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Towards accurate differential diagnosis with 
large language models
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Yong Cheng6, Yun Liu4, S. Sara Mahdavi5, Sushant Prakash3, Anupam Pathak4, 
Christopher Semturs4, Shwetak Patel1, Dale R. Webster4, Ewa Dominowska1, Juraj Gottweis7, 
Joelle Barral8, Katherine Chou4, Greg S. Corrado4, Yossi Matias4, Jake Sunshine1,11 ✉, 
Alan Karthikesalingam9,11 ✉ & Vivek Natarajan4,11 ✉

A comprehensive differential diagnosis is a cornerstone of medical care that is often 
reached through an iterative process of interpretation that combines clinical history, 
physical examination, investigations and procedures. Interactive interfaces powered 
by large language models present new opportunities to assist and automate aspects 
of this process1. Here we introduce the Articulate Medical Intelligence Explorer 
(AMIE), a large language model that is optimized for diagnostic reasoning, and 
evaluate its ability to generate a differential diagnosis alone or as an aid to clinicians. 
Twenty clinicians evaluated 302 challenging, real-world medical cases sourced from 
published case reports. Each case report was read by two clinicians, who were 
randomized to one of two assistive conditions: assistance from search engines and 
standard medical resources; or assistance from AMIE in addition to these tools. All 
clinicians provided a baseline, unassisted differential diagnosis prior to using the 
respective assistive tools. AMIE exhibited standalone performance that exceeded that 
of unassisted clinicians (top-10 accuracy 59.1% versus 33.6%, P = 0.04). Comparing the 
two assisted study arms, the differential diagnosis quality score was higher for 
clinicians assisted by AMIE (top-10 accuracy 51.7%) compared with clinicians without 
its assistance (36.1%; McNemar’s test: 45.7, P < 0.01) and clinicians with search (44.4%; 
McNemar’s test: 4.75, P = 0.03). Further, clinicians assisted by AMIE arrived at more 
comprehensive differential lists than those without assistance from AMIE. Our study 
suggests that AMIE has potential to improve clinicians’ diagnostic reasoning and 
accuracy in challenging cases, meriting further real-world evaluation for its ability to 
empower physicians and widen patients’ access to specialist-level expertise.

An accurate diagnosis is a critical component of effective medical 
care. Building artificial intelligence (AI) systems that are capable of 
performing or assisting clinicians in this important task has been a 
long-standing grand challenge2. Whereas prior focus has been on 
evaluating a machine’s ability to accurately output a diagnosis1,3–5, 
real-world clinical practice involves an iterative and interactive process 
of reasoning about a differential diagnosis (DDx), weighing multiple 
diagnostic possibilities in the light of increasing amounts of clinical 
information over time. Deep learning has been applied to promising 
effect for generating DDx in a number of specialties including radiol-
ogy4, ophthalmology5 and dermatology3, but such systems lack the 
interactive capabilities to fluently assist a user through communication 
in natural language.

The emergence of large language models (LLMs) presents an oppor-
tunity to design novel interactive tools and interfaces to aid DDx. These 

models have demonstrated the ability to perform complex language 
comprehension and reasoning tasks, generating coherent text and 
thereby enabling a large variety of real-world applications6–9. Both 
general-purpose LLMs (GPT-4) and medical domain-specialized LLMs 
(Med-PaLM 2) have demonstrated strong performance in standardized 
and multiple-choice medical benchmarks10,11. Such evaluations repre-
sent a natural starting point for probing the model’s medical knowledge 
and capabilities but do not measure utility in real-world scenarios for 
care delivery—for example, in challenging medical cases faced by trained 
physicians. It is also not obvious how these models might actively 
assist clinicians in the development of a DDx. Recent work has begun 
to assess the standalone performance of these models on challenging 
case reports that involve complex deduction and diagnosis1,12–14, but 
has stopped short of evaluating how they can assist clinicians, augment 
performance and empower them to provide better care.
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Here we introduce AMIE, an LLM that is optimized for clinical diag-
nostic reasoning to generate a DDx for challenging, real-world medical 
cases. Beyond measuring standalone performance, we integrated this 
model into an interactive interface to measure how well AMIE could assist 
clinicians in developing a DDx. Using a set of challenging real-world case 
reports from the New England Journal of Medicine (NEJM) clinicopatho-
logical conferences (CPCs), we compared clinicians’ ability to form a DDx 
with the assistance of AMIE versus with access to traditional information 
retrieval tools (such as internet searches and books). AMIE achieved 
impressive performance in both generating DDx lists that contained 
the correct diagnosis (top-10 accuracy) and in identifying the correct 
final diagnosis as the most likely in the list (top-1 accuracy). Under auto-
mated model-based evaluation, the quality and the accuracy of the DDx 
list produced by AMIE was found to be significantly better than the 
state-of-the-art GPT-4 model available at the time of the experiments1. 
Perhaps more importantly, AMIE also improved the diagnostic capa-
bility of clinicians as measured by the quality of their DDx lists for the 
evaluated cases. LLMs optimized for the safety-critical medical domain 
such as ours present a novel paradigm for assisting clinicians because 
of the potential for variation in the ways in which a given individual 
may converse with the system and utilize it in collaborative reasoning.

A detailed explanation of the cases, their components, how they 
were fed to the model, the randomization scheme of AMIE versus the 
standard practice and information on the expert raters of the model 

and how the outputs were evaluated by blind expert raters, can be 
found in Methods.

In evaluating the quality of the DDx lists we used several criteria, 
inspired by the approach taken in ref. 1 and extended to draw additional 
insight from the clinicians. First, we measured whether the final diagnosis 
matched an entry in the DDx list and in which position (top-n accuracy). 
Second, we used the quality score from Bond et al.15 and created appro-
priateness and comprehensiveness scales. Combined, these measures 
assess overall DDx quality, appropriateness and comprehensiveness.

When using AMIE for assistance, clinicians asked, on average (mean), 
2.92 questions in the interface (median 2, interquartile range (IQR) 1–4). 
On average (mean), clinician questions consisted of 9.39 words (median 
10, IQR 6–12) and 54.31 characters (median 61, IQR 39-63). AMIE’s 
responses, on average (mean), consisted of 237.60 words (median 
198, IQR 127–332) and 1,540.81 characters (median 1,276; IQR 815–2210).

In the Search condition, the most popular tools were UpToDate (used 
in 34% of tasks), Google Search (30%) and PubMed (22%). Although 
clinicians were allowed to use additional tools in the AMIE condition, 
this was far less frequent (less than 5% of tasks).

DDx performance of AMIE
The DDx lists produced by our language model achieved strong quality, 
appropriateness and comprehensiveness scores (see Fig. 1). The median 

5 4 3 2 1Score:

The correct
diagnosis

Something
very close to the
correct diagnosis

Something
that might have

been helpful

Something that
is related, but
unlikely to be

helpful

Nothing related
to the correct

diagnosis

DDx contains:

4 3 2 1

The DDx contains all
candidates that
are reasonable

The DDx contains
most of the

candidates but some
are missing

The DDx contains some
of the candidates but
a number are missing

The DDx has
major candidates

missing

Quality score: inclusion of the �nal diagnosis

165 174

127

104

70

82 83 89 48

88 105 39

62 97 39

52 105 18

24 91 13

142

121 53 55 32 41

3539697881

103 67 55 32 45

62 55 23 20

69 33 20 15

Comprehensiveness score

Appropriateness score

5 4 3 2 1

Very
appropriate

Very
inappropriate

a

c

b

AMIE only

Clinician assisted
by AMIE

Clinician assisted
by Search

Clinician unassisted
(AMIE condition)

Clinician unassisted
(Search condition)

AMIE only

Clinician assisted
by AMIE

Clinician assisted
by Search

Clinician unassisted
(AMIE condition)

Clinician unassisted
(Search condition)

180 72 31 8 9

9204693132

107

86

102 73 74 42

97 84 24

81 70 34 8

9

9

Fig. 1 | Evaluation of the quality of DDx lists from generalist physicians. a, DDx 
quality score based on the question: “How close did the differential diagnoses 
(DDx) come to including the final diagnosis?” b, DDx comprehensiveness score 
based on the question: “Using your DDx list as a benchmark/gold standard, how 
comprehensive are the differential lists from each of the experts’?” c, DDx 
appropriateness score based on the question: “How appropriate was each of 
the DDx lists from the different medical experts compared to the differential 

list that you just produced?” The colours correspond to experiment arms, and 
the shade of the colour corresponds to different levels on the rating scales. In 
all cases, AMIE and clinicians assisted by AMIE scored highest overall. Numbers 
reflect the number of cases (out of 302). Note that the clinicians had the option 
of answering “I am not sure” in response to these questions; they used this 
option in a very small number (less than 1%) of cases.
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quality score was 5 (‘DDx includes the correct diagnosis’) with 54% of 
DDx lists achieving that score. The number of cases that scored 5 (that 
is, the DDx included the top diagnosis) was statistically significantly 
higher for AMIE compared with clinicians without assistance (McNe-
mar’s test: 64.4, P < 0.01). The mean appropriateness score was 4.43 
out of 5 (s.d. 0.92). The median comprehensiveness score was 4 (‘The 
DDx contains all candidates that are reasonable’) with 55% of the DDx 
lists achieving that score.

The mean appropriateness score of AMIE (4.34) was significantly 
higher than that of unassisted clinicians (3.74) (paired t-test 8.52, 
P < 0.001, Wilcoxon signed-rank test: 2,857.5, P < 0.001) and assisted 
clinicians in either the Search (3.80) (paired t-test 7.23, P < 0.001, Wil-
coxon signed-rank test: 3,308.5, P < 0.001) or LLM (4.06) (paired t-test 
4.98, P < 0.001, P < 0.001, Wilcoxon signed-rank test: 2,752.0, P < 0.001)  
conditions.

For computing top-n accuracy, if any of the first n diagnoses in an indi-
vidual DDx were marked correct by the language model, the differential 
was considered to be correct. We computed the proportion of correct 
DDx lists across all cases to compute the top-n accuracy (for n from 1  
to 10) for each DDx. AMIE reliably generated DDx lists that perform well 
against the ground truth diagnosis (Fig. 2). AMIE provided the correct 
diagnosis in 177 (59%) of the DDx lists and in 89 (29%) of the lists it was 
at the top of the list. These scores are higher than those achieved by the 
clinicians in any of the conditions. The top-10 accuracy of AMIE (59.1%) 
was significantly higher than the top-10 accuracy for the unassisted 
clinicians (33.6%) (P = 0.04) (Tables 1 and 2).

Figure 2 shows the top-n accuracy based on human and the auto-
mated metric. The results are broadly similar, illustrating that despite 
the final diagnoses often being complex and nuanced, the automated 
metric faithfully captures the distinction between a DDx list that 
includes the correct diagnosis and one that does not.

The clinicians in the study were not required to give a full list 
of ten diagnoses for every case. Clinicians in conditions I and II 
were required to given a minimum of three diagnoses. The median 
number provided was six. The performance at n = 6 is of particular 
relevance. Not all clinicians provided six diagnoses, as a result we 
conducted a variable top-n experiment, where for each case n was set 
to the number of diagnoses provided by the human clinicians. The 
variable top-n performance of AMIE was 59.4%—this is similar to the 
performance at n = 9 and at n = 10. As a result, AMIE’s output of a full 
list of ten diagnoses did not place it at an advantage compared to the  
clinicians.

AMIE as a DDx assistant
Of the DDx lists created before assistance 37% (Search condition) and 
29% (AMIE condition) achieved a quality score of 5 (Fig. 1). For compari-
son, 49% of those created with assistance from AMIE scored 5.

The number of cases that scored 5 (that is, the DDx included the 
top diagnosis) was statistically higher for clinicians assisted by AMIE 
compared with clinicians without assistance (McNemar’s test: 48.3, 
P < 0.01) and clinicians with Search assistance (5.45, P = 0.02).

For comprehensiveness, the number of cases that scored 4 (that is, 
The DDx contains all candidates that are reasonable) was statistically 
higher for clinicians assisted by AMIE compared with clinicians without 
assistance (McNemar’s test: 185.8, P < 0.01) and clinicians with Search 
assistance (185.8, P < 0.01). As a consistency check, the number of cases 
that scored 4 was not statistically higher for clinicians in the Search 
condition (I) baseline and AMIE condition (II) baseline (McNemar’s 
test: 1.47, P = 0.23).

The mean appropriateness score after assistance with AMIE (4.06) 
was significantly higher than after assistance with Search (3.80) 
(paired t-test 3.32, P = 0.001) and the baseline (3.74) (paired t-test 4.79, 
P < 0.001).

To summarize, with the support of AMIE, the quality, appropriateness 
and comprehensiveness scores for the DDx lists were greater than for 
the lists prior to assistance (see Fig. 1).

The top-n accuracy of the clinicians increased with assistance from 
AMIE compared to without (see Fig. 2). A Sankey diagram illustrates 
the effect of the two forms of assistance (Search and AMIE) on top-10 
accuracy (Fig. 3). In the AMIE condition, 73 cases that did not feature the 
final diagnosis prior to using the tool included it after assistance from 
AMIE. This result is in contrast to only 37 cases in the Search condition. 
Comparing the two assisted study arms, the DDx quality score was 
higher for clinicians assisted by AMIE (top-10 accuracy 51.7%) compared 
with clinicians without its assistance (36.1%) (McNemar’s test: 45.7, 
P < 0.01) and clinicians with search (44.4%) (4.75, P = 0.03).

Task duration with AMIE and Search
The time taken to generate updated DDx lists in the Search condition 
versus the AMIE condition were similar (Search: 7.19 ± 5.33 min, AMIE: 
7.29 ± 6.41 min (mean ± s.d.)). These were not significantly different 
(paired t-test P = 0.807), which is surprising as the clinicians all had 
experience using internet search and other information retrieval 
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tools, yet they were using the AMIE interface for the first time. We had 
hypothesized that they would take longer using AMIE owing to the 
initial learning curve.

Length of DDx lists with AMIE and Search
When unassisted, the median length of the DDx lists was 6 (IQR 5–9); the 
mean was 6.41 (s.d. 2.39). With search the median DDx list length was 7 
(IQR 5–10); the mean was 6.92 (s.d. 2.52). With AMIE, the median DDx 
list length was 8 (IQR 6–10); the mean was 7.58 (s.d. 2.33). With assis-
tance from AMIE, the length of the DDx lists was longer than without 
assistance (paired t-test: 7.13, P < 0.001) and longer than the DDx lists 
with assistance from search (paired t-test: 3.15, P = 0.002).

AMIE comparison with GPT-4
As we did not have the same set of human raters who evaluated the 
differentials produced by GPT-41 and AMIE, we cannot compare top-10 
accuracy numbers directly. Therefore, in our study design, we evalu-
ate performance on that 70-case subset (reported in ref. 1) using the 
automated metric (which is shown above to be relatively consistent 
with human evaluation). AMIE performs better with regard to top-n 
accuracy for n > 1, with the gap being most prominent for n > 2 (Fig. 4). 
This suggests potentially significant improvements in quality and com-
prehensiveness of the differentials produced by AMIE. For n = 1, GPT-4 
performs marginally better but not statistically significantly.

Discussion
We used a popular series of complex diagnostic challenges to evaluate 
an LLM optimized for clinical reasoning and diagnosis (AMIE); both in 
a standalone capacity and under randomized comparisons as an assis-
tive tool for physicians. In standalone performance, AMIE generated 
more appropriate and comprehensive DDx lists than physicians when 
they were unassisted, with its DDx lists being more likely to include the 
final diagnosis than DDx lists from a board-certified internal medicine 
physician, regardless of what position in the DDx list was considered 
(that is, top-n accuracy with n ranging from 1 to 10). Clinicians using 

AMIE as an assistant produced a DDx with higher top-n accuracy, and 
DDx with greater quality, appropriateness and comprehensiveness 
compared with the status quo for clinical practice (use of internet 
search and other resources).

The NEJM CPCs examined here are well-known for being unique and 
challenging clinical conundrums. Within this distinctive setting, AMIE 
outperformed an unassisted board-certified physician in both top-1 and 
top-n accuracy. Whereas the CPCs have long been used as benchmarks 
for difficult diagnosis, it is also well-known that performance in CPCs 
in no way reflects a broader measure of competence in a physician’s 
duties16. Furthermore, the act of forming a DDx comprises many other 
steps that are not scrutinized in this study, including the goal-directed 
acquisition of information under uncertainty (which is known to be 
challenging for AI systems despite recent technical progress in this 
direction17–19).

We are therefore very cautious in extrapolating our findings towards 
any implications about the utility of AMIE as a standalone diagnostic 
tool. Nevertheless, our controlled evaluation mirrored the findings of 
other recent works exploring the performance of LLMs and pre-LLM 
‘DDx generators’ in smaller subsets of the NEJM CPCs, which have shown 
the potential for automated technology to reach the correct DDx with 
superior performance to standalone physicians in these challenging 
cases1,12,13,20. Although this represents a step beyond historical attempts 
at automating DDx in NEJM CPCs, in which computerized approaches 
were deemed overtly unreliable for practical use21, such studies also 
undertook limited consideration of the quality of DDx generated by 
these automated systems or their role as assistive tools.

Our work extends previous observations by showing not only that 
AMIE was more likely to arrive at a correct answer or provide the correct 
answer in a list, but also that its DDx were determined by an independ-
ent rater to be of higher appropriateness and comprehensiveness than 
those produced by board-certified physicians with access to references 
and search.

In our study, clinicians had access to both images and tabular data 
in redacted case reports, whereas AMIE was only provided with the 
main body of the text. Although AMIE outperformed the clinicians 
despite this limitation, it is unknown whether and how much this gap 
would widen if AMIE had access to the figures and tables. Furthermore, 

Table 1 | Top-1 and top-10 accuracy of DDx lists produced with AMIE and Search assistance

Model only Human

AMIE Before assistance After Search assistance After AMIE assistance

Metrics Top-1↑ Top-10↑ Top-1↑ Top-10↑ Top-1↑ Top-10↑ Top-1↑ Top-10↑

Full set (302 cases) 29.2% 59.1% 15.9% 33.6% 24.3% 44.5% 25.2% 51.8%

Set with no overlap (56 cases) 35.4% 55.4% 13.8% 34.6% 29.2% 46.2% 24.6% 52.3%

Difference compared to full set +6.2% –3.7% –2.1% +1.0% +4.9% +1.7% –0.6% +0.5%

Set with partial overlap (249 cases) 29.9% 61.4% 14.9% 33.1% 24.3% 44.2% 24.7% 51.4%

Difference compared to full set +0.7% +2.3% –1.0% –0.5% 0% –0.3% –0.5% –0.4%

The percentage of DDx lists with the final diagnosis. Bold numbers reflect the difference in percentage accuracy between the full case set and the partial case sets.

Table 2 | Top-1 and top-10 accuracy of DDx lists produced with AMIE and Search assistance by speciality

Model only Human

AMIE Before assistance After Search assistance After AMIE assistance

Metrics Top-1↑ Top-10↑ Top-1↑ Top-10↑ Top-1↑ Top-10↑ Top-1↑ Top-10↑

Internal medicine (159 cases) 27.7% 61.6% 15.5% 34.6% 24.5% 47.8% 24.5% 52.8%

Neurology (42 cases) 26.8% 56.1% 17.1% 31.7% 22.0% 36.6% 24.4% 51.2%

Paediatrics (33 cases) 30.3% 45.5% 6.1% 22.7% 12.1% 33.3% 15.2% 30.3%

Psychiatry (10 cases) 50.0% 70.0% 20.0% 50.0% 20.0% 60.0% 30.0% 60.0%

The percentage of DDx lists with the final diagnosis by specialty.
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the integration of multimodal inputs by LLMs is an area of novel 
research22,23, with a large potential number of data modalities to con-
sider and little precedent for how information from multiple modalities 
should be integrated over time for a single case by AI systems.

The repeated examination of NEJM CPCs by automated systems 
highlights its promise as a ‘benchmark’ for evaluation and develop-
ment of LLMs. Benchmarking enables comparisons of models with one 
another and the ability to evaluate a model’s performance improve-
ments or degradation over time. However, consistency in using CPCs 
as a scalable benchmark is challenging if we are reliant on using human 
judgement to establish whether a candidate DDx matches the ground 
truth. We utilized an automated approach for comparing AMIE to a 
baseline LLM performance (GPT-4). Our estimates varied from recently 
published estimates in other studies, despite using the same subset of 
cases1. Direct comparisons of different technologies would ideally be 
conducted by more extensive and blinded human evaluation, includ-
ing work to ensure reproducibility of the human evaluation protocol, 
analysis of inter-rater reliability and the use of metrics that reflect the 
quality, appropriateness and comprehensiveness of LLM differentials in 
addition to estimations of accuracy. Our estimates of top-1 and top-10 
accuracy, although impressive at close to 30% and 60%, respectively, 
highlight noteworthy room for improvement for LLMs, especially for 
complex cases that are non-pathognomonic (that is, cases that do not 
have a sign or symptom that defines a diagnosis). However, as noted 
above, the CPCs represent ‘diagnostic puzzles’ rather than real-world 
examples of common clinical workflows, and it is therefore important 
to consider more realistic settings in which LLMs might prove of practi-
cal value in medicine.

One such example is the potential for LLMs to assist clinicians in com-
plex diagnoses. Deep learning tools have shown considerable promise 
in many areas of medicine, but are overwhelmingly used as assistive 
rather than autonomous tools24, given the safety-critical nature of medi-
cal practice and the many issues of robustness25 and fairness26–28 seen 
in deployment. Furthermore, observations of standalone diagnostic 
accuracy often do not guarantee that an AI tool will improve perfor-
mance in real-world settings as an assistive tool, and it remains unclear 
how AI and human decision-making should be optimally integrated in 
medicine29. For LLMs in particular, the known incidence of hallucination 
and confabulation30 might mislead clinicians into inaccurate diagnosis, 
replicating or even extending findings in other clinical settings that AI 
systems might actually degrade the performance of clinicians rather 
than necessarily improving outcomes.

This highlights the importance of focused study of LLMs in assistive 
scenarios. We explored this specifically in NEJM CPCs and found that 
AMIE increased the number of appropriate DDx produced by a clinician 
when used as an assistive tool in addition to overall top-n accuracy, sug-
gesting that AMIE’s primary assistive potential may be due to making the 
scope of DDx more complete. Given the potential for misleading informa-
tion to arise from AI systems, including in convincing dialogue, clinicians 
must appreciate the fundamental limitations of these models and not 
lose sight of their primacy in the provider–patient relationship and their 
ultimate authority and responsibility for the diagnostic and therapeutic 
management of their patients. Such thoughtful and effective LLM use 
should not be unintuitive to most clinicians. Aiding the diagnostic pro-
cess could reasonably occur in an emergency room upon presentation 
(during potentially time-sensitive moments), upon admission to the 
medical ward, or by a consulting service after a patient has been admit-
ted or in outpatient clinics. Our findings suggest that future research 
should more rigorously explore how LLMs augment clinicians’ DDx in 
many such specific scenarios, where the risks and benefits might vary.

Despite being a novel tool, the use of AMIE did not seem to add inef-
ficiency or increase the amount of time spent on solving each CPC 
compared with the use of Search or other conventional information. 
This suggests that the conversational interface was unobtrusive and 
intuitive. Consistent with this, the interviewed clinicians all described it 
as ‘easy’ to use, and were positive about the use and implications of the 
AMIE interface. Enhancing efficiency while maintaining or improving 
quality are generally accepted goals of improving healthcare delivery, 
alongside improving provider experience31, and our study showed 
significant potential in this regard, as clinicians also reported feeling 
more confident in their DDx lists after using the model. The clinicians 
described search becoming difficult when they did not know how to 
start or narrow down the query; qualitatively, the reports indicate that 
AMIE was easier to use in this regard. However, there are many human 
factors, social elements and other complex considerations in these use 
cases, and it is critical to ensure that efforts are made to avoid inequities 
in access to avoid exacerbating existing health disparities.

Clinicians frequently expressed excitement about using AMIE, but 
were also aware of the shortcomings of language models and had 
concerns about confabulations in particular if used by individuals 
who were not trained or instructed to avoid such questions. However, 
our work did not explore many other important aspects of human–AI 
interaction, which require further study in safety-critical settings such 
as this. For example, we did not explore the extent to which clinicians 
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Fig. 3 | Sankey diagram showing effect of assistance. a, In the AMIE arm, the 
final correct diagnosis appeared in the DDx list only after assistance in 73 cases. 
b, In the Search arm, the final correct diagnosis appeared in the DDx list only 

after assistance in 37 cases. In a small minority of cases in both arms (AMIE arm: 
11 (a); Search arm: 12 (b)), the final diagnosis appeared in the DDx list before 
assistance but was not in the list after assistance.



456  |  Nature  |  Vol 642  |  12 June 2025

Article

trusted the outputs of the model or their understanding of its train-
ing and limitations, or undertake focused ‘onboarding’ or training in 
its use, which are all known to be important modifiers of the benefits 
derived by clinicians from AI assistants32. The CPC challenges them-
selves do not enable a rigorous exploration of the possible effects of AI 
assistance on health equity and fairness; a further study of how these 
aspects of clinicians’ DDx is affected by LLM assistance is needed. 
AI systems are known to be able to express uncertainty33 and defer 
appropriately to clinicians34, which might significantly improve the 
balance between trust and skepticism needed for effective AI assis-
tance in medicine. Qualitative feedback suggested that there remains 
room for targeted improvement of LLMs as assistive diagnostic tools, 
with one clinician noting that “It was most helpful for simpler cases 
that were specific keywords or pathognomonic signs”, but for more 
complex cases it still tended to draw conclusions from isolated symp-
toms rather than viewing the case holistically. The assistive effect of 
these LLMs could potentially ‘upskill’ clinical providers, particularly 
in enabling them to broaden and enhance the quality of their DDx. 
As corroborated via our clinician interviews after their experience 
with AMIE, such upskilling could be relevant for education or training 
purposes to support providers across a skill continuum ranging from 
trainees to attending providers. The upskilling capabilities could also 
extend to locations where specialist medical training is less common 
(such as in lower and middle income countries). However, our find-
ings may not generalize to these scenarios, given that we utilized a 
pool of 20 clinicians with a mean experience of 11.5 years. This may 
not adequately represent the diverse set of users who are seeking to 
benefit from LLMs as a diagnostic aid.

Our qualitative findings from semi-structured interviews with clini-
cians highlight the collaborative nature of the diagnostic reasoning 
process and the importance of clinical judgement when using an LLM. 
Whereas AMIE was capable of generating a broad DDx in isolation, the 
clinicians’ expertise enabled them to filter these suggestions when they 
were using the tool, discarding those they deemed to be inaccurate 
or irrelevant and leading to a more comprehensive and considered 
final differential list. This active evaluation and filtering process could 
explain the gap between standalone AMIE performance and clinician 
performance when assisted by the tool, with several specific factors 
highlighted: (1) anchoring bias: clinicians tended to anchor on their 
initial, unassisted DDx. This is consistent with known anchoring biases 
and might be exacerbated by the two-stage study design; (2) LLM sug-
gestibility: several clinicians noted that AMIE could be led down alterna-
tive diagnostic paths by their follow-up questions and that this could 
lead to inaccurate conclusions that clinicians recognized as not being 
supported by the evidence; (3) trust calibration: clinicians highlighted 
the importance of the model being able to communicate when it is 
unsure, as this would probably have influenced the extent to which 
they trusted and incorporated AMIE’s suggestions.

Limitations
The NEJM CPC format differs in important ways from how a clinician 
would evaluate a patient at the outset of a clinical encounter. The case 
reports are created as ‘puzzles’ with enough clues that should enable a 
specialist to reason towards the final diagnosis. At the beginning of a 
clinician encounter, it would be challenging to create such a concise, 
complete and coherent case report. Case reports in the NEJM style 
would not be available at patient intake. Similarly, these cases were 
selected to represent challenging cases instead of common conditions. 
Thus, our evaluation does not directly suggest that clinicians should 
leverage the assistive capabilities of an LLM for typical cases that are 
seen on a daily basis.

Evaluation is non-trivial for complex tasks such as these case studies. 
Although the rubric that we used for evaluating whether a diagnosis 
is included in a DDx list is clear, it is possible to disagree whether an 
individual diagnosis is specific enough to be counted as correct versus 
incorrect. This ambiguity is likely to be the reason that we did not obtain 
identical results to Kanjee et al.1.

In terms of modalities, the case reports include both images and 
tables. The clinicians had access to these in the redacted case reports. 
However, AMIE only had access to the main body of the text. Although 
AMIE outperformed the clinicians despite this limitation, it is unknown 
whether and how much this gap would widen if AMIE had access to the 
figures and tables. Early evidence suggests that the effect might be case 
and context dependent13. New multimodal models should be evaluated 
in a similar manner. The appropriate input format for images is clear, 
whereas tables can be represented textually or graphically. Experimen-
tation into the optimal format for tabular data would also be valuable.

The study highlighted some weaknesses of AMIE. Specifically, one 
clinician (C3) highlighted that “It was most helpful for simpler cases 
that were specific keywords or pathognomonic signs” and that for 
more complex cases it still tended to draw conclusions from isolated 
symptoms rather than viewing the case holistically. Considering the 
importance of assessing challenging cases, the NEJM CPC case reports 
are likely to serve as a useful dataset for continued LLM benchmarking.

Regarding the time taken, we acknowledge that the analysis of time 
spent on the tasks may not map well to how an LLM would affect time 
on task in reality. We appreciate that in practice a clinician would need 
to write a case description or notes before being able to leverage this 
type of system.

There were potentially systematic differences between the clinicians’ 
and the model’s DDx lists that could have led the clinicians to guess 
that the lists came from different sources. However, we believe that 
this did not affect our results for several reasons. First, we reviewed the 
lists from the model and the clinicians before running the evaluation 
to ensure that there were no obvious formatting differences. Second, 
the raters did not know ahead of time the various potential sources of 
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DDx lists and that these could include AI models, and DDx list order-
ing was blinded during the rating process. Third, auto evaluation is 
blinded to the source of the data, and the trends from human and auto 
evaluation were consistent.

Conclusion
Generating a DDx is a critical step in clinical case management, and the 
capabilities of LLMs present new opportunities for assistive tooling to 
help with this task. Tables 1 and 2 Our randomized study showed that 
AMIE was a helpful AI tool for DDx generation for generalist clinicians. 
Clinician participants indicated its utility for learning and education, 
and additional work is needed to understand its suitability for clinical 
settings.
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Methods

NEJM CPC case reports
The case records of the Massachusetts General Hospital (MGH) are 
published, lightly edited transcriptions of the CPCs of the MGH (Bos-
ton, MA). In the CPC, a patient case presentation is described and then 
an expert physician is asked to provide a DDx and a final diagnosis, 
along with their diagnostic reasoning, based only on the patient’s 
provided medical history and preliminary test results. The published 
cases, organized generally as diagnostic puzzles culminating in a 
definitive, pathology-confirmed diagnosis, are published regularly 
in the NEJM. We leverage these case reports, licensed from the NEJM, 
to evaluate AMIE’s capability to generate a DDx alone and, separately, 
to aid clinicians in generation of their own differential. For this lat-
ter task, we developed a user interface for clinicians to interact with  
AMIE.

A set of 326 case texts from the NEJM CPC series were considered. 
These case reports were published over a 10-year period between 
13 June 2013 and 10 August 2023. Of these, 23 (7%) were excluded on 
the grounds that they discussed case management and were not primar-
ily focused on diagnosis. The articles were distributed over the years 
between 2013–2023 as follows—2013: n = 22; 2014: n = 34; 2015: n = 36; 
2016: n = 35; 2017: n = 36; 2018: n = 16; 2020: n = 23; 2021: n = 36; 2022: 
n = 39; 2023: n = 26. Supplementary Table 2 contains the full list of case 
reports, including the title, year and issue number of each report. The 
302 cases include the 70 cases used by Kanjee et al.1.

These case reports cover a range of medical specialties. The largest 
proportion are from internal medicine (n = 159), followed by neurol-
ogy (n = 42), paediatrics (n = 33) and psychiatry (n = 10). The text cor-
responding to the history of the present illness (HPI) was manually 
extracted from each article as input to AMIE. The average (median) 
word count of these sections of the case reports is 1,031 words (mean: 
1,044, s.d.: 296, range: 378–2,428). The average (median) character 
count is 6,619 characters (mean: 6,760, s.d.: 1,983, range: 2,426–15,196).

A modified version of the article, inclusive of the provided HPI, admis-
sion imaging and admission labs (if available in the case) was created 
for the human clinicians (see Extended Data Fig. 1). This version had 
redacted the final diagnosis, expert discussion of the DDx and any 
subsequent imaging or biopsy results (which are typical elements of the 
conclusion of the case challenges). Given AMIE is a text-only AI model, 
the admission images and lab tables were not fed into the model. How-
ever, text-based descriptions of specific lab values or imaging findings 
were sometimes included in the case description.

Training an LLM for DDx
Our study introduces AMIE, a model that uses a transformer archi-
tecture (PaLM 27), fine-tuned on medical domain data; alongside an 
interface for enabling its use as an interactive assistant for clinicians.

As with Med-PaLM 210, AMIE builds on PaLM 2, an iteration of Google’s 
LLM with substantial performance improvements on multiple LLM 
benchmark tasks. For the purposes of this analysis the large (L) PaLM 
2 model was used.

AMIE was fine-tuned with long context length on a task mixture con-
sisting of medical question answering (multiple-choice and long-form 
questions), medical dialogue generation and electronic health record 
(EHR) note summarization. The datasets used included the training 
splits of MultiMedQA (MedQA, MedMCQA, HealthSearchQA, LiveQA 
and MedicationQA)10, a proprietary dataset of medical conversations, 
and expert handcrafted EHR note summaries from MIMIC-III35. The 
capability to process long context input enables AMIE to handle tasks 
that require long-range reasoning and comprehension.

From MedQA (multiple-choice) we used US Medical Licensing Exami-
nation (USMLE) multiple-choice style open domain questions with 
four or five possible answers36. A set of 11,450 questions were used 
for training and 1,273 questions reserved for testing. We curated 191 

MedQA questions from the training set where clinical experts crafted 
step-by-step reasoning leading to the correct answer. From the Health-
SearchQA, LiveQA and MedicationQA datasets we used expert-crafted 
long-form responses to 64 questions. The medical conversations were 
from a dataset of 218 dialogues between a clinician and patient that are 
associated with a corresponding ground truth diagnosis. The dataset 
features respiratory (n = 168), musculoskeletal (n = 40), cardiology 
(n = 5), gastroenterology (n = 4) and dermatology (n = 1) dialogues. In 
total, 102 unique diagnoses are represented with the mean number of 
turns 98 (25th percentile = 85.0, 75th percentile = 113.0).

No NEJM case report data was used in the tuning process and we 
perform contamination experiments to assess whether performance 
was impacted by case text that may have been in the pretraining corpus.

Zero-shot prompting. We evaluated AMIE on each of the NEJM case 
studies with the following prompt: ‘You are a helpful medical assistant. 
You will be provided and asked about a complicated clinical case; read 
it carefully and then provide a diverse and thorough DDx’.

Example input. 
Case: [Case Text]

What are the top 10 most likely diagnoses? Be precise, listing one diag
nosis per line, and try to cover many unique possibilities (at least 10).  
The top 10 diagnoses are:

Example output. 
1.	Sézary syndrome
2.	Adult T-cell leukemia/lymphoma
3.	Mycosis fungoides
4.	Atopic dermatitis
5.	Psoriasis
6.	Drug reaction with eosinophilia and systemic symptoms (DRESS)
7.	Graft-versus-host disease (GVHD)
8.	Cutaneous T-cell lymphoma, not otherwise specified
9.	Hypereosinophilic syndrome
10. Systemic lupus erythematosus (SLE)

The AMIE user interface
The interface associated with AMIE, depicted in Extended Data Fig. 2, 
enables users to interact with the underlying model via text-based chat 
in the context of a given case description. In our study, the interface was 
pre-populated with a text-only representation of the HPI for a given 
case. Clinicians were asked to initiate the interaction by querying AMIE 
using a suggested prompt. Following this initial prompt and AMIE’s 
response, clinicians were free to query the model using any additional 
follow-up questions, though clinicians were cautioned to avoid ask-
ing questions about information that had not already been presented 
in the case. A pilot study indicated that without such a warning, clini-
cians may ask questions about specific lab values or imaging leading 
to confabulations.

For a given question, the interface generated the response by query-
ing AMIE using the following prompt template:

Read the case below and answer the question provided after the 
case.

Format your response in markdown syntax to create paragraphs 
and bullet points. Use ‘<br><br>’ to start a new paragraph. Each para-
graph should be 100 words or less. Use bullet points to list multiple 
options. Use ‘<br>*’ to start a new bullet point. Emphasize important 
phrases like headlines. Use ‘**’ right before and right after a phrase 
to emphasize it. There must be NO space in between ‘**’ and the 
phrase you try to emphasize.

Case:[Case Text]
Question (suggested initial question is ‘What are the top 10 most 

likely diagnoses and why (be precise)?’): [Question]
Answer:



Experimental design
In order to comparatively evaluate AMIE’s ability to generate a DDx 
alone and aid clinicians with their DDx generation we designed a 
two-stage reader study illustrated in Extended Data Fig. 3. Our study 
was designed to evaluate the assistive effect of AMIE for generalist 
clinicians (not specialists) who only have access to the case presenta-
tion and not the full case information (which would include the expert 
commentary on the DDx). The first stage of the study had a counterbal-
anced design with two conditions. Clinicians generated DDx lists first 
without assistance and then a second time with assistance, where the 
type of assistance varied by condition.

Stage 1: Clinicians generate DDx with and without assistance. 
Twenty U.S. board-certified internal medicine physicians (median 
years of experience: 9, mean: 11.5, s.d.: 7.24, range: 3–32) viewed the 
redacted case report, with access to the case presentation and associ-
ated figures and tables. They did this task in one of two conditions, 
based on random assignment.

Condition I: Search. The clinicians were first instructed to provide 
a list of up to ten diagnoses, with a minimum of three, based solely on 
review of the case presentation without using any reference materi-
als (for example, books) or tools (for example, internet search). Fol-
lowing this, the clinicians were instructed to use internet search or 
other resources as desired (but not given access to AMIE) and asked 
to re-perform their DDx.

Condition II: AMIE. As with condition I, the clinicians were first 
instructed to provide a list of up to ten diagnoses, with a minimum of 
three, based solely on review of the case presentation without using 
any reference materials (for example, books) or tools (for example, 
internet search). Following this the clinicians were given access to AMIE 
and asked to re-perform their DDx. In addition to AMIE, clinicians could 
choose to use internet search or other resources if they wished.

For the assignment process, we formed ten pairs of two clinicians 
each, grouping clinicians with similar years of post-residency experi-
ence together. The set of all cases was then randomly split into ten 
partitions, and each clinician pair was assigned to one of the ten case 
partitions. Within each partition, each case was completed once in 
condition I by one of the two clinicians, and once in condition II by the 
other clinician. For each case, the assignment of which clinician among 
the pair was exposed to which of the two experimental conditions was 
randomized. Pairing clinicians with similar post-residency experience 
to complete the same case served to reduce variability between the two 
distinct experimental conditions.

Stage 2. Specialists with full case information extract gold DDx 
and evaluate Stage 1 DDx
Nineteen U.S. board-certified specialist clinicians (median years of 
experience: 14, mean: 13.7, s.d.: 7.82, range: 4–38) were recruited from 
internal medicine (n = 10), neurology (n = 3), paediatrics (n = 2), psy-
chiatry (n = 1), dermatology (n = 1), obstetrics (n = 1), and emergency 
medicine (n = 1). Their mean years of experience was 13.7 (s.d.: 7.82, 
range: 4–38). These specialists were aligned with the specialty of the 
respective CPC case, viewed the full case report and were asked to list 
at least five and up to ten differential diagnoses. Following this, they 
were asked to evaluate the five DDx lists generated in stage 1, includ-
ing two DDx lists from condition 1 (DDx without assistance and DDx 
with Search assistance), two DDx lists from condition 2 (DDx without 
assistance and DDx with AMIE assistance) and the standalone AMIE 
DDx list. One specialist reviewed each case.

The specialists answered the following questions to evaluate the 
DDx lists:

The quality score developed by Bond et al.15 and used by Kanjee et al.1 
is a differential score based on an ordinal five-point scale: ‘How close did 
the differential diagnoses (DDx) come to including the final diagnosis?’ 

The options were: 5, DDx includes the correct diagnosis; 4, DDx contains 
something that is very close, but not an exact match to the correct diag-
nosis; 3, DDx contains something that is closely related and might have 
been helpful in determining the correct diagnosis; 2, DDx contains some-
thing that is related, but unlikely to be helpful in determining the correct 
diagnosis; and 1, nothing in the DDx is related to the correct diagnosis.

An appropriateness score: ‘How appropriate was each of the dif-
ferential diagnosis lists from the different medical experts compared 
the differential list that you just produced?’ The options to respond 
were on a Likert scale of 5 (very appropriate) to 1 (very inappropriate).

A comprehensiveness score: ‘Using your differential diagnosis list as 
a benchmark/gold standard, how comprehensive are the differential 
lists from each of the experts?’ The options to respond were: 4, the DDx 
contains all candidates that are reasonable; 3, the DDx contains most 
of the candidates but some are missing; 2, the DDx contains some of 
the candidates but a number are missing;’ and 1, the DDx has major 
candidates missing.

Finally, specialists were asked to specify in which position of the 
DDx list the correct diagnosis was matched, in case it was included in 
the DDx at all.

Clinician incentives. Clinicians were recruited and remunerated by 
vendor companies at market rates based on speciality, without specific 
incentives such as diagnostic accuracy or other factors.

Automated evaluation. In addition to comparing against ground truth 
diagnosis and expert evaluation from clinicians, we also created an 
automated evaluation of the performance of the five DDxs using a 
language model-based metric. Such automated metrics are useful as 
human evaluation is time and cost-prohibitive for many experiments. 
We first extracted the (up to ten) individual diagnoses listed in each 
DDx. We leveraged minor text-processing steps via regular expressions 
to separate the outputs by newlines and strip any numbering before 
the diagnoses. Then we asked a medically fine-tuned language model, 
Med-PaLM 210, whether or not each of these diagnoses was the same as 
the ground truth diagnosis using the following prompt:

Is our predicted diagnosis correct (y/n)? Predicted diagnosis: [diag-
nosis], True diagnosis: [label]

Answer [y/n].
A diagnosis was marked as correct if the language model output ‘y’.
We computed Cohen’s kappa as a measure of agreement between 

human raters and automated evaluation with respect to the binary 
decision of whether a given diagnosis—that is, an individual item from 
a proposed DDx list—matched the correct final diagnosis. Cohen’s 
kappa for this matching task was 0.631, indicating ‘substantial agree-
ment’ between human raters and our automated evaluation method, 
per Landis & Koch37.

Qualitative interviews
Following the study we performed a semi-structured 30-min inter-
views with 5 of the generalist clinicians who participated in stage 1. 
Semi-structured interviews explored the following questions:
(1) How did you find the task of generating a DDx from the case report 

text?
(2) Think about how you used Internet search or other resources. How 

were these tools helpful or unhelpful?
(3) Think about how you used the AMIE. How was it helpful or unhelpful?
(4) Were there cases where you trusted the output of the search que-

ries? Tell us more about the experience if so, such as types of cases, 
types of search results.

(5) Were there cases where you trusted the output of the LLM queries? 
Tell us more about the experience if so, such as types of cases, types 
of search results.

(6) Think about the reasoning provided by the LLM’s interface? Where 
were they helpful? Where were they unhelpful?
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(7) What follow-up questions did you find most helpful to ask the LLM?
(8) How much time does it take to get used to the LLM? How was it 

intuitive? How was it unintuitive?

We conducted a thematic analysis of notes from interviews taken by 
researchers during the interviews, employing an inductive approach 
to identify patterns (themes) within the data. Initial codes were gener-
ated through a line-by-line review of the notes, with attention paid to 
both semantic content and latent meaning. Codes were then grouped 
based on conceptual similarity, and refined iteratively. To enhance the 
trustworthiness of the analysis, peer debriefing was conducted within 
the team of researchers. Through discussion and consensus, the final 
themes were agreed upon.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The case reports used in this study are published and were licensed from 
the New England Journal of Medicine. We are not able to re-distribute 
the copyrighted material, but the case texts can be obtained from the 
journal.

Code availability
AMIE is an LLM-based research AI system for diagnostic dialogue. We 
are not making the model code and weights open source owing to the 
safety implications of unmonitored use of such a system in medical 
settings. In the interest of responsible innovation, we will be working 
with research partners, regulators and providers to validate and explore 
safe onward uses of AMIE. For reproducibility, we have documented 

technical deep learning methods while keeping the paper accessible to 
a clinical and general scientific audience. Our work builds on PaLM 2,  
for which technical details have been described extensively in the 
technical report7.
 
35.	 Johnson, A. E. et al. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 

(2016).
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Extended Data Fig. 1 | NEJM Clinicopathological Conference Case Reports. 
History of Present Illness, Admission Labs and Admission Imaging sections 
were included in the redacted version presented to generalist clinicians for 

producing a DDx. The LLM had access to only the History of Present Illness. 
Specialist clinicians evaluating the quality of the DDx had access to the full 
(unredacted) case report including the expert differential discussion.
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Extended Data Fig. 2 | The AMIE User Interface. The history of the present 
illness (text only) was pre-populated in the user interface (A) with an initial 
suggested prompt to query the LLM (B). Following this prompt and response, 

the user was free to enter any additional follow-up questions (C). The case 
shown in this figure is a mock case selected for illustrative purposes only.



Extended Data Fig. 3 | Experimental Design. To evaluate the LLM’s ability to 
generate DDx lists and aid clinicians with their DDx generation, we designed a 
two-stage reader study. First, clinicians with access only to the case presentation 
completed DDx lists without using any assistive tools. Second, the clinicians 
completed DDx lists with access either to Search engines and other resources 
(Condition I), or to LLM in addition to these tools (Condition II). Randomization 

was employed such that every case was reviewed by two different clinicians, 
one with LLM assistance and one without. In Condition II the clinician was given 
a suggested initial prompt to use in the LLM interface and was then free to try 
any other questions. These DDx lists were then evaluated by a specialist who 
had access to the full case and expert commentary on the differential diagnosis, 
but who was blinded to whether and what assistive tool was used.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The algorithms and scripts were implemented using Python.

Data analysis The data analyses scripts were implemented in Python.  We will not be able to open source the LLMs used in this study.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

We have provided the set of case IDs and the diagnoses generated by the models and clinicians as supplemental material with our submission.  We have also 
provided instructions about how to access the model end-point for testing.
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Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics Nothing to add.

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The study included 302  published case reports from the New England Journal of Medicine.

Data exclusions All valid case reports with differential diagnoses were used.

Replication The evaluations were performed by clinicial specialists.

Randomization The study arms (AMIE and Search) were randomized.  The cases were also randomized amongst clinicians but within clinical specialties.

Blinding The clinicians were not told which study arm they were exposed to in each case or which  study condition they were evaluating responses 
from.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.
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Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
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Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.



5

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).
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Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
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Statistic type for inference
(See Eklund et al. 2016)
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Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Multivariate modeling or predictive analysis
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