Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Applied body-fluid analysis by wearable devices

Abstract

Wearable sensors are a recent paradigm in healthcare, enabling continuous, decentralized, and non- or minimally invasive monitoring of health and disease. Continuous measurements yield information-rich time series of physiological data that are holistic and clinically meaningful. Although most wearable sensors were initially restricted to biophysical measurements, the next generation of wearable devices is now emerging that enable biochemical monitoring of both small and large molecules in a variety of body fluids, such as sweat, breath, saliva, tears and interstitial fluid. Rapidly evolving data analysis and decision-making technologies through artificial intelligence has accelerated the application of wearables around the world. Although recent pilot trials have demonstrated the clinical applicability of these wearable devices, their widespread adoption will require large-scale validation across various conditions, ethical consideration and sociocultural acceptance. Successful translation of wearable devices from laboratory prototypes into clinical tools will further require a comprehensive transitional environment involving all stakeholders. The wearable device platforms must gain acceptance among different user groups, add clinical value for various medical indications, be eligible for reimbursements and contribute to public health initiatives. In this Perspective, we review state-of-the-art wearable devices for body-fluid analysis and their translation into clinical applications, and provide insight into their clinical purpose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The anatomy of wearable sensing platforms for body-fluid analysis.
Fig. 2: Current wearable sensing devices for various body fluids in context of the human life cycle.
Fig. 3: The development of digital endpoints.
Fig. 4: Applied body-fluid analysis by wearable devices in clinical medicine.

Similar content being viewed by others

References

  1. Rizas, K. D. et al. Smartphone-based screening for atrial fibrillation: a pragmatic randomized clinical trial. Nat. Med. 28, 1823–1830 (2022).

    ADS  CAS  PubMed  Google Scholar 

  2. Brasier, N. et al. Detection of atrial fibrillation with a smartphone camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO). Europace 21, 41–47 (2019).

    PubMed  Google Scholar 

  3. Kim, J., Campbell, A. S., de Ávila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). This paper has been one of the most successful papers providing a differentiated outlook on the use of wearable devices including their clinical application.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ates, H. C. & Dincer, C. Wearable breath analysis. Nat. Rev. Bioeng. 1, 80–82 (2023).

    Google Scholar 

  5. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022). This paper provides a differentiated overview on the modularity of wearable sensors and their potential to serve various and heterogeneous needs.

  6. Tu, J. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01059-5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Concannon, T. W. et al. Practical guidance for involving stakeholders in health research. J. Gen. Intern. Med. 34, 458–463 (2019).

    PubMed  Google Scholar 

  8. Min, J. et al. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    PubMed  PubMed Central  Google Scholar 

  10. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    ADS  PubMed  Google Scholar 

  12. Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    Google Scholar 

  13. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    CAS  PubMed  Google Scholar 

  14. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). This paper demonstrated the concept of and the basic work for sweat analysis by wearable devices. It has become a highly cited and important work for the whole field.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghaffari, R., Aranyosi, A. J., Lee, S. P., Model, J. B. & Baker, L. B. The Gx Sweat Patch for personalized hydration management. Nat. Rev. Bioeng. 1, 5–7 (2023). This paper discusses the successful translation and commercialization of a body-fluid analysing device. It is a great example of interdisciplinary collaboration between engineers, physiologists and a business partner such as Gatorade.

    Google Scholar 

  16. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00916-z (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ray Tyler, R. et al. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. 13, eabd8109 (2021).

    PubMed  PubMed Central  Google Scholar 

  20. Ye, C. et al. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01513-0 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00998-9 (2023).

    Article  PubMed  Google Scholar 

  22. Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018).

    ADS  CAS  PubMed  Google Scholar 

  23. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00887-1 (2022).

    Article  PubMed  Google Scholar 

  24. Ates, H. C. et al. Biosensor-enabled multiplexed on-site therapeutic drug monitoring of antibiotics. Adv. Mater. 34, 2104555 (2022).

    PubMed  Google Scholar 

  25. Maier, D. et al. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 4, 2945–2951 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    CAS  PubMed  Google Scholar 

  27. Jeerapan, I., Sangsudcha, W. & Phokhonwong, P. Wearable energy devices on mask-based printed electrodes for self-powered glucose biosensors. Sens. Biosensing Res. 38, 100525 (2022).

    Google Scholar 

  28. Heng, W. et al. A smart mask for exhaled breath condensate harvesting and analysis. Science 385, 954–961 (2024). This study succesfully demonstrated the application of a wearable facemask that analyses patients’ EBC.

    CAS  PubMed  Google Scholar 

  29. Ge, Z. et al. Wireless and closed-loop smart dressing for exudate management and on-demand treatment of chronic wounds. Adv. Mater. 35, 2304005 (2023).

    CAS  Google Scholar 

  30. Bai, Z. et al. Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived organohydrogel for chronic wound diagnosis, assessment, and accelerated healing. Nano Energy 118, 108989 (2023).

    CAS  Google Scholar 

  31. Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

  32. Pei, X. et al. A bifunctional fully integrated wearable tracker for epidermal sweat and wound exudate multiple biomarkers monitoring. Small 18, 2205061 (2022).

    CAS  Google Scholar 

  33. Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    CAS  PubMed  Google Scholar 

  34. Zhu, Y. et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater. 30, 1905493 (2020).

    CAS  Google Scholar 

  35. Zheng, X. T. et al. Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Sci. Adv. 9, eadg6670 (2023).

  36. Pang, Q. et al. Smart wound dressing for advanced wound management: real-time monitoring and on-demand treatment. Mater. Des. 229, 111917 (2023).

    CAS  Google Scholar 

  37. Ates, H. C. et al. Integrated devices for non-invasive diagnostics. Adv. Funct. Mater. 31, 2010388 (2021).

    CAS  Google Scholar 

  38. Sempionatto, J. R. et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 17, 1834–1842 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kownacka, A. E. et al. Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating. Biomacromolecules 19, 4504–4511 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. García-Carmona, L. et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. Anal. Chem. 91, 13883–13891 (2019).

    PubMed  Google Scholar 

  41. Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lim, H.-R. et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens. Bioelectron. 210, 114329 (2022).

    CAS  PubMed  Google Scholar 

  43. Arakawa, T. et al. A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement. Anal. Chem. 92, 12201–12207 (2020).

    CAS  PubMed  Google Scholar 

  44. Bellagambi, F. G. et al. Saliva sampling: methods and devices. An overview. Trends Anal. Chem. 124, 115781 (2020).

    CAS  Google Scholar 

  45. Zhang, J. et al. A wearable self-powered biosensor system integrated with diaper for detecting the urine glucose of diabetic patients. Sens. Actuators B 341, 130046 (2021).

    CAS  Google Scholar 

  46. Shitanda, I. et al. Self-powered diaper sensor with wireless transmitter powered by paper-based biofuel cell with urine glucose as fuel. ACS Sens. 6, 3409–3415 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cho, J. H. et al. A smart diaper system using Bluetooth and smartphones to automatically detect urination and volume of voiding: prospective observational pilot study in an acute care hospital. J. Med. Internet Res. 23, e29979 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Li, X. et al. Smart diaper based on integrated multiplex carbon nanotube-coated electrode array sensors for in situ urine monitoring. ACS Appl. Nano Mater. 5, 4767–4778 (2022).

    CAS  Google Scholar 

  49. CIOMS Working Group XI. Patient involvement in the development, regulation and safe use of medicines (CIOMS, 2022).

  50. Majmudar, M. D., Harrington, R. A., Brown, N. J., Graham, G. & McConnell, M. V. Clinician innovator: a novel career path in academic medicine. J. Am. Heart Assoc. 4, e001990 (2015).

  51. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource (Food and Drug Administration, National Institutes of Health, 2016).

  52. Goldhahn, J., Brasier, N. & Kehoe, L. Digitalizing health trials by the Clinical Trials Transformation Initiative. Nat. Rev. Bioeng. https://doi.org/10.1038/s44222-024-00212-2 (2024).

    Article  Google Scholar 

  53. Brasier, N. et al. Next-generation digital biomarkers: continuous molecular health monitoring using wearable devices. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2023.12.001 (2024).

  54. Durán, C. O. et al. Implementation of digital health technology in clinical trials: the 6R framework. Nat. Med. https://doi.org/10.1038/s41591-023-02489-z (2023).

    Article  PubMed  Google Scholar 

  55. Walter, J. R., Xu, S. & Rogers, J. A. From lab to life: how wearable devices can improve health equity. Nat. Commun. 15, 123 (2024).

    ADS  PubMed  PubMed Central  Google Scholar 

  56. Jagannath, B. et al. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. Bioeng. Transl. Med. 6, e10220 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mian, Z., Hermayer, K. L. & Jenkins, A. Continuous glucose monitoring: review of an innovation in diabetes management. Am. J. Med. Sci. 358, 332–339 (2019).

    PubMed  Google Scholar 

  58. Beck, R. W. et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA 317, 371–378 (2017).

    CAS  PubMed  Google Scholar 

  59. Brasier, N. et al. The potential of wearable sweat sensors in heart failure management. Nat. Electron. 7, 182–184 (2024).

  60. Slavich, M. et al. Hyperhidrosis: the neglected sign in heart failure patients. Am. J. Cardiovasc. Dis. 11, 635–641 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    CAS  PubMed  Google Scholar 

  62. Brasier, N. et al. A three-level model for therapeutic drug monitoring of antimicrobials at the site of infection. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00215-3 (2023). This concept work discusses the potential additional information that can be achieved through body-analysis through wearable devices beyond being a simple proxy for blood analysis.

  63. Reber, E., Schönenberger, K. A., Vasiloglou, M. F. & Stanga, Z. Nutritional risk screening in cancer patients: the first step toward better clinical outcome. Front. Nutr. 8, 603936 (2021).

    PubMed  PubMed Central  Google Scholar 

  64. Niederberger, C. et al. Wearable sweat analysis to determine biological age. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2023.02.001 (2023).

    Article  PubMed  Google Scholar 

  65. Brasier, N., Niederberger, C. & Salvatore, G. A. The sweat rate as a digital biomarker in clinical medicine beyond sports science. Soft Sci. 4, 6 (2024).

    Google Scholar 

  66. Brasier, N. et al. Towards on-skin analysis of sweat for managing disorders of substance abuse. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01187-6 (2024). This comment outlines the potential of sweat analysis as a clinical body fluid by combining sweat’s biophysical and biochemical health information.

  67. Xu, C. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. https://doi.org/10.1038/s41928-023-01116-6 (2024). This study successfully demonstrated in a clinical study how multimodal wearable sensing using sweat and biophysical analysis can be implemented to monitor stress, thus extending actual unimodal sensors using either biophysical or biochemical analysis.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hjelmgren, H. et al. Capillary blood sampling increases the risk of preanalytical errors in pediatric hospital care: observational clinical study. J. Spec. Pediatr. Nurs. 26, e12337 (2021).

    PubMed  Google Scholar 

  69. Memon, S. F., Memon, M. & Bhatti, S. Wearable technology for infant health monitoring: a survey. IET Circuits Devices Syst. 14, 115–129 (2020).

    Google Scholar 

  70. Worth, C. et al. Continuous glucose monitoring for children with hypoglycaemia: evidence in 2023. Front. Endocrinol. 14, 1116864 (2023).

    Google Scholar 

  71. Mack, I. et al. Wearable technologies for pediatric patients with surgical infections—more than counting steps? Biosensors 12, 634 (2022).

  72. Kruizinga, M. D. et al. Towards remote monitoring in pediatric care and clinical trials—tolerability, repeatability and reference values of candidate digital endpoints derived from physical activity, heart rate and sleep in healthy children. PLoS ONE 16, e0244877 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rwei, A. Y. et al. A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proc. Natl Acad. Sci. USA 117, 31674–31684 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Labrique, A. B. et al. Best practices in scaling digital health in low and middle income countries. Glob. Health 14, 103 (2018).

    Google Scholar 

  75. Chen, W. et al. Cost-effectiveness of screening for atrial fibrillation using wearable devices. JAMA Health Forum 3, e222419 (2022).

    PubMed  PubMed Central  Google Scholar 

  76. Yoon, Y. E., Kim, S. & Chang, H.-J. Artificial intelligence and echocardiography. J. Cardiovasc. Imaging 29, 193–204 (2021).

    PubMed  PubMed Central  Google Scholar 

  77. Seto, E. Y. et al. Patterns of intestinal schistosomiasis among mothers and young children from Lake Albert, Uganda: water contact and social networks inferred from wearable global positioning system dataloggers. Geospat. Health 7, 1–13 (2012).

    PubMed  Google Scholar 

  78. Ozella, L. et al. Using wearable proximity sensors to characterize social contact patterns in a village of rural Malawi. EPJ Data Sci. 10, 46 (2021).

    Google Scholar 

  79. Evans, G. F., Shirk, A., Muturi, P. & Soliman, E. Z. Feasibility of using mobile ECG recording technology to detect atrial fibrillation in low-resource settings. Glob. Heart 12, 285–289 (2017).

    PubMed  Google Scholar 

  80. Hughes, C. M. L. et al. Development of a post-stroke upper limb rehabilitation wearable sensor for use in sub-Saharan Africa: a pilot validation study. Front. Bioeng. Biotechnol. 7, 322 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Kim, J. et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat. Rev. Bioeng. 1, 631–647 (2023).

    Google Scholar 

  82. Bioengineering for low-resource settings. Nat. Rev. Bioeng. 1, 607 (2023).

  83. Huhn, S. et al. Using wearable devices to generate real-world, individual-level data in rural, low-resource contexts in Burkina Faso, Africa: a case study. Front. Public Health 10, 972177 (2022).

    PubMed  PubMed Central  Google Scholar 

  84. Mashamba-Thompson, T. P., Pfavayi, L. T. & Mutapi, F. Blind spots in the implementation of point-of-care diagnostics for underserved communities. Nat. Rev. Bioeng. https://doi.org/10.1038/s44222-023-00127-4 (2023).

    Article  Google Scholar 

  85. Hui, C. Y. et al. Mapping national information and communication technology (ICT) infrastructure to the requirements of potential digital health interventions in low- and middle-income countries. J. Glob. Health 12, 04094 (2022).

    PubMed  PubMed Central  Google Scholar 

  86. Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

  87. Xu, Y. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    PubMed  PubMed Central  Google Scholar 

  88. Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pu, Z. et al. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 7, eabd0199 (2021).

  90. Güder, F. et al. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732 (2016).

    Google Scholar 

  91. Alshabouna, F. et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Mater. Today 59, 56–67 (2022).

    CAS  Google Scholar 

  92. Bandodkar Amay, J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

  93. Olenik, S., Lee, H. S. & Güder, F. The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baker, L. B. et al. Skin-interfaced microfluidic system with machine learning-enabled image processing of sweat biomarkers in remote settings. Adv. Mater. Technol. 7, 2200249 (2022).

    Google Scholar 

  96. Ghaffari, R. et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv. Funct. Mater. 30, 1907269 (2020).

    CAS  Google Scholar 

  97. Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-powered wearable biosensors. Acc. Mater. Res. 2, 184–197 (2021).

    CAS  Google Scholar 

  98. Min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6, 630–641 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yin, L. et al. A self-sustainable wearable multi-modular e-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Davis, N., Heikenfeld, J., Milla, C. & Javey, A. The challenges and promise of sweat sensing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02059-1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Google Scholar 

  102. Kamodyova, N. et al. Blood contamination in saliva: impact on the measurement of salivary oxidative stress markers. Dis. Markers 2015, 479251 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Kang, J.-H. & Kho, H.-S. Blood contamination in salivary diagnostics: current methods and their limitations. Clin. Chem. Lab. Med. 57, 1115–1124 (2019).

  104. Cruickshank-Quinn, C. et al. Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate. Respir. Res. 18, 57 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Rufo, J., Zhang, P., Zhong, R., Lee, L. P. & Huang, T. J. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat. Commun. 13, 3459 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martin, L., Hutchens, M., Hawkins, C. & Radnov, A. How much do clinical trials cost? Nat. Rev. Drug Discov. 16, 381–382 (2017).

    CAS  PubMed  Google Scholar 

  107. Song, Y. et al. 3D-printed epifluidic electronic skin for machine learning–powered multimodal health surveillance. Sci. Adv. 9, eadi6492 (2023).

  108. Yang, D. S. et al. 3D-printed epidermal sweat microfluidic systems with integrated microcuvettes for precise spectroscopic and fluorometric biochemical assays. Mater. Horiz. 10, 4992–5003 (2023).

    CAS  PubMed  Google Scholar 

  109. Soto, R. J., Hall, J. R., Brown, M. D., Taylor, J. B. & Schoenfisch, M. H. In vivo chemical sensors: role of biocompatibility on performance and utility. Anal. Chem. 89, 276–299 (2017).

    CAS  PubMed  Google Scholar 

  110. Hu, C., Wang, L., Liu, S., Sheng, X. & Yin, L. Recent development of implantable chemical sensors utilizing flexible and biodegradable materials for biomedical applications. ACS Nano 18, 3969–3995 (2024).

    CAS  PubMed  Google Scholar 

  111. Brasier, N. & Eckstein, J. Sweat as a source of next-generation digital biomarkers. Digit. Biomark. 3, 155–165 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. Gupta, N., Fischer, A. R. H. & Frewer, L. J. Socio-psychological determinants of public acceptance of technologies: a review. Public Understand. Sci. 21, 782–795 (2011).

    Google Scholar 

  113. Stein, H. F. Rehabilitation and chronic illness in American culture. J. Psychol. Anthr. 2, 153–176 (1979).

    Google Scholar 

  114. Luborsky, M. R. Sociocultural factors shaping technology usage: fulfilling the promise. Technol. Disabil. 2, 71–78 (1993).

    PubMed  PubMed Central  Google Scholar 

  115. Mushi, A. K. et al. Acceptability of malaria rapid diagnostic tests administered by village health workers in Pangani District, North eastern Tanzania. Malar. J. 15, 439 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Ngowi, K. et al. “I wish to continue receiving the reminder short messaging service”: a mixed methods study on the acceptability of digital adherence tools among adults living with HIV on antiretroviral treatment in Tanzania. Patient Prefer. Adherence 15, 559–568 (2021).

    PubMed  PubMed Central  Google Scholar 

  117. Shehada, N. et al. Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 10, 7047–7057 (2016).

    CAS  PubMed  Google Scholar 

  118. Acciaroli, G., Vettoretti, M., Facchinetti, A. & Sparacino, G. Toward calibration-free continuous glucose monitoring sensors: Bayesian calibration approach applied to next-generation dexcom technology. Diabetes Technol. Ther. 20, 59–67 (2018).

    CAS  PubMed  Google Scholar 

  119. Shan, B. et al. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS Nano 14, 12125–12132 (2020).

    CAS  PubMed  Google Scholar 

  120. Nakhleh, M. K. et al. Artificially intelligent nanoarray for the detection of preeclampsia under real-world clinical conditions. Adv. Mater. Technol. 1, 1600132 (2016).

    Google Scholar 

  121. Jackson, M. & Castle, J. R. Where do we stand with closed-loop systems and their challenges? Diabetes Technol. Ther. 22, 485–491 (2020).

    PubMed  PubMed Central  Google Scholar 

  122. Kalasin, S., Sangnuang, P. & Surareungchai, W. Lab-on-eyeglasses to monitor kidneys and strengthen vulnerable populations in pandemics: machine learning in predicting serum creatinine using tear creatinine. Anal. Chem. 93, 10661–10671 (2021).

    CAS  PubMed  Google Scholar 

  123. Yang, Y. et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 28, 2207–2215 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bashir, A. et al. Machine learning guided aptamer refinement and discovery. Nat. Commun. 12, 2366 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sotirakis, C. et al. Identification of motor progression in Parkinson’s disease using wearable sensors and machine learning. npj Parkinsons Dis. 9, 142 (2023).

    PubMed  PubMed Central  Google Scholar 

  126. Porumb, M., Stranges, S., Pescapè, A. & Pecchia, L. Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci. Rep. 10, 170 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dunn, J. et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat. Med. 27, 1105–1112 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cammarota, G. et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 635–648 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

N.B. acknowledges an Early-career Fellowship from Collegium Helveticum, Zurich (CH) and a MedLab Fellowship from ETH Zurich (CH). C.D. acknowledges the OrChESTRA project from the European Union’s Horizon Europe’s research and innovation programme under grant agreement number 101079473. The language editing was conducted by A. Curtis.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and reviewing the paper. Specifically, N.B., J.W., C.D. and F.G. planned and outlined the paper. N.B. drafted the figures. W.G., J.W., C.D. and H.C.A. contributed to section ‘Wearable devices for body-fluid analysis’. I.S., J.G., N.B., N.R., M.W. and S.M. contributed to section ‘Translation and healthcare implementation’. J.R.S., F.G., S.O., E.V., D.S., R.G. and J.A.R. contributed to the section ‘The environment required for mainstream adoption’. All authors contributed to editing and finalizing the paper.

Corresponding author

Correspondence to Noé Brasier.

Ethics declarations

Competing interests

R.G. is co-founder and CEO of Epicore Biosystems. J.W. is founder and chief scientific officer at Persperion. W.G. is co-founder and advisor at Persperity Health. E.V. serves in the ethics advisory panel of Merck AG and in the ethics advisory panel of IQVIA. J.A.R. is a co-founder and advisor to Sibel Health, Sonica and Epicore Biosystems, and holds patents associated with these companies. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Sam Emaminejad, Chwee Teck Lim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasier, N., Wang, J., Gao, W. et al. Applied body-fluid analysis by wearable devices. Nature 636, 57–68 (2024). https://doi.org/10.1038/s41586-024-08249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08249-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research