),
CDy1ay (K), and CDgegponse (1) from the same session (left) and across different
sessions (right). Thin lines representindividual sessions. Thick lines represent
the mean.m-o0.Same as Fig. 2i, but for CDg,pp1e (M), CD ey (M), and CDgegponse (0).
P=0.4203(0),P=0.4870(n), P =0.0886 (0), Rvalues of linear regression,
two-tailed t-testagainst 0. p-r. Same as Fig. 2j, but for CDg,mpie (P, n =111 pairs
of sessions, 8 mice), CDpy,y (q, n =113 pairs of sessions, 8 mice), and CDgesponse
(r,n=123 pairs of sessions, 8 mice).
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Extended DataFig. 5| Task-related activity during the sample, delay, and response epochR=0.6804, P =0 (f).g-i. Same as Fig. 3f, but for CD,ppre (),
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Extended DataFig.7|Task-related activity during the sample, delay, and
response epochsacross task context1,2,and1’.a. Meandeconvolved
activities froman example field of view across three task contexts (n =781

neurons). b. Scatter plots and histograms of individual neuron selectivity index
during the sample epoch comparing task contexts 1and 2 (left) or task contexts

land1 (right). Colorsindicate neurons with significant trial-type selectivity
(P<0.001, two-tailed t-test) during specific epochsin expert-early sessions.
Neuronsare colored based on their preferred trial-type in task context1.
Green, neurons preferring anterior pole position. Purple, neurons preferring
posterior pole position. Gray, no preference neurons. Pearson’s correlation,
taskcontext1vs.2,R=0.8912,P =0;taskcontextlvs.1,R=0.8290,P=0.
c-f.Sameas Fig. 4f-i, but for activity during the sample epoch.Ind and f, gray
circlesandlinesindicate FOVsimaged across task contexts1,2,and1’ (n =24

FOVs, Smice); black circles and lines indicate subset of FOVs imaged across task
contexts1,2,1,and 2’ (n=5FOVs, 2 mice). Bar/errorbar, mean/s.e.m. g-l. Same
asa-f,butforactivity during the delay epoch. h, red indicates neurons
preferringlick left and blue indicates neurons preferring lick right in task
context1.Pearson’s correlation, task context1vs.2,R=-0.1224,P=1.38x10%;
task context1vs.1,R=0.7675,P=0.Injand I, FOVsimaged across task contexts
1,2,and1’ (n=26 FOVs, 5 mice); FOVsimaged across task contexts1,2,1’,and 2’
(n=7FOVs,3 mice). Datafrom Fig. 4, replotted here for comparison. Bar/
errorbar, mean/s.e.m.m-r.Same as g-1, but for activity during the response
epoch.n,Pearson’s correlation, task context1vs.2,R=0.6220,P =0; task
context1lvs.1,R=0.7624,P=0.Inpandr, FOVsimaged across task contexts1,
2,and1’ (n=26FOVs, 5mice); FOVsimaged across task contexts1,2,1’,and 2’
(n=5FO0OVs, 3 mice). Bar/errorbar, mean/s.e.m.
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Extended DataFig. 8 | Neural activity change in movement-irrelevant
activity subspace across task contexts. a. Schematic of activity changes
across task contexts along coding directions (top, CDy,,y, estimated from
task contexts1and 2) and movement-irrelevant subspace (bottom, USp.,y,
estimated from task context1>2and 2>1’). b. Formula to calculate the CDyy,,'s
andthe USy,,,’s. CDy,y, s are calculated separately for each task context.
USp,.y's are calculated separately for each task context change. c. Activity of
anexample FOV across 4 task contexts (1,2,1’,and 2°). Top, activity projections
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task context1here for visualization purposes. Similar patterns of activity are
re-activatedin the same task context (1vs.1 and 2 vs.2’). Big solid circles
represent the mean; small transparent circles represent activity in single trials.

Bottom, activity projections onthe USy,,,’s. In contrast to the activity along
the CDyy,, s, activity along the USp,,,’s does not show reliable re-activationin
thesame context.d. Dot products (mean +s.e.m.) between the CDyp,,y’s and
USp.1y’s (n=9 fields of view, 3 mice). Activity along the coding directions shows
reliablere-activation (consistent CDp.,,’s for task context1vs.1’and 2vs.2').
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acrossre-learning of previous task contexts (12 vs.2->1’and 152 vs.1>2’).
e.Decoding accuracy of the CDpy,y and USp,, to predictlick directions

(58 pairs of imaging sessions, 10 mice). Bar/errorbar, mean/s.d.***P =5.64 x107%,
two-tailed paired t-test. Activity projection on the US,,,,, does not predict lick
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Data collection Behavioral data was acquired using Arduino microcontroller boards (Hao et al 2021; behaviors in home-cage) and Bpod (Sanworks; behaviors
under two-photon microscope). Two-photon imaging data was collected using Scanlmage 2016a (Vidrio) and Thorlabs Bergamo Il. Video data
was collected using two CMOS cameras (Teledyne FLIR) controlled by custom written software.

Data analysis Suite2P package (Pachitariu et al 2016, v0.10.2) was used for motion correction and extracting raw fluorescence signals from automatically
identified neurons. OASIS algorithm (version published at Friedrich et al 2017) was used for calculating deconvolved activity from individual
neurons. CellReg package (Sheintuch et al 2017, v1.4.5) was used for identifying co-registered neurons from the same field of view across
different imaging sessions. DeeplabCut (Mathis et al 2018, v.2.3.9) was used for tracking tongue and jaw movements. All analyses and
statistics were performed with MATLAB R2020b using custom written codes. Data analysis code is deposited on GitHub (https://github.com/
NuoLiLabBCM/KimEtAI2024).
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further infermation.




Data

nieu

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Processed data have been deposited on DANDI Archive and can be accessed at https://doi.org/10.48324/dandi.001188/0.240912.1925

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender None

Reporting on race, ethnicity, or Nene
other socially relevant

groupings

Population characteristics None
Recruitment None
Ethics oversight None

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

E Life sciences |:| Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine the animal number in our study but our sample sizes are similar to those used in the filed
(Driscoll et al 2017; Daie et al 2021). All key results were replicated in multiple subjects.

Data exclusions  Neurons which were not co-registered across different imaging sessions were not analyzed. Among co-registered neurons, only neurons
showing reliable responses in at least one imaging session (i.e., Pearson correlation between trial-averaged and trial-type-concatenated AF/FO
PSTHs calculated using the first and second halves of the trials = 0.5) were used for the analyses. Decoding analyses were restricted to
decoders with accuracy of > 0.7 within the same session that it was trained in (cross-validated performance).

Replication All behavior and two-photon imaging results were replicated in multiple animals per group (n>=3).

Randomization  Animals of both sexes were randomly assigned to experimental groups. Trial types and optogenetic perturbation trials were randomly
allocated by a computer program.

Blinding During experiments, trial types were randomly determined by a computer program. In all analyses, paired comparisons within the same mice
and neurons were performed (e.g. photoinhibition trials during different epochs versus control trials; epoch-specific selectivity index in the
same neuronal populations from task context 1 versus task context 2; decoding performance of epoch-specific coding direction within and
across task contexts). Blinding for group allocation was not relevant to this study, because we study one group of animals (same genotype)
under the same condition over time for all the experiments.
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Laboratory animals We used 36 mice (age>postnatal day 60, both male and female mice). We used 15 GP4.3 mice (Thy1-GCaMP6s; Jackson laboratory,
JAX 024275), 10 GAD2-ires-cre mice (JAX 010802), and 11 Slc17a7-cre mice (JAX 023527), crossed to cre-dependent GCaMP6&f
reporter Ail48 mice (JAX 030328). Mice were housed at a constant temperature (22+1°C) and humidity (30-55%) under a 12:12
reverse light:dark cycle and tested during the dark phase.

Wild animals This study did not use wild animals.

Reporting on sex The experiments were done on both male and fermale mice.

Field-collected samples  The study did not use samples collected from the field.

Ethics oversight All animal experiments in this study were approved in accordance with the protocols and guidelines approved by the Institutional
Animal Care and Use Committees at Baylor College of Medicine.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks None

Novel plant genotypes  None

Authentication None
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