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of human early endosome complexes

https://doi.org/10.1038/s41586-025-09059-y

Received: 18 August 2024
Accepted: 23 April 2025

Miguel A. Gonzalez-Lozano'?, Ernst W. Schmid®, Enya Miguel Whelan'?, Yizhi Jiang"**,
Joao A. Paulo’, Johannes C. Walter®® & J. Wade Harper'?*

Published online: 28 May 2025

Open access

M Check for updates

Early or sorting endosomes are dynamic organelles that play key roles in proteome
control by triaging plasma membrane proteins for either recycling or degradationin
the lysosome'?. These events are coordinated by numerous transiently associated
regulatory complexes and integral membrane components that contribute to

organelle identity during endosome maturation®. Although a subset of the several
hundred protein components and cargoes known to associate with endosomes have
beenstudied at the biochemical and/or structural level, interaction partners and
higher-order molecular assemblies for many endosomal components remain
unknown. Here, we combine crosslinking and native gel mass spectrometry*” of
purified early endosomes with AlphaFold®® and computational analysis to create
asystematic human endosomal structural interactome. We present 229 structural
models for endosomal protein pairs and additional higher-order assemblies supported
by experimental crosslinks from their native subcellular context, suggesting
structural mechanisms for previously reported regulatory processes. Using induced
neurons, we validate two candidate complexes whose interactions are supported by
crosslinks and structural predictions: TMEM230 as a subunit of ATP8 and ATP11 lipid
flippases™ and TMEM9 and TMEM9B as subunits of the chloride-proton antiporters
CLCN3, CLCN4 and CLCNS5 (ref. 11). This resource and its accompanying structural
network viewer provide an experimental framework for understanding organellar
structural interactomes and large-scale validation of structural predictions.

Plasma membrane protein flux is controlled, in part, through a series
of membrane-bound organelles referred to asthe endolysosomal sys-
tem'. Endocytic vesicles bud from the plasma membrane and rapidly
undergo conversion to RABS5" vesicles referred to as early or sorting
endosomes or, for simplicity, early endosomes?®. Early endosomes serve
asplatforms for plasmamembrane protein sorting and recycling while
also receiving regulatory proteins through fusion with Golgi-derived
transport vesicles. Dynamic maturation of RAB5" early endosomes
to RAB7' late endosomes accompanies ESCRT-mediated trafficking
of plasma membrane proteins into intraluminal vesicles, facilitating
their degradation following maturationinto lysosomes’?. Lysosomes
alsofunctioninthe elimination ofintracellular proteins and organelles
through autophagy®.

Our understanding of the endolysosomal system has been facili-
tated through the identification of functional modules involved in
vesicle fusion, cargo trafficking and organelle maturation'>*, some
of which are associated with neurodegenerative and lysosomal stor-
age disorders™ 7. However, the dynamic nature of these organelles
has made some protein assignments controversial'®'®, and particu-
lar protein assemblies that are dependent on interaction with the
endosomal membrane may be lost in the context of conventional
co-immunoprecipitation (co-IP) approaches in which membrane

integrity is disrupted. Consequently, gaps exist in our understanding
ofthe proteins, complexes and structures across various endolysoso-
mal subpopulations.

Here we present EndoMAP.v1, a structural protein interactome of
human early endosomes. We focused on an endosomal subpopulation
characterized by association with early endosome antigen 1 (EEA1),
used here as an organelle isolation handle through early endosomes
(Endo-IP)*. EndoMAP.vl combines crosslinking-mass spectrometry
(XL-MS)*¢?° and blue-native polyacrylamide gel co-fractionation-
MS (BN-MS) to generate a comprehensive network of protein inter-
actions and candidate complexes in EEAl-associated endosomes
(Fig. 1a). Large-scale AlphaFold Multimer (AF-M)3° and AlphaLink2
(ref. 21) analysis across the network generated 229 structural predic-
tions supported by crosslink distance constraints, which are available
viathe EndoMAP.vlstructural interactome viewer (https://endomap.
hms.harvard.edu/). We demonstrated the value of this resource:
through validation of transmembrane subunits of endosomal lipid
flippases and chloride-proton (CI'-H") antiporters; and through
crosslink-informed structural predictions of dozens of protein inter-
actions and multiprotein assemblies across diverse core endosomal
functional categories. EndoMAP.v1 provides a resource for mecha-
nistic analysis of early endosome complexes and an experimental
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Fig.1|EEA1' endosomal proteome analysis through dual complexomics
strategies. a, EndoMAP.vlworkflow schematic depicting integration of XL-
MS, BN-MS, scoring method and structural predictions to create an endosomal
protein complexstructural interaction landscape. b, Endosomal scoring
method; known (blue) and candidate (black) endosomal proteins ranked on
thebasis of combined scoring method, with higher valuesindicating higher
probability of a proteinbeingendosomal. Theinset shows receiver operating
characteristic curves for each individual metric and its combination for
annotating endosomal proteins. Partial area under the curve values at10%
false-positive percentage: combined score, 6.9%; PPls, 6.1%; dataset count,
4.0%; abundance, 2.1%. ¢, Correlation heat map of BN-MS co-fractionation
datashowing unsupervised clustering of well-known endosomal complexes.

framework for understanding structural interactomes for specific
organelles.

Dual complexomics approaches

Tounderstand proteininteractions associated with EEA1" endosomes,
we developed an experimental and informatic complexomics pipeline
(Fig.1a). Wefirst defined and characterized the endosomal proteome
by analysing 16 previous experimental studies reporting endosomal
proteins using diverse purification strategies and cell types (Extended
Data Fig. 1a-g and Supplementary Text). The combination of three
predictors (frequency of identification, protein abundance andinterac-
tionwithendosomal proteins) best captured many well-characterized
endosomal proteins with high confidence (Fig.1b). This analysisiden-
tified 522 known and predicted endosomal proteins on the basis of

Number of proteinsincluded in each complexisindicated in brackets.

d, Co-fractionation profiles of selected protein complexes from BN-MS.

e, Summary of DSSO crosslinks identified in Endo-IP samples, including
intraprotein and interprotein crosslinks involving high-confidence endosomal
proteins. f, Pie chart showing the number of DSSO crosslinks within and between
topological compartments based on Uniprot. g, Density plots showing the
distribution of Ca-Ca distances (A) for intraprotein andinterprotein DSSO
crosslinks for all structures available in the PDB for the entire XL-MS dataset.
Thevertical dashed lineindicates the maximum distance allowed by the
crosslinker. h,i, Identified DSSO crosslinks (red lines) mappedinto the
endolysosomal V-ATPase (h, PDB 6WM2)* and the class 11 PI3P lipid kinase
complex (i, PDB 7BL1)¥. Panel aadapted fromref. 44, CCBY 4.0.

experimental data (Supplementary Table 1), with these proteins serving
asareference endosomal proteome for further characterization with
our complexomics pipeline.

We then used BN-MS and crosslinking by XL-MS toidentify candidate
protein-proteininteractions (PPIs; Fig.1a). We further optimized and
extensively evaluated the Endo-IP approach in HEK293 cells”, with
early endosomes eluted from the affinity matrix under detergent-free
conditions for XL-MS or using detergent for BN-MS (Methods and
Extended DataFig. 1h-1). Triplicate Endo-IP samples were fractionated
by BN gel electrophoresis, and 48 individual fractions across all mass
ranges were subjected to MS analysis, identifying 3,914 unique proteins
(Supplementary Table 2). Numerous well-characterized endosomal
protein complexes were found to co-fractionate on the basis of Pear-
son coefficients of normalized elution profiles (Fig. 1c). These include
the BLOC-one-related complex (BORC) involved in endolysosomal
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positioning?, components of the homotypic fusionand proteinsorting
(homotypic fusion and protein sorting (HOPS)) complex?, and the AP1
adaptor complex that traffics cargo to endolysosomes?, among others
(Fig.1c,d and Extended Data Fig. 2a). Unbiased correlation profiling
using PCProphet® revealed the presence of 3,306 candidate interacting
proteins pairs. To recover high-confidence candidate interactions, we
considered only interactions withascore of atleast 0.7 in two replicates,
which maximized the recovery of interactions reported in Bioplex
(Methods, Extended Data Fig. 2b,c and Supplementary Table 2).

In parallel, duplicate matrix- and detergent-free Endo-IP samples
were crosslinked using the MS-cleavable disuccinimidyl sulfoxide
(DSSO) Lys-Lys crosslinker and analysed by XL-MS to identify proxi-
mal protein pairs in intact organelles*® (Fig. 1a). We identified 13,877
unique DSSO crosslinks, of which 4,793 involved intraprotein or inter-
protein crosslinks among our reference endosomal proteins (inclusive
ofthe EEAl endosomal purification handle; Fig.1e and Supplementary
Table2). Atotal of 97% of the crosslinks matched the expected topologi-
cal connectivity (within cytosolic, luminal or extracellular regions),
consistent with the purification of intact organelles with Endo-IP
(Fig. 1f). This is within the range of the 5% false-discovery rate (FDR)
used for crosslink identification. To evaluate the quality and specific-
ity of crosslinking across the full dataset (including all non-endosomal
proteins), we compared 1,030 crosslinked Lys(Ca)-Lys(Ca) distances
forallavailable Protein Data Bank (PDB) structures (219 in total). Most
intraprotein (94%) and interprotein (84%) crosslinks were within the
35-A maximum distance for DSSO crosslinker (considering in-solution
flexibility?; Fig.1g). Representative endosomal multiprotein complexes
(V-ATPase and the class II PI3 kinase PIK3C3-BECN1-UVRAG-PIK3R4)”
are shown in Fig. 1h,i, with multiple crosslinks among proteins within
each complex. Although there is mild bias towards more abundant
proteins (Extended Data Fig. 2d,e), crosslinks are detected across the
complete spanof protein copy number (Extended Data Fig. 2f). Interms
of PPIs, proteins with a higher number of crosslink-supportedinterac-
tions were correlated with copy number and number of interactionsin
BioPlex?, but not with molecular weight (Extended Data Fig. 2g-i), as
previously observed®. Limited overlap between crosslinked pairs and
interaction pairs reported in BioPlex® or yeast two-hybrid datasets® is
consistent with the maintenance of weaker interactions in the context of
organelle crosslinking (Extended Data Fig. 2j). Interactions with higher
numbers of crosslinks have better co-elution Size-Exclusion Chroma-
tography Algorithmic Toolkit (SECAT) P values in BN (Extended Data
Fig.2k and Supplementary Table 2). Additionally, previously reported
crosslinked interactions have a better co-elution SECAT P value than
new candidate interactions, which most likely include interactions
thatare transient and difficult to identify by other methods (Extended
DataFig. 2l,mand Supplementary Table 2).In sum, we identified atotal
of 4,562 and 3,306 protein interactions by crosslinking and BN-MS,
respectively, which provide a useful dataset for exploration of early
endosome protein interactions (Extended Data Fig. 2n,0 and Supple-
mentary Table 2).

Early endosome interaction landscape

To create an early endosome interaction map, we integrated XL-MS
and BN-MS data with our reference endosomal proteome, applying
stringent filters (Methods). Theresulting network exhibited an average
shortest path distance of 6.2 and followed a power-law distribution
with R?>0.95 (Extended Data Fig. 3a—c). Exploring the connectivity
between localization descriptors, we found that endosomal proteins
were highly connected with other endosomal proteins or proteins
annotated aslysosomal or Golgi (88% of the endosomalinteractions),
with notably fewer connections with other organelles (that is, mito-
chondria or nucleus; Methods and Extended Data Fig. 3d). Additional
filtering, including centring the network around our reference endo-
somal proteome and filtering of doubtful connectivity (thatis, nuclear
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proteins, which correspond to up to 8.5% of the interactions withendo-
somal proteins; Methods and Extended DataFig. 3e), yielded anetwork
containing 1,933 nodes and 4,282 edges. The core component of the
network (without disconnected modules) included 1,722 protein and
3,489 interactions organized in 41 communities, which were signifi-
cantly enriched for several well-known endosomal complexes, includ-
ing V-ATPase, soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNAREs) and the CCDC22, CCDC93 and COMMD
(CCC) complex (Fig.2aand Supplementary Table 2). Indeed, proteins
belonging to the same known complex were closer and in direct con-
tact within the network (Fig. 2b,c and Extended Data Fig. 3f). Through
an unbiased enrichment analysis of all disease pathways in DisGen-
NET, we found that Parkinson’s disease-related genes were the most
highly enriched in our reference endosomal proteome (Extended Data
Fig.3g-iand Supplementary Table 1). Proteins associated with other
neurodegenerative disorders were also enriched, including lysosomal
storage disorder proteins, many of which are actively trafficked to early
endosomes™". Proteins linked with these disorders exhibit the shortest
pathdistance (about 5.0, reflective of their density within the network
(Extended Data Fig. 3j,k). As elaborated below, this network provides
adiscovery platform for understanding the interaction landscape of
early endosomes.

Large-scale AlphaFold predictions

To transform the endolysosomal networkinto astructurally informed
interactome, we performed large-scale AF-M predictions®®. We ana-
lysed 4,165 protein pairs identified by XL-MS (total residue length
<3,600 amino acids owing to computational constraints), including
bothendosomal and non-endosomal protein pairs. We ranked each pair
using a Structure Prediction and Omics-informed Classifier (SPOC)*°
to evaluate complex plausibility (Supplementary Table 3). SPOC con-
sidersinterface predicted template modelling (ipTM) and predicted
aligned error (PAE) scores of the predicted interface (among other
metrics) together with biological correlations among the interact-
ing proteins (such as co-localization and genetic co-dependency)
and scores above 0.33 (scale 0-1) can indicate direct interactions®.
We then independently assessed the reliability of the predictions by
evaluating the extent to which structural predictions were consistent
with DSSO crosslink distance constraints (Fig. 2d and Supplemen-
tary Table 3). As expected, there was a strong correlation between
distances in AF-M predictions and the corresponding structures in
the PDB, both for intraprotein and interprotein crosslinks (Extended
DataFig.3l). Moreover, withinall pairwise predictions, 93% and 38% of
intraprotein and interprotein DSSO crosslink distances, respectively,
were within range (<35 A)? (Extended Data Fig. 3m,n). In the latter
case, the bi-modal distribution was largely explained by protein pairs
for which AF-M was unable to predict an interaction (SPOC < 0.33),
as 70% of interprotein crosslink distances were within range for pairs
withSPOC > 0.33 (Fig. 2e). The fraction of predictions withinterprotein
crosslinks satisfying the length requirements correlated with the SPOC
and ipTM scores (Fig. 2f,g). We also observed a correlation between
the number of crosslinks identified for an interaction and its predic-
tion SPOC score (Extended Data Fig. 30,p). Predictions involving at
least one endosomal protein had a similar distribution of crosslink
matches as predictions fromthe full dataset (Extended Data Fig. 3q-s).
Therefore, SPOC scores and crosslinking data are complementary
approaches that provide structural and experiment support to the
interactions identified in EndoMAP.v1. With AF-M, we obtained 162
unique, endosomal pairwise structural predictions not presentin the
PDB with SPOC > 0.33, including 69 structures matchinginterprotein
crosslink constraints, 53 with crosslinks in unstructured regions and
40 structures not matching crosslink constraints (Fig. 2d).

Three approaches were used to further strengthen and extend
structural modelling in EndoMAP.Vv1. First, DSSO crosslinking data
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Fig.2|Assembly ofanintegrated endosome protein complexstructural
landscape. a, Core component of the network containing 1,722 nodes organized
into 41 communities (indicated by numbers) and 3,489 edges. Significantly
enriched protein complexes of selected communities are provided in the top
left (see Supplementary Table 2 for full list of communities). Diamonds and
circular nodes represent high-confidence endosomal and other proteins,
respectively. Solid and dashed edges representinteractions identified by at
leastone crosslink or only co-fractionating, respectively. Red edgesindicate
interaction previously reported. b, Distribution of path distances between
proteins within and between the same complex compared with proteins
without complexannotation. ¢, Distribution of fraction of direct neighbours
inthe same complex for each protein compared witharandomized network
control. d, Systematic AF-M and AlphaLink2 predictions of proteininteractions

were evaluated using the recently reported Scout search engine®

(Supplementary Table 2). Scout with 1% FDR recovered 43% of those
crosslinks identified by XlinkX at 5% FDR, 66% between endosomal
proteins (Extended Data Fig. 4a), including most examples described
below. Regarding protein interactions, our pipeline filtering criteria
substantially increased the overlap with Scout, with up to 79% over-
lap for the interactions between endosomal proteins with good AF-M
predictions (SPOC > 0.33) matching the DSSO crosslink distance con-
straints (Extended Data Fig. 4b). Nevertheless, Scout recovered only
61% of previously reported interactions identified using XlinkX, sug-
gesting that thereisstill true connectivity that was missed by the more
stringent Scout search (Extended Data Fig. 4b). Allinteractions found
at1% FDRare indicated in the web portal and Supplementary Table 2.
Second, we used AlphaLink2 (ref. 21) to generate structural predic-
tions assisted by DSSO crosslink data and compared them to AF-M.
We generated predictions for 3,886 protein pairs identified by XL-MS
(total residue length <3,000 amino acids owing to computational con-
straints; Supplementary Table 3). Typically, predictions with strong
scores showed comparableipTM and SPOC for AF-M and AlphaLink2,
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Only residues with pLDDT >70 were considered. f, Distribution of AF-MipTM
scoresand average pLDDT for predictions withipTM > 0.3. Numbers of
interprotein crosslinks evaluated and exceeding the DSSO crosslinker distance
constraints areindicated by pointsize and the colour, respectively. g, Percentage
of pairwise AF-M predictions with more or fewer than 50% of crosslinks within
thedistance constraint (orange andred, respectively) relative to the SPOCand
ipTMscore. h,ipTMscores for AF-M compared with AlphaLink2 predictions.
Colour gradient represents the score difference; higher in AlphaLink2 (red) or
AF-M (blue).

whereas predictions with AF-M ipTM < 0.3 showed frequently higher
AlphaLink2ipTMscore (Fig.2h and Extended Data Fig. 4c). DSSO cross-
link distances were comparable between AF-M and AlphaLink2 pre-
dictions, both for intraprotein and interprotein crosslinks (Extended
Data Fig. 4d). Several examples illustrate cases of endosomal inter-
actions with score or crosslink distance differences between AF-M
and AlphaLink2 (Extended Data Fig. 4e-i and Supplementary Text).
Third, we performed an additional Endo-IP XL-MS experiment using
alternative crosslinkers (3,3’-sulfinyldi(propanehydrazide) (DHSO)
and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chlo-
ride (DMTMM)) to evaluate AlphaLink2 and provide further evidence
for AF-M structural predictions. DHSO and DMTMM can crosslink
pairsofacidicresidues oracidic residues with Lys, respectively>*:. We
identified 237 and 3,084 crosslinks with DHSO and DMTMM (1% FDR),
respectively, which was in the expected range compared to DSSO*
(Extended Data Fig. 4j and Supplementary Table 2). Around 90% of
the DHSO or DMTMM crosslinks could be mapped to the same pro-
teins and interactions identified with DSSO (69 and 623 interprotein
interactions with DHSO and DMTMM, respectively), such as V-ATPase
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(Extended Data Fig. 4k,1). Within AlphaLink2, 88% and 87% of intrapro-
tein DSSO and DMTMM crosslink distances, respectively, were within
range (<30 A; Methods and Extended Data Fig. 4m). Only 51 DHSO
crosslinks could be mapped to structured regions (pLDDT > 70) of
AlphalLink2 predictions, all within the distance constraint. Forinterpro-
tein crosslinks, 65% and 39% of DSSO and DMTMM distances, respec-
tively, were within range for pairs with SPOC > 0.33 (Extended Data
Fig.4n,0). In summary, we obtained 155 endosomal predictions with
AlphaLink2 (SPOC > 0.33) that, together with AF-M, make 229 structural
predictions for 144 endosomal interactions not present in the PDB
that match interprotein crosslink constraints (or with crosslinks in
unstructured regions; Fig. 2d). Insum, we generated an experimentally
supported structural interactome of the endosomal system.

TMEM230 as new lipid flippase subunit

To validate interactions and structural predictions within EndoMAP.
vl, we initially selected the TMEM230-ATP11B-TMEM30A complex
given: strong structural prediction scores for TMEM230-ATP11B
(AF-M SPOC =0.64, ipTM = 0.75; Fig. 3a); clear co-migration in BN-
MS (Fig. 3b); and a TMEM230-ATP11B crosslink satisfying distance
constraints (Fig. 3a and Supplementary Table 2). The ATP11 proteins
(A, Band C) are P4-type ATP-dependent enzymes that flip lipids from
exofacial to cytosolic leaflets of abilayer®, mainly the endolysosomal
membrane for ATP11B (ref. 10). ATP11, as well as ATP8Al and ATP8A2,
interacts with TMEM30A and TMEM3O0B (also known as CDC50A and
CDCS50B)*, required for flippase trafficking from the endoplasmic
reticulum to the Golgi apparatus®?¢. The AF-M TMEM230-ATP11B-
TMEMB30A heterotrimer prediction closely matched previously
reported ATP11-TMEM30 structures®**and predicted packing of the
transmembrane and amino-terminal cytosolic segments of TMEM230
with TM1 and the cytosolic catalytic domain of ATP11B, respectively
(Fig.3a). The AlphaLink2 prediction for TMEM230-ATP11B exhibited
asimilar TMEM230-ATP11B interface with a slightly longer crosslink
distance compared with that of AF-M (Fig. 3¢ and Extended Data
Fig. 5a). The ATPase domain of ATP11B in the predicted heterotrimer
approximates the EP2 conformation of the corresponding orthologous
yeast DNF2 protein (Extended Data Fig. 5b). ATP11B interaction with
TMEM230 and TMEM30A was confirmed reciprocally through co-IPin
HEK293 cells® (Fig. 3d and Extended Data Fig. 5c). These data identi-
fied TMEM230 as a subunit of the ATP11 family of lipid flippases and
provided structural predictions of the complexes.

Several variants of unclear significance have been reported in
TMEM230 (R78L, Y29C and two variants, X121W and X121PG, that cause
six-residue carboxy-terminal extensions)* *2, which we found to map
to the predicted TMEM230-ATP11B interface (Fig. 3a,e). TMEM230
R78islocated in proximity to D82 in TM1of ATP11B, and the TMEM230
C terminus (D119-D120) is predicted to bind into abasic pocket of ATP11
(Fig. 3e), wherein TMEM230 variants causing C-terminal extension
would be expected to sterically disrupt these interactions. To test the
impact of these variants on ATP11B interactions and given the appar-
entrole of ATP11B and TMEM230 in neuronal function®*, we deleted
TMEM230 in human embryonic stem cells (H9 AAVS1-NGN2;Flag-
EEA1,H9 Flag-EEA1L; Extended Data Fig. 5d,e), and converted the cells
to cortical-like induced neurons (iNeurons) using the NGN2 driver.
Wild-type (WT) TMEM230 co-immunoprecipitated with ATP11B,
ATP8AL, ATPSA2 and TMEM30A, compared to TMEM2307 iNeurons
as control (Fig. 3fand Supplementary Table 4). By contrast, TMEM230
interactions with TMEM30A, ATP11B, ATP8Aland ATP8A2 were lostin
R78L and both stop codon variants as determined by tandem mass tag-
ging (TMT)-MS (Fig. 3f,g, Extended Data Fig. 5f~h and Supplementary
Table 4). The Y29C variant™***' was without effect. Loss of interaction
of TMEM230(Y29C/R78L/X121W) was also validated in HEK293 cells
(Fig. 3h). AF-M predicts TMEM230 interaction with ATP8Al and A2
(ipTM>0.73) inamanner very similar to that seen with ATP11isoforms
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(Extended DataFig. 5i), consistent with loss of interaction in the context
of interface variants (Fig. 3g).

To examine the effect of TMEM230 variants on early endosomes,
we analysed Endo-IP and postnuclear supernatant (PNS) proteomes
in TMEM2307~ and TMEM230**' iNeurons** (Fig. 3i, Extended Data
Fig. 5d,e,j-m and Supplementary Table 4). For PNS proteomes, the
abundances of plasma membrane and synaptic proteins based on the
SynGO database were selectively elevated in TMEM230**' iNeurons
relative to WT cells, whereas minimal abundance changes were found
in TMEM2307 iNeurons (Fig. 3j, Extended Data Fig. 6a-d and Sup-
plementary Table 4). For endosomal proteomes, we found a lower
number of proteins whose abundance was altered compared to PNS
(Extended Data Fig. 6e-g), and involved the synaptic vesicle cycle and
its membrane components (Fig. 3k and Supplementary Table 4) in
TMEM230*™" iNeuron endosomes. Proteins whose abundance was
increased on early endosomes of TMEM230**"" iNeurons included sev-
eral RAB proteins (for example, RAB3A and RAB3B) and endocytic cargo
(for example, SORL1), whereas levels of DNM1and DNM2 (involvedin
endosomal vesicle budding) were decreased (Extended Data Fig. 6g).
The abundance of ATP8, ATP11 and TMEM30A was unaffected in total
orendosomal proteomes (Extended DataFig. 6h). Thus, reported vari-
antsin TMEM230 (refs. 40-42) disrupt interactions with multiple lipid
flippases and alter the abundance of endosomal and plasma membrane
proteinsiniNeurons. Following an analogous approach, we examined
candidate disease variants at interaction interfaces for all pairwise
predictionsin our dataset and identified 53 candidate disease variants
nearby 34 predicted interfaces (Extended DataFig. 6i,j, Supplementary
Text and Supplementary Table 3).

New subunits of CLCN3 and CLCNS5 complexes

High luminal chloride (CI") ion concentrations activate several endolys-
osomal enzymes and have been proposed to provide counterions to
supportthe V-ATPase-generated H* gradient**. The CI"-H" antiport-
ers CLCN3, CLCN4 and CLCNS are proposed to function primarily in
endosomes, whereas a heterotetrameric complex composed of CLCN7
a-subunits and OSTM1 -subunits functions primarily in lysosomes**%,
CLCN3 variants are implicated in intellectual disability*’, and CLCN3
deficiency leads to neurodegenerationin mice®. EndoMAP.vlidentified
crosslinks between CLCN3 or CLCN5 and TMEM9 or TMEM9B (Fig. 4a),
astrong enrichment of TMEM9 and TMEMOB in early endosomes'®"
(Extended Data Fig. 7a) and co-migration of CLCN3, CLCN4, CLCNS,
TMEM9 and TMEM9B in BN-MS (Fig. 4b). Pairwise AF-M and AlphaLink2
predicted interaction of CLCN3 or CLCNS5 with two transmembrane
segments from TMEM9 or TMEM9B (SPOC > 0.97), including compat-
ible crosslink distances for AF-M (Fig. 4c and Extended Data Fig. 7b).
As CLCN proteins form homodimers and heterodimers®, we examined
tetrameric predictions of CLCN3 or CLCN5 with TMEM9 or TMEM9B
that had the expected antiporter dimer interface, with two molecules of
TMEM9 (or TMEM9B) compatible with the crosslink distance constraint
(Fig. 4a,c and Extended Data Fig. 7c,d). The relative orientation of the
two transmembrane segments in TMEM9 was distinct from that of
the single transmembrane segmentin OSTMI (Extended DataFig. 7e).
Additionally, the two B-B-a-a-a- folds of the two TMEM9 molecules
occupy asimilarlocation to the helical luminal‘cap’domain of OSTM1,
but with a distinct conformation (Extended Data Fig. 7d,e).

Several experiments further validated interaction of TMEM9 with
CLCN3and CLCNSin early endosomes. First, TMEM9-GFP and mCherry
(mCh)-CLCN3 co-localized in vesicles in live (Mander’s coefficient
=0.64-0.72; Fig. 4d,e and Supplementary Video 1) and fixed cells,
in which extensive co-localization with EEA1" vesicles compared to
LAMP1" vesicles was observed (Mander’s coefficient =0.65 and =0.25,
respectively; Fig. 4f). Second, TMEM9-GFP tracked with expected
swollen endosomes inmCh-CLCN3-overexpressing cells* (Fig.4gand
Extended DataFig. 7f). Third, Flag-CLCN3 or Flag-CLCN5 reciprocally
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Fig.4| TMEM9 and TMEM9B are core subunits of endosomal CLCN3, CLCN4
and CLCN5 CI'-H* antiporters.a,EndoMAP.vlinteractions for CLCN3, CLCN4,
CLCNS, TMEM9 and TMEM9B. Diamonds and circular nodes represent
endosomal and other proteins, respectively. Solid and dashed edges represent
interactionsidentified by atleast one crosslink or only co-fractionation,
respectively. b, BN-MS profiling for CLCN3, CLCN4, CLCN5, TMEM9 and
TMEM9B. ¢, AF-M predictions for CLCN3-TMEM?9 pair and heterotetramer.
Thelocations of DSSO crosslinks are indicated with the red line and arrowhead.
d,e, Co-localization analysis of TMEM9-GFP and mCh-CLCN3 in SUM159 cells
by live-cellimaging. Mander’s coefficients of GFP and mCh puncta are shown
ine(n=39in3independentreplicates, mean +s.e.m.), withan example of acell
shownind.f,Mander’s coefficient analysis of co-localization between TMEM9-
GFP, mCh-CLCN3, anti-EEAland anti-LAMP1in fixed SUM59 cells as determined
by immunofluorescence. The number of fields of view across three biological
replicatesisindicated (mean = s.e.m.) and Pvalues from linear mixed-effects
model analysis of variance. g, Example of TMEM9-GFP, mCh-CLCN3 and
anti-EEA1staininginacell expressing high levels of CLCN3 (left panels), which

associated with HA-tagged TMEM9 and TMEM9B in HEK293 cells by
co-IP (Extended Data Fig. 7g).

To systematically examine TMEM9 interaction partners, we created
TMEM9” embryonic stem cells (Extended Data Fig. 7h) and expressed
TMEMO9-HA in biological quadruplicate day-21 iNeurons before
TMT-based IP-MS (Fig.4h and Supplementary Table 5). CLCN3, CLCN4
and CLCNS, as well as TMEM9B, were all highly enriched in anti-HA
immunoprecipitates, demonstrating specific interaction of TMEM9
with multiple CLCNs and TMEM9B-containing heterotetramers?®
Finally, we performed PNS and Endo-IP proteomics for WT iNeurons,
TMEM9 iNeurons and two different clones of iNeurons inwhich both
TMEM9 and TMEM9B were knocked out (TMEM9”"TMEM9B™") (Fig. 4i,
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promotes the formation of swollen endolysosomes. Traces of the white line in
thebottom panelshow the overlap of the three proteinsin the limiting membrane
ofendosomes (right panel). h, Volcano plot showing the proteomic analysis

of anti-HA IPs from TMEM9™" iNeurons with or without lentiviral expression

of TMEM9-HA (n =4 biologicallyindependent replicates). i, Schematic of
experimental design for proteomic analysis of early endosomes and PNSin
21-day iNeurons derived from WT cells, TMEM9™" cells and two different clones
of TMEM9”"TMEM9B™~ (DKO) cells in biological triplicate (Supplementary
Table5). j, Volcano plot showing the proteomic analysis of Endo-IPs from
TMEM97"TMEM9B™~ (DKO clone 2) versus WT iNeurons (day 21; n =3 biologically
independentreplicates). CTSF, cathepsin F. k, TMT reporter signal intensity

for CLCN3, CLCNS5, TMEM9 and TMEM9B in Endo-IPs fromiNeurons with
theindicated genotypes (n =3 biologically independent replicates). DKO1,
TMEM97/ TMEM9B™ (clone 1); DKO2, TMEM9” TMEM9B™ (clone 2).Scale

bars (dand g), 5um. Paneliadapted from ref. 44, CCBY 4.0; illustration of MS
machine from NIAID NIH BioArt Source.

Extended Data Fig. 7i,j and Supplementary Table 5). Early endosome
and PNS proteomics revealed a selective reductionin the abundance of
CLCN3, CLCN4 and CLCNS5 together with TMEM9 and TMEM9B, as well
as CLCNKA and cathepsin F (Fig. 4j,k and Extended Data Fig. 8a-d), with
reduced CLCN3 levels in TMEM9”" TMEM9B™" confirmed by immuno-
blotting (Extended Data Fig. 8c). The interaction, co-localization and
selective dependency between the protein levels of CLCN and those
of TMEM9 and TMEM9B in iNeurons reveal TMEM9 and TMEM9B as
core components of CLCN antiporter complexes in endosomes and
suggests a role in complex stability and/or endosomal trafficking,
consistent with findings reported while this manuscript was under
revision®,
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AF-M prediction for VPS35-RAB7A (left) and tetramer prediction for retromer-
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SPOC scores for pairwise combination are shown. ¢, AF-Mstructural predictions
andinterprotein crosslinks withinthe BORC endolysosomal positioning complex.
Pairwise AF-M predictions (left), three-way clique predictions (middle) and

From EndoMAP.v1 to high-order complexes

To expand the endosomal structural interactome beyond protein
pairs, we identified and performed AF-M predictions on all 625
three-way cliques (combinations of three proteins interacting with
each other) within EndoMAP.v1, with each clique requiring at least one
crosslink-supported interaction. Thisapproach yielded 172 predictions
containing >2 well-predicted interactioninterfaces (interface average
models >0.5) withineachclique (Fig. 5aand Supplementary Table 6). A
total of 59% of these predictions matched interprotein crosslink con-
straints and anadditional17% involved crosslinks within unstructured

|
< I <

I Sy

BORCS7

ipTM = 0.34
SPOC = 0.99

eight-protein predictions (right) are shown along with associated interprotein
crosslinks.ipTM and SPOC scores for pairwise combinations areindicated.

d, Pairwise AF-M predictions and associated crosslinks for aRUFY1-RUFY2
heterodimer (right) and for interaction of the RUFY2 N-terminal helical domain
with ARL8B (left). e, Pairwise AF-M predictions and associated crosslinks for
LAMTOR4 and LAMTORS (left), RRAGA and RRAGC (middle), and crosslinks
mapped onto the ragulator structure (PDB 6U62)*° (right). DSSO crosslinks (red)
and DHSO or DMTMM crosslinks (cyan) areindicated with lines and arrowheads.

regions. Predictions for three-way cliques represent a methodological
approachforinterrogation of iterative predictions and assessment of
crosslink data, as well as serving as anintermediate step in the genera-
tion of hypotheses for higher-order complexes, and do not necessarily
represent models for endogenous complexes. Illustrating the potential
use of the three-way clique approach for analysis of complexes with >3
subunits, pairwise and three-way clique predictions for combinations
of endosomal class Il PI3 kinase (UVRAG, BECN1, PIK3C3 and PIK3R4)
subunitsrecapitulate key intersubunitinteractions across the resolved
complex structure?, with valid crosslink distances for each pair and
three-way assembly (Fig. 1i and Extended Data Fig. 9a).
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Several multiprotein complex predictions were generated for core
endolysosomal regulators with previously defined components and
stoichiometrybutlackingstructuralinformationthroughthe three-way
clique AF-M approach. First, we identified a clique containing the ret-
romer subunits VPS35 and VPS29, as well as the endosomal GTPase
RAB7A.Here, RAB7A directly binds to the concave surface of the VPS35
a-solenoid fold (SPOC = 0.78), supported by both DSSO and DHSO or
DMTMM crosslinks, inamanner compatible with simultaneous binding
of VPS26A and VPS29 to VPS35, thus the assembled retromer complex™
(Fig.5b). The AlphaFold3 (ref. 54) prediction for the complex between
VPS35 and GTP-bound RAB7 closely matches the crystal structure of
GTP-bound RAB7A and provides a plausible structural mechanism
for the previously reported ability of GTP-bound RAB7A to recruit
retromer to endosomes™ (Extended Data Fig. 9b). Similarly, pairwise
and three-way clique combinations facilitate AF-M-driven assembly of
the eight subunits forming the kinesin-associated endolysosomal posi-
tioning BORC complex, for which structural data are lacking (Fig. 5c).
The predicted four-helix bundle with eight interdigitated subunits
is supported by multiple DSSO and DHSO or DMTMM crosslinks and
is consistent with known stoichiometry* (Fig. 5c). Acting in opposi-
tion to BORC for retrograde endosome trafficking are RUFY (RUN and
FYVE domain) proteins, which link ARL8-tethered endolysosomes
with dynein motors. Multiple DSSO and DHSO or DMTMM crosslinks
between RUFY1, RUFY2 and/or ARL8B validate an extended RUFY1-
RUFY2 coil-coil structure thought to be dimeric*® (SPOC = 0.99), with
ARLSB binding the RUN domain (ipTM = 0.82; Fig. 5d).

SNARE components facilitate endolysosomal vesicle fusion and
maturation. Our data allowed the construction of an extensive structur-
allyinformed network of R-and Q-SNARE components in combination
with regulatory RAB GTPases, tethering components, disassembly
machinery and including new candidate SNARE interaction partners
(SCAMP1, SCAMP3 and PTTGIIP) supported by crosslinking and PPI
data (Extended Data Fig. 9c-n and Supplementary Text). Additional
predictions allowed us to compile models for complexes linked with
several endosomal functions, including RAB-GEF (Extended Data
Fig.10a-d), channel-transporter (Extended Data Fig. 10e-g), adap-
tor protein (AP; Extended Data Fig. 10h), ESCRT-ubiquitin (Extended
DataFig.10i), luminal cargo (Extended Data Fig.10j), HOPS (Extended
DataFig.10k) and cargo trafficking assemblies (Extended Data Fig.101),
with experimental validation in purified endosomes through DSSO and
DHSO or DMTMM crosslinks.

V-ATPase as aninteraction hub

Among the most extensively crosslinked complex was the V-ATPase
(Fig. 1h and Extended Data Fig. 11a), which pumps protons into the
endolysosomal lumen to maintain an acidic pH. V-ATPase can co-IP
ragulator complexes (a five-subunit LAMTOR complex together
with RRAGA and RRAGC or RRAGB and RRAGD GTPase), which bind
and regulate MTOR kinase on the endolysosomal membrane®™*’, We
detected multiple DSSO and DHSO or DMTMM crosslinks between
ragulator subunits, consistent with its known structure and pair-
wise AF-M predictions (Fig. 5e). We detected crosslinks between
LAMTOR2 or LAMTOR4 and the ATP6V1C1 subunit of V-ATPase, sug-
gesting that LAMTOR comes into close contact with V-ATPase. Using
the crosslinked Lys residues as aguide for hypothesis generation, we
developed a hypothetical docking model of a previously reported
symmetrically dimeric ragulator-MTORCI complex coupled onto two
fully assembled V-ATPase complexes, forming a V-ATPase-MTORC1
‘super assembly’ (Extended Data Fig. 11b). This hypothetical model
illustrates an orientation of V-ATPase interacting with MTORC1 com-
plexes compatible with crosslinking data and the proposed orga-
nelle membrane topology for MTORC1-ragulator®, highlighting how
our approach may capture contacts between large dynamic protein
complexes and support the design of further experiments required
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to validate these hypotheses. Additional crosslinks and predictions
suggest an extensive network of interactions linking V-ATPase and
LAMTOR complexes with lysosomal positioning BORC, endosomal
RAB and V-ATPase regulatory TLDc domain-containing proteins, as
detailed in Supplementary Text (Extended Data Fig. 11a,c-fand Sup-
plementary Table 3).

Discussion

By combining proteininteractions with crosslink-supported structural
predictions, EndoMAP.v1 provides a framework for understanding the
EEAT" endosomalsstructuralinteractome. EndoMAP.v1 contains 4,282
interactions based on XL-MS and BN-MS with 229 structural predic-
tions for endosomalinteractions without previous structural informa-
tion. This landscape can be explored through an interactive viewer
containing all structural predictions, interactions and experimental
data (https://endomap.hms.harvard.edu/; Extended Data Fig. 11g).
We demonstrated how EndoMAP.v1 can be used to identify new core
subunits of membrane protein complexes, as in the case of TMEM230,
TMEM9 and TMEM9B. Moreover, we showed how XL-MS can provide
experimental support for large-scale hypothesis-generating struc-
tural predictionsin the context of an organelle, in which weak protein
interactions may be facilitated through membrane tethering. Future
studies will further expand on and address the limitations of this work,
suchasinclusion of additional endosome populations,improving the
coverage of integral membrane proteins, assessing complex stoichio-
metries when suchinformationislacking, and addressing the challenge
of biochemical and structural validation of proposed hypothetical
models at scale (Supplementary Text). Finally, the pipeline described
here serves as a roadmap for analogous efforts with other organelles
and for understanding the diversity of organellar proteomes and inter-
actionsin diverse cell types.
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Methods

Reagents

The following chemicals and reagents were used: Dounce homog-
enizer (DWK Life Sciences, 885302-0002); Pierce anti-HA magnetic
beads (Thermo Scientific, 88837); Pierce anti-Flag magnetic agarose
(Thermo Scientific, A36797); anti-Flag M2 magnetic beads (Sigma Mil-
lipore, M8823); Pierce protein A/G magnetic beads (Thermo Scientific,
88802); IGEPAL CA-630 (Sigma-Aldrich, I8896); S-Trap micro columns
(Protifi, CO2-micro-80); triethylammonium bicarbonate (TEAB)
buffer (Sigma-Aldrich, T7408); sodium dodecyl sulfate (SDS; Bio-Rad,
1610302); DSSO (Thermo Scientific, A33545); DHSO (CF Plus Chemicals,
PCL042); DMTMM (Sigma-Aldrich, 74104); n-dodecyl -pD-maltoside
(DDM, Gold Biotechnologies, DDM5); NativeMark protein standard
(Invitrogen, LCO725); NativePAGE 4-6% gels (Invitrogen, BN1002BOX);
MultiScreenfilter plates (SigmaMillipore, MSHVN4510); TMTpro 16plex
set (Thermo Fisher Scientific, A44520); protease inhibitor cocktail
(Roche, 4906845001); tris(2-carboxyethyl)phosphine (TCEP; Gold Bio-
technology, 51805-45-9); 2-chloroacetamide (Sigma-Aldrich, C0267);
S-methyl thiomethanesulfonate (MMTS; Sigma-Aldrich, 208795);
trypsin (Promega, V511C); Lys-C (Wako Chemicals, 129-02541); hydroxy-
lamine solution (Sigma-Aldrich, 438227); Sep-Pak C18 and C8 50 mg car-
tridge (Waters, WAT054955 and WAT054965); high-pH reversed-phase
peptide fractionation kit (Thermo Scientific, 84868); Bio-Rad protein
assay dye (Bio-Rad, 5000006); 3-[4-(2-hydroxyethyl)-1-piperazine]pro-
panesulfonicacid (Thermo Scientific,J61296AE); Empore SPE discs C18
(SigmaMillipore, 66883-U); Gateway LR Clonase Ilenzyme mix (Thermo
Scientific, 11791020); NEBNext Ultra Il Q5 Master Mix (New England
BioLabs, M0544L); Cas9-NLS (QB3 MacroLab at University of California,
Berkeley); CloneR (StemCell Technologies, 05889); MiSeq reagent nano
kit v2 (300 cycles; lllumina, MS-103-1001); GeneArt Precision gRNA
synthesis kit (Thermo Fisher Scientific, A29377); RNAeasy Qiagen kit
(Qiagen, 74104); 24-well glass-bottom plates (Cellvis, P24-1.5H-N);
Corningsquare culture dish (Corning, 431110); Nunc Nunclon Delta cell
culture dishes (Thermo Scientific, 140675,150318 and 168381); Corning
Matrigel matrix (Corning, 354230); DMEM with F-12 (Gibco, 11330057);
neurobasal medium (Thermo Scientific, 21103049); non-essential
aminoacids (Gibco, 11140050); GlutaMAX (Gibco, 35050061); N-2 sup-
plement (Gibco, 17502048); neurotrophin-3 (NT3; Peprotech, 450-03);
brain-derived neurotrophic factor (BDNF; Peprotech, 450-02); B27
(Gibco, 17504001); Y27632 dihydrochloride (ROCK inhibitor; Pepro-
Tech, 1293823); Cultrex 3D culture matrix laminin I (R&D Systems,
3446-005-01); accutase (StemCell Technologies, 07922); FGF2-G3
(in-house); human insulin (Santa Cruz Biotechnologies, sc-360248);
transforming growth factor-f3 (PeproTech, 100-21); holo-transferrin
human (Sigma-Aldrich, T0665); sodium bicarbonate (Sigma-Aldrich,
$5761-500G); sodium selenite (Sigma-Aldrich, S5261-10G); doxycycline
(Clontech Labs, 631311); UltraPure 0.5 MEDTA (Invitrogen, 15575020);
16% paraformaldehyde (Electron Microscopy Science, 15710); DMEM
(Gibco, 11995073); fetal bovine serum (Cytiva, SH30910.03); hydro-
cortisone (Sigma-Aldrich, H0135); polyethylenimine (Polysciences,
23966); FUGENE (Promega, E2311).

The following primary antibodies were used (1:1,000 forimmunob-
lotting, 1:400 forimmunofluorescence): Flag (Sigma-Aldrich, F1804),
HA (Cell Signaling Technology, 3724), V5 (Invitrogen, 14-6796-82),
TMEM230 (Origene, TA504888), LAMP1 (Cell Signaling Technology,
D2D11), RABS (Cell Signaling Technology, C8B1), CLR (ProteinTech,
10292-1-AP), golgin 97 (ProteinTech,12640-1-AP), VDACI1 (ProteinTech,
55259-1-AP), CLCN3 (Cell Signaling Technology, 13359S), GFP (Thermo
Scientific,al0262), mCh (Thermo Scientific, M11217), EEA1 (Cell Sign-
aling Technology, C45B10). The following secondary antibodies were
used (1:10,000 forimmunoblotting, 1:400 forimmunofluorescence):
anti-rabbit immunoglobulin-G (IgG) horse radish peroxidase (HRP)
conjugate (Bio-Rad, 1706515); anti-mouse IgG HRP conjugate (Bio-Rad,
1706516); goat anti-chicken IgY (H + L), Alexa Fluor 488 (Thermo

Scientific, A-11039); goat anti-rat IgG (H + L) cross-adsorbed, Alexa
Fluor 555 (Thermo Scientific, A-21434); goat anti-rabbit IgG (H + L)
cross-adsorbed, Alexa Fluor 647 (Thermo Scientific, A-21244).

Molecular cloning

Plasmids were made as previously described®. Entry clones from the
human ORFeome collection, version 8, were cloned into their cor-
responding plasmids using Gateway technology (Thermo Fisher
Scientific) or Gibson assembly (New England Biolabs). The complete
TMEM230(Y29C/R78L/X121W) mutant was obtained by gene synthesis
(Twist Bioscience). For lentivirus transduction, pHAGE and pLentiback-
bones were used. For transfection, pCGS and pcDNA3.1backbones were
used. The following plasmids were generated: pGCS-3xFlag-ATP11B
(Addgene, 225511), pcDNA-TMEM30A-V5 (Addgene, 225510), pGCS-
3xHA-TMEM230 (Addgene, 225512), pGCS-3xHA-TMEM230(Y29C/
R78L/X121W) (Addgene 225513), pLenti-UBC-HA-TMEM230 (Addgene,
225516), pLenti-UBC-HA-TMEM230(R78L) (Addgene, 225517), pLenti-
UBC-HA-TMEM230(X121W) (Addgene, 225519), pLenti-UBC-HA-
TMEM230(Y29C) (Addgene, 225520), pLenti-UBC-HA-TMEM230
(X121PG) (Addgene, 225518), pLenti-UBC-HA-TMEM230(Y29C/R78L/
X121W) (Addgene 225521), pcDNA-CLCN3-3xFlag (Addgene, 225506),
pcDNA-CLCN5-3xFlag (Addgene, 225507), pcDNA-TMEM9B-3xHA
(Addgene, 225509), pcDNA-TMEM9-3xHA (Addgene, 225508),
pHAGE-mCh-CLCN3 (Addgene, 225514), pHAGE-TMEM9-EGFP
(Addgene, 225515). The following plasmids were used for lentiviral
packaging: pPAX2 (Addgene, 12259), pMD2 (Addgene, 12260).

Cell culture, neuronal differentiation and lentiviral transduction
HEK293 cells (ATCC; RRID:CVCL_0045) were cultured in10-cm dishes
with high-glucose and pyruvate DMEM supplemented with 10% fetal
bovine serum. For co-IP experiments, cells were transfected at 60%
confluency with 6 pg of plasmidsina2:1ratio using polyethylenimine
(25 kDa) and incubated for 48 h at 37 °C and 5% CO,. SUM159PT cells
(a gift from T. Walter, Memorial Sloan Kettering; RRID:CVCL_5423)
were cultured in 6-well culture dishes (300,000 cells per well) in
DMEM with F-12 supplemented with GlutaMAX, 5% fetal bovine
serum, 1 pg ml™ hydrocortisone and 5 pg ml™ insulin. Cells were
transfected 1 day later with 500 ng of plasmids using FUGENE and
Optimem transfection reagent and incubated at 37 °C and 5% CO,.
One day after transfection, cells were selected with puromycin and
plated into 24-well glass-bottom culture dishes (50,000-100,000 cells
per well).

Gene-edited human embryonic stem (ES) cells (H9, WiCell Institute)
were cultured as described previously®,®*. Cells were maintained with
E8 medium on plates coated with Matrigel and split with 0.5 mM EDTA
in DPBS. ATCC performs quality testing to ensure authentication of
the HEK293T cell line using short tandem repeat analysis. H9 ES cells
(from WiCell) are authenticated by WiCell using G-band karyotyping
and shorttandem repeat analysis. Genetically edited H9 human ES cells
were confirmed by karyotyping. HEK293, SUM159T and H9 cell lines
were tested for mycoplasma on a monthly basis using Mycoplasma
Plus PCR assay kit (Agilent 302107). Use of H9 cells for this study was
approved by the Embryonic Stem Cell Research Oversight Committee
(approval number 00051).

Human ES cells with the AAVSI-TRE3G-NGN2 driver®* were differ-
entiated into iNeurons as described previously®. Briefly, stem cells
were plated at 2 x 10° cells mI™ (differentiation day 0) in ND1 medium
(DMEM with F-12, N-2, human 10 ng mI™ BDNF, 10 ng mlI™ human NT3,
non-essential amino acids, 0.2 pug ml™ human laminin) supplemented
with 2 mg ml™ doxycycline and 10 pM Y27632 (ROCK inhibitor). The
next day, the medium was exchanged with ND1 without Y27632. The
following day, the mediumwas replaced with ND2 (neurobasal medium,
B27, GlutaMAX, 10 ng ml™ BDNF, 10 ng mI™* NT3) supplemented with
2 pg ml™ doxycycline. Until the experimental day (day 19-21), 50% of
the medium was replaced with fresh ND2 every other day. Cells were



replated at 4 x 10° cells per well on day 4-6. From day 10, doxycycline
was removed from the ND2.

Lentiviral vectors were packed in HEK293T cells (ATCC number
CRL-3216; RRID:CVCL_0045) as described previously®>¢¢’, Cells were
co-transfected at 60% confluency with pPAX2, pMD2 and the target vec-
torina4:2:1ratio using polyethylenimine. The medium was changed to
ND2the next day and collected 2 days after transfection. ND2 medium
containing lentivirus was filtered (0.22 um) and used for transduction
of iNeurons at differentiation day 11-12.

CRISPR-Cas9 gene editing

Human ES cells (H9 AAVS1-TRE3G-NGN2 3xFlag-EEA1; RRID:CVCL_
D1KV) were gene-edited using CRISPR-Cas9 (ref. 68). Cells were elec-
troporated with a mixture of 0.6 pgguide RNA and 3 pg Cas9-NLS (QB3
MacroLab, University of California, Berkeley) using aNeon transfection
system as previously described®® according to the specific protocol at
ref. 70. To generate human ES cells homozygous for the TMEM230*%
variant, a single-stranded DNA oligonucleotide was included in the
electroporation (5-CTACCGTGGTTACTCCTATGATGACATTCCAG
ACTTTGATGACTGGCACCCACCCCATAGCTGAGGAGGAGTCACAGTGG
AACTGTCCCAGCTTTAAGATATCTAGCAGAAACTATAGCTG-3’). The
cells were recovered for 24-48 h in a low-O, incubator and sorted
into single cells with a Sony Biotechnology (SH800S) cell sorter
(RRID:SCR_018066). Gene editing of individual clones was verified by
sequencing with the llluminaMiSeq system (RRID:SCR_016379) and vali-
dated by immunoblotting and/or MS. Guide RNAs were generated using
the GeneArt Precision gRNA synthesis kit (Thermo Fisher Scientific)
for the sequences: TMEM2307 5-CCTGAAGGTCAATGTAGCCATCGT-3’,
TMEM230**'W 5'-CTCCTCCTCAGCTATGGGGT-3", TMEM9™~ 5’-T
ATCTTTGGTGGCTGTGGTC-3’, TMEM9B™~ 5'-TCTACATCAGGC
CCCCGCAC-3'. ES cells reported here will be made available upon
request, but require a Material Transfer Agreement from WiCell.

Spinning-disc confocal microscopy

For immunofluorescence staining, SUM159PT cells were fixed with
4% paraformaldehyde in PBS for 15 min and permeabilized with 0.5%
Triton X-100in PBS for 10 minat room temperature. Cells were blocked
with 3% BSA in PBS with 0.1% Triton X-100 for 1 h at room tempera-
ture. Cells were incubated with primary antibodies (1:200 dilution)
in 3% BSA in PBS with 0.1% Triton X-100 for 3 h at 4 °C. After washes,
cells were incubated with Alexa Fluor secondary antibodies (1:400)
for1hat4 °C, and nuclei were stained with Hoechst 33342 (1:10,000)
for 5 min. Cells were washed and maintained in PBS until microscopy
analysis. Immunostaining of iNeurons was performed according to
the protocol at ref. 71.

Cellswereimaged using a Yokogawa CSU-X1spinning-disc confocal
on a Nikon Eclipse Ti-E motorized microscope and a Plan Apochro-
mat100x 1.45 N.A oil-objective lens. Live-cellimaging was performed
with a Tokai Hit stage top incubator at 37 °C, 5% CO, and 95% humid-
ity. Images were acquired with a Hamamatsu ORCA-Fusion BT CMOS
camera (6.5 pum? photodiode, 16-bit) and NIS-Elements image acquisi-
tion software (RRID:SCR_002776). All samples were measured under
the same exposure time and laser power. Co-localization analysis was
performed with the JACoP plugin (RRID:SCR_025164) for ImageJ/Fii
(RRID:SCR_002285)"? using maximum-intensity projectionimages and
maximum entropy threshold. Linear mixed-effect model statistics were
applied asimplemented in the Ime4 R package with a nested design
to account for images acquired from the same culture well and same
biological replicate. The number of fields of view for each of the three
independentbiological replicatesisindicated inthe figures (Fig. 4¢,f).

Endosomal scoring method

The scoring method was performed to define the endosomal proteome
andassignan unbiasedscoretoeach proteinreflecting the probability of
beinglocatedinendosomesbased on experimental data. The literature

was surveyed for studies capturing the endosomal proteome in mam-
malian organisms, whichresulted in 16 datasets'®'*”> 82 (Supplementary
Table1).Incomplete datasets or withambiguous organelle purifications
(forexample, ‘vesicles’ or mixed organelles) were excluded. Outdated
Uniprot IDs and obsolete gene names were updated (Uniprot 2022-
02). Ensembl and the BiomaRt R package (RRID:SCR_019214) were
used toretrieve and match rodent genes to their human orthologues,
including all human genes when multiple genes matched. Subsequent
analyses were based on the protein identification across datasets asa
metric for the scoring method (Supplementary Table 1). To evaluate
the performance of scoring metrics and datasets, areference list 0f 292
well-known endosomal proteins was manually curated from published
literature>?25683-116 (Extended Data Fig. 1a). Dataset overview was visual-
ized by multiple correspondence analysis using the FactoMineR R pack-
age (RRID:SCR_014602; Extended Data Fig. 1b). Protein annotation to
various organellar locations was based on a previous study® (Extended
DataFig.1c). Another metric of the endosomal scoring was the protein
abundance in Endo-IP obtained from the label-free proteomic analysis
of endosomal pellets as described below (Extended Data Fig. 1d and
Supplementary Table 1). The number of interactions with endosomal
proteins was obtained from BioPlex 3.0 (RRID:SCR_016144), STRINGDB
and CORUM (28.11.2022 Corum 4.1 release)® 8 for the reference list
of well-known endosomal proteins described above. For STRINGDB,
only physical interactions with experimental evidence or databases
with high score (combined score >0.7) were included.

The performance of each metric to classify endosomal proteins (from
thereferencelist described above) was evaluated by receiver operating
characteristic curves using the pROCR package with a binomial logistic
regression as the predictor (Fig. 1b). The combined endosomal score
was obtained by summation of the three individual metrics. Partial area
under the curve and the threshold to consider a protein asendosomal
was 10% false positives based on the reference list. The scoring method
resulted in 407 predicted endosomal proteins (14 proteins presentin
MitoCarta3.0 (RRID:SCR_018165) were excluded) that were combined
withthereference list of well-known endosomal protein for atotal of 522
proteins (Supplementary Table1). These proteins were characterized
using BioPlex 3.0 (ref. 28), OpenCell (RRID:SCR_021870)"°, and publica-
tions as retrieved from Uniprot (Extended Data Fig. le-g). Endosomal
annotation for all subsequent analyses was based on this list.

EEAT" endosome purification through Endo-IP affinity capture

Endo-IPs with HEK293 cells were performed as described previously'.
HEK293F cells expressing Flag-EEA1 (ref. 19) were collected from
five 24.5-cm square culture dishes per replicate for co-fractionation
experiments (n =3) and 60 square plates per replicate (divided into
two batches) for crosslinking experiments (n=2).Endo-IPsiniNeurons
were performed as described previously**'*. Three 15-cm culture dishes
per replicate were used for experimentsiniNeurons (n = 3). Cells were
pelleted at1,000g for 2 min at 4 °C and washed once with KPBS buffer
(100 mM potassium phosphate, 25 mM KCl and protease inhibitor
cocktail, pH 7.2). Cell pellets were resuspended in KPBS and lysed in
aDounce homogenizer with 25 strokes. Samples were centrifuged
twice at 1,000g for 5 min at 4 °C, and PNS protein concentration was
quantified and normalized by Bradford assay. Samples were incubated
for 50 min at 4 °C with 70 pl anti-Flag Sigma magnetic beads for iNeu-
rons experiments, 1.6 ml Sigma anti-Flag Sigma magnetic beads for
co-fractionation experiments and 20 ml of anti-Flag Pierce magnetic
beads per batch for crosslinking experiments. The beads were washed
four times using amagnetic stand with KPBS. For quantitative proteom-
ics, endosomes were eluted with 120 pl 0.5% NP40 (IGEPAL) in KBPS
for 30 min at 4 °C and stored at —80 °C until MS sample preparation.
For co-fractionation and crosslinking experiments, endosomes were
eluted twice with 0.8 mM 3xFlag peptide in KPBS for 45 min at 4 °C
(Extended Data Fig. 1h). Peptide-eluted samples were centrifuged for
20 min at10,000g in Posi-Click tubes (Denville, c2170). Endosomal
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pellets were washed twice with KPBS to remove excess 3xFlag peptide
and immediately processed. An additional wash was performed for the
second replicate of the crosslinking experiment, which helped increase
the coverage in the MS analysis.

Protein co-IP

Aprotocolfor this analysisis available at ref. 122. Proteins froma10-cm
culture dish of HEK293 cells or a15-cm dish of iNeurons per replicate
(n=2or4)wereextracted for1hat4 °Cwith 0.5% DDMin 25 mMHEPES
pH 7.4,150 mM NaCl and protease inhibitor cocktail'>. Samples were
centrifuged twice at 20,000g for 20 min, and the supernatant was
incubated with 15 pl anti-HA magnetic beads (Pierce) or 25 pl anti-Flag
magnetic beads (Sigma) depending onthe proteintagfor2 hat4 °C.For
IPusing endogenous antibodies, the supernatant was incubated over-
night with 5 pg of antibody before the incubation with 15 pl magnetic
A/Gbeads. The beads were separated with amagnetic stand and washed
four times with washing buffer (0.1% DDM, 25 mM HEPES, 150 mM NaCl,
pH7.4).Proteins bound to the beads were eluted with 30 pl 1.5x Laemmli
buffer forimmunoblotting or 30 pl 1.5x S-Trap lysis buffer (7.5% SDS,
150 mM TEAB pH 8.5) for MS analysis and heated at 80 °C for 5 min.

SDS-PAGE immunoblotting

Samples mixed with Laemmlibuffer were incubated at 80 °C for 5 min
and loaded in a Criterion TGX stain-free precast gel for subsequent
immunoblotting. After electrophoresis, gels were scanned using a
Bio-Rad ChemiDoc imager (Bio-Rad) and electro-transferred onto a
PVDF membrane overnight at 10 V. Membranes were blocked with 5%
non-fat milk, and incubated with primary antibody for 2 hat 4 °C and
subsequently with HRP-conjugated secondary antibodies for1hat4 °C.
After washing, blotimages were acquired in a Bio-Rad ChemiDocimager
using SuperSignal West Pico PLUS Chemiluminescence substrate
(Thermo Fisher, catalogue number 34580). Images were processed
with Bio-Rad Image Lab software (version 6.1.0; RRID:SCR_014210).
Differences in loading were normalized using the stain-free quan-
tification of total protein amount. Protocols for this procedure are
available at ref. 124. Full versions of all gels and blots are available in
Supplementary Fig. 1.

BN electrophoresis co-fractionation and in-gel digestion

A detailed protocol for this procedure is available at ref. 125. Protein
complexes fromthreeindependent biological Endo-IPreplicates were
fractionated and processed as previously described'. Freshly prepared
purifiedendosomal pellets were resuspended in 40 pl KPBS with 0.5%
DDM, and proteins were extracted for 45 minat4 °Cinrotation. Protein
extracts were clarified by centrifugation at 20,000g and mixed with
10 pl BN loading buffer, 1 pl Coomassie G-250 mix and 0.5 pl native
molecular weight marker. Samples were run on a4-16% NativePAGE gel
at150 Vforl.5handat250 Vfor 20 minat4 °C. Gels were fixed in 50%
ethanoland 3% phosphoricacid, followed by staining with Coomassie.
Each sample was cut into 48 1-mm slices and transferred to a 96-well
filter plate for in-gel digestion'?. Briefly, proteins were reduced with
100 pl 5 mM TCEP in 50 mM ammonium bicarbonate for 30 min at
37 °C.Proteins were alkylated with20 mM chloroacetamide in 50 mM
ammonium bicarbonate for 15 min at room temperature. Fractions
were destained, dried and digested with 0.2 ug Lys-C for 4 hat 37 °C
followed by overnight incubation with 0.2 pg of trypsin. Peptides were
extracted, dried in a SpeedVac and reconstituted in 5% acetronitrile
(ACN), 5% formic acid for data-independent acquisition (DIA) liquid
chromatography (LC)-MS/MS analysis.

Crosslinking and strong cation exchange fractionation

A detailed protocol for both crosslinking procedures is available at
ref.127. Freshly prepared purified endosomal pellets from two inde-
pendent biological replicates were resuspended in 300 pl KPBS and
immediately crosslinked by incubating with1 mM DSSO (disuccinimidyl

sulfoxide, with the full chemical name bis(2,5-dioxopyrrolidin-1-yl)
3,3’-sulfinyldipropionate, bis-(propionic acid NHS ester)-sulfoxide,
Thermo Fisher Scientific) at room temperature for 40 min (ref. 6). The
reaction was quenched with 50 mM Tris buffer pH 7.5 at room tem-
perature for 30 min. Crosslinked samples were denaturedin 8 M urea,
reduced with 5 mM dithiothreitol for 30 minat 37 °C, and alkylated with
40 mM chloroacetamide for 30 min at room temperature. Crosslinked
proteins were digested with Lys-C (1:75) at 37 °C overnight. Sample urea
concentration was diluted to 2 M with 50 mM 3-[4-(2-hydroxyethyl)-
1-piperazine]propanesulfonic acid and incubated at 37 °C with trypsin
(1:100) for 6 h. Peptides were desalted with a 50 mg C8 Sep-Pak
solid-phase extraction column, dried and fractionated by strong cation
exchange chromatography. A 70-min linear gradient of mobile phase
(0.5MNaClin20% ACN, 0.05% formic acid) was used from O to 8% in
14 min, to 20% at 28 min, to 40% at 48 min and to 90% at 68 min ata
column flow rate of 0.18 ml min™in a PolyLC PolySulfoethyl A column
(3 um particle size, 2.1 mm inner diameter and 100 mm length). Frac-
tions were collected every 30 s starting at 35 min for 10 min, and then
every minute. Fractionswere driedinaSpeedVac and desalted using a
C8StageTip. Around 30 fractions for each sample were reconstituted
in5% ACN, 5% formic acid and analysed by LC-MS/MS.

Anadditional independent biological replicate of freshly prepared
purified endosomal pellet was resuspended in 300 pl KPBS and imme-
diately crosslinked by incubating with a combination of 8 mM DHSO
and 16 mM DMTMM at 37 °C for 90 min (ref. 32). Crosslinked samples
were denatured in 5% SDS and briefly sonicated, reduced with 5 mM
dithiothreitol for 5 min at 55 °C, and alkylated with 20 mM MMTS.
Crosslinked proteins were precipitated and subjected to the S-Trap
mini-spin column digestion protocol as provided by the manufacturer
(see below). Peptides were desalted and fractionated by strong cation
exchange chromatography as described above. A total of 30 fractions
were analysed by LC-MS/MS.

S-Trap sample preparation

Threeindependent replicates of PNS samples (10 pgor 50 pgof protein
depending on the experiment) and Endo-IP samples were mixed with
equal volume of water and subjected to sample preparation. The S-Trap
micro-spin column digestion protocol (version 4.7) was followed as
provided by the manufacturer (Protifi, C02-micro-80)'**°, Briefly,
each sample was mixed with equal volumes of 2x lysis buffer (10% SDS,
100 mM TEAB buffer pH 8.5). Protein IP samples fromiNeurons (n =2 or
4)weredirectly collected in1.5x lysis buffer. Proteins were reduced by
incubatingat 55 °C for 30 minwith 5 mM TCEP and alkylated for 30 min
atroom temperature with 40 mM chloroacetamide. Samples were
acidified with phosphoric acid and mixed with washing buffer (90%
methanol, 100 mM TEAB buffer pH 7.55). Samples were transferred
to micro-spin columns and washed 4 times with150 pl washing buffer
by centrifugation. Proteins were digested with 0.5 pg Lys-C at 37 °C
overnightinahumid chamber, followed by 6 hincubation with 0.5 pg of
trypsin. Peptides were collected from the column by three subsequent
centrifugation steps (with 50 mM TEAB buffer, 0.2% formic acid and
50% ACN, respectively) and dried in a SpeedVac.

TMT labelling and peptide fractionation
Protocols for labelling of peptides are available at ref. 131. Peptides were
resuspendedin 50 pl (PNS samples) or 35 pl (Endo-IP samples) 100 mM
TEAB buffer pH 8.5. PNS and Endo-IP peptides were labelled by adding
11 plor7 pl ACN, and incubating for 1 hatroom temperature with 10 pl
or 8 pl of TMTpro reagent (20 mg ml™stockin ACN), respectively. The
reaction was quenched by adding 10 pl 5% hydroxylamine for 15 min.
For PNS samples, equal peptide amounts for each sample were com-
bined, desalted witha100 mg C18 Sep-Pak solid-phase extraction col-
umn and fractionated by basic pH reversed-phase high-performance
LC.Chromatography was performed with a 50-min linear gradient from
5%t035%ACNin10 mMammoniumbicarbonate pH 8 ata column flow



rate of 0.25 ml min using an Agilent 300 Extend C18 column (3.5 pm
particle size,2.1 mminner diameter and 250 mm length). Theinitial 96
fractions collected were combined into 24 fractions, as described previ-
ously™. One set of 12 non-adjacent fractions were dried inaSpeedVac
and desalted using C18 StageTip. Dried peptides were reconstitutedin
5% ACN, 5% formic acid and subjected to LC-MS/MS analysis.

For Endo-IP samples, equal peptide amounts for each sample were
combined and fractionated using a high-pH reversed-phase peptide
fractionation kit (Pierce) following the manufacturer’s protocol. Elu-
ates were combined into six fractions, dried and desalted using C18
StageTip. Dried peptides were reconstituted in 5% ACN, 5% formic acid
and subjected to LC-MS/MS analysis.

For proteinIP samples, equal peptide amounts for each sample were
combined, dried and desalted using C18 StageTip without further frac-
tionation. Dried peptides were reconstitutedin 5% ACN, 5% formic acid
and subjected to LC-MS/MS analysis.

LC-MS data acquisition

TMT-labelled samples were analysed using a Vanquish Neo UHPLC
system coupled to an Orbitrap Eclipse Tribid mass spectrometer
(RRID:SCR_020559) with FAIMS Pro (ref. 131). Peptides were separated
onal00-pmmicrocapillary column packed with20 cm of Accucore C18
resin (2.6 pm, 150 A). A 90-min linear gradient from 5% to 20% ACN in
80 min, to 36% at 83 min, and to 98% at 85 min in 0.125% formic acid
was used at 0.3 pl min™. MS' spectra were acquired on the Orbitrap
(resolution 60,000, scan range 350-1,350 m/z, standard automatic
gain control (AGC) target, auto maximum injection time). Peptide frag-
mentation was achieved by high-energy collisional dissociation (HCD)
at36% normalized collision energy. MS?spectra were acquired on the
Orbitrap (resolution 30,000, isolation window 0.6 m/z, TurboTMT
set to All TMT Reagents, first mass 120 m/z, 200% normalized AGC,
120 ms maximum injection time). FAIMS Pro was set to—-30,-50 and -70
compensation voltage (CV). Unfractionated samples (protein IPs) were
injected twice with FAIMS set to—40,-60 and -80 CV for the second run.

BN-PAGE co-fractionation samples were analysed using an EASY-nLC
1200 system coupled to an Orbitrap Exploris 480 mass spectrometer
(RRID:SCR_022215). A15-cm 100-pm capillary column was packed
in-house with Accucore 150 C18 resin (2.6 pm, 150 A). A 90-min linear
gradientfrom 5%t020%ACNin 80 min, to 25% at 83 min, and to 98% at
85minin 0.125% formic acid was used at 0.3 pl min™. The DIA method
consisted of MS? analysis of overlapping isolation windows of 24 m/z
stepped through390-1,014 m/zmass range for the first cycle and 402-
1,026 m/zfor the second cycle™. DIA scans were performed with 28%
normalized HCD collision energy, 30,000 resolution, 145-1,450 m/z
scanrange, 1,000% normalized AGC and 54 ms maximum injection
time. This was followed by a parent MS' ion scan (resolution 60,000,
scanrange 350-1,050 m/z,100% normalized AGC target, auto maximum
injection time).

DSSO-crosslinking samples were analysed using an EASY-nLC1200
system coupled to an Orbitrap Fusion Lumos mass spectrometer with
FAIMS Pro (RRID:SCR_020562). A 90-min linear gradient from 5% t020%
ACNin80 min, to 25% at 83 min, to 40% at 85 min, and to 98% for 2 min
in 0.125% formic acid was used at 0.5 pl min™. An HCD-MS2 strategy
was used*, in which the MS! spectrum was acquired on the Orbitrap
(resolution120,000, scan range 400-1,600 m/z, standard AGC target,
auto maximum injection time). Peptides with charge states 4-8 were
fragmented by HCD at 21, 27 and 33% normalized collision energy. MS?
was acquired on the Orbitrap (resolution 60,000, isolation window
1.6 m/z, auto scan range, 200% normalized AGC, 120 ms maximum
injection time). FAIMS Pro was set to -50, =60 and =75 CV (ref. 134).

DHSO- and DMTMM-crosslinking samples were analysed using a
Vanquish Neo UHPLC system coupled to an Orbitrap Ascend Multi-
Omics Tribid mass spectrometer with FAIMS Pro. A 90-min linear gradi-
ent from 5% to 20% ACN in 80 min, to 25% at 83 min, to 40% at 85 min,
and to 98% for 2 minin 0.125% formic acid was used at 0.3 pl min™.

MS!spectrum was acquired on the Orbitrap (resolution 120,000, scan
range 350-1,600 m/z, standard AGC target, auto maximum injection
time). Peptides with charge states 4-8 were fragmented by HCD at 21, 27
and 33% normalized collision energy. MS?was acquired on the Orbitrap
(resolution 60,000, isolation window 1.4 m/z, auto scan range, 200%
normalized AGC, 120 ms maximum injection time). FAIMS Pro was set
to-50,-60and -75 CV.

Proteomics data analysis

TMT-MS datawere processed with MSconverter® and searched using
Comet"® against the human canonical proteome (UniProt Swiss-Prot
2021-11), including reverse sequences and common contaminants.
Experiments containing variants of TMEM230 were searched against
the human canonical proteome (UniProt Swiss-Prot 2024-01) including
an additional sequence of TMEM230 with such variants. Peptide mass
tolerance was set to 50 ppm and fragment ion tolerance to 0.02 Da.
These wide mass tolerance windows were chosen to maximize sensitivity
in conjunction with Cometsearches and linear discriminant analysis'”.
TMTpro labels were set as fixed modification on lysines and peptide
N terminus (+304.207 Da), carboxyamidomethylation on cysteines
(+57.021 Da) as a fixed modification, and oxidation on methionine
residues as a variable modification. Linear discriminant analysis was
performed®™® and peptide-spectrum matches (PSMs) were filtered to 2%
FDR™. TMT-reporter ions were quantified by picking the most intense
peaks within 0.003 Da around the theoretical m/z, and corrected for
isotopicimpurity. Only PSMs with at least 200 total signal-to-noise ratio
acrossall TMT channels and 50% precursor isolation purity were used™°.
Datasummarization, normalization and statistics were performed using
MSstats'"*2, Peptide-level normalization and imputation were enabled,
and the protein summarization method was set to ‘LogSum’ for Endo-IP
experiments fromiNeurons and to ‘msstats’ for all other experiments.
The threshold used to consider significantly regulated proteins was
0.05 g-value and 1.5-fold change. For PNS and Endo-IP experiments
withiNeurons, three biological replicates per condition were analysed
(Supplementary Tables 4 and 5). For protein IP experiments iniNeurons,
four biological replicates were analysed per group (Supplementary
Table 5), except for one dataset with some groups containing two rep-
licates given the limitation of the maximum number of TMT channels
(Supplementary Table 4). Synaptic Gene Ontology enrichment analysis
was performed using SynGO™ (https://www.syngoportal.org/#) using
all proteins identified in each experiment as background.

DIA-MS datawere analysed using DIA-NN (version 1.8) as previously
described™*™, Data were converted to mzML using MSconvert'* with
the Demultiplex filter set to Overlap Only (10-ppm mass error). A spec-
tral library was generated from the complete human proteome (UniProt
2022-05) withaprecursor m/zrange of 350-1,050, precursor charge 2-5
and fragmention m/zrange 145-1,450. Carbamidomethylation, oxida-
tion and N-terminal excision were included as modifications. Search
was performed with 10-ppm mass accuracy, match-between-runs
enabled and robust LC (high precision) quantification strategy. For
Endo-IP protocol optimization samples (Extended Data Fig. 1li-1and
Supplementary Table 1), downstream analysis was performed using
MS-DAP™¢, Only peptides quantified in all three replicates per condition
(n=3) wereincluded. Data were normalized with variance stabiliza-
tion normalization and mode-between protein methods. The DEqQMS
algorithm was selected for statistical analysis, using a significance
threshold of 0.01 FDR-adjusted P-value threshold and log,[fold change]
of 3 (Supplementary Table 1). For BN co-fractionation experiments,
protein complex analysis was performed with PCprophet®. Three
biological replicates were analysed with default parameters, the pro-
vided core complexes were used as database and the BN markers were
used for collapsing hypothesis to common complexes. As previously
described’, co-elution scores (from rf output table) were assigned to
each protein pair of the complex and used for downstream analysis.
Only complexes withaminimum peak elution at 67-kDaand amaximum


https://www.syngoportal.org/#

Article

of 25 proteins per complex were considered. In addition, we considered
onlyinteractions withascoreofatleast 0.7 intworeplicatesto recover
only high-confidence candidate interactions (Supplementary Table 2).
These parameters were selected on the basis of the optimal recovery
of proteininteractionsreported in BioPlex” (Extended DataFig. 2b,c).
Elution profiles and Pearson’s correlation heat map of selected protein
complexes based on CORUM" were generated using the meannormal-
ized elution profile across replicates (excluding outliers as the most
dissimilar fraction to the median).

DSSO crosslinking MS data were analysed using Thermo Proteome
Discoverer (version2.5.0.400; RRID:SCR_014477) with the XlinkX mod-
ule”8 Data were searched against the human canonical proteome
(Uniprot Swiss-Prot 2022-05). MS? acquisition strategy was selected
with 10-ppm precursor mass tolerance, 20 ppm FTMS fragment mass
tolerance and 0.6 DalTMS fragment mass tolerance. Carbamidometh-
ylationwasincluded as a fixed modification; oxidation and N-terminal
acetylation were included as variable modifications. A maximum of
three trypsin miscleavages was allowed, and the minimum peptide
length was set to 5. FDR threshold was set to 5% and only crosslinks
with XlinkX score >40 were considered for downstream analysis (Sup-
plementary Table 2). Protein domain information of all crosslinked
positions was retrieved from UniProt (Fig. 1f) and copy numbers
were obtained from ref. 18 (Extended Data Fig. 2f). Yeast two-hybrid
data were retrieved from ref. 29 and IP data from BioPlex 3.0 (ref. 28;
Extended Data Fig. 2j). The co-fractionation of crosslinked protein pairs
in the BN dataset was evaluated using SECAT™, Positive and negative
interaction networks from CORUM were used as provided. The target
network was generated from all of the crosslinking interactions for
proteinsidentified in both crosslink and BN. The following parameters
were used to ensure the generation of scores for all target protein pairs:
peak picking was set to none, monomer threshold factor to 1, minimum
abundance ratio to 0, maximum shift to 48 and maximum g-value of
1. SECAT P values were used for comparison with crosslink data and
previously reported interactions from STRINGDB, CORUM and BioPlex
3.0 asdescribed above (Extended Data Fig. 21-n).

DHSO and DSSO crosslinking MS data were analysed using Scout
(version1.6.2)*. Datawere searched against the human canonical pro-
teome (Uniprot Swiss-Prot 2022-05) with default parameters, includ-
ing 10-ppm error on the MS' level and 20-ppm error on the MS? level.
Carbamidomethyl (mass 57.02146) and MMTS (mass 45.987721) were
included as fixed modifications for DSSO- and DHSO-crosslinked sam-
ples, respectively; oxidation and N-terminal acetylation were included
as variable modifications. A maximum of three trypsin miscleavages
and two variable modifications was allowed and the minimum peptide
lengthwas set to 6. The FDR threshold was set to 1% at all levels without
separation of crosslink types. The ‘residue pairs’ table was used for
downstream analysis (Supplementary Table 2).

DMTMM crosslinking MS data were analysed using pLink2 (version
2.3.11, RRID:SCR_000084)™°. Data were searched against the human
canonical proteome (Uniprot Swiss-Prot 2022-05) with 15-ppm precur-
sor mass tolerance and 20-ppm fragment mass tolerance. Methylthio(C)
wasincluded as afixed modification; oxidation and N-terminal acety-
lation were included as variable modifications. A maximum of three
trypsin miscleavages was allowed and the minimum peptide length
was set to 6. Filter tolerance was set to 10 ppm and separated FDR
threshold to 1% at the PSM level. Filtered crosslinked sites were used
for downstream analysis (Supplementary Table 2). DMTMM and DHSO
crosslinks were mapped to all possible protein interactions defined
by DSSO crosslinks considering that each DMTMM or DHSO crosslink
could matchmultipleinteractions owingto shared peptide sequences.

EndoMAP.vl network analysis

APPInetwork was generated from all protein pairs identified by cross-
linkand BN. The network was initially filtered to remove proteins pre-
sentinthe native molecular weight markers (spiked-in proteins used as

referencein BN experiments), EEAl (overexpressed and used asahandle
for the endosome affinity purification), UBC (in most cases corresponds
toaprotein modification rather thanamember of a protein complex)
and keratins (common contaminant). Network characterization and
analysis was performed using theigraph R package (RRID:SCR_021238;
Extended Data Fig. 3a-c). Proteins were assigned to subcellular loca-
tionaccording to the following annotations: endosomal proteins from
our scoring method described above (Supplementary Table 1), Golgi
proteins (as curated inref. 140), lysosomal proteins (bonafide proteins
in Table S3 from ref. 151; bona fide and experimentally determined
proteinsin Table S2 and Table S12 from ref. 152), mitochondrial proteins
(fromMitoCarta3.0 (ref. 153)) and nuclear proteins (based on Uniprot,
proteins exclusively designated with nuclear-related terms such as
‘Nucleus’ and ‘Chromosome’). These annotations and the circlize R
package (RRID:SCR_002141) were used to generate the network chord
diagram (Extended Data Fig. 3d).

The network centred around endosomal proteins (or EndoMAP.v1)
was generated by filtering dubious interactions (that is, nuclear pro-
teins) and including only endosomal proteins (as defined by our scor-
ingmethod) and their directinteractors. Up to 8.5% of the endosomal
interactionsinvolved nuclear proteins (Extended Data Fig. 3d), which
may be considered questionable (therefore, were filtered out) and may
indicate false connectivity at the PPl level introduced by sample prepa-
ration. Second-order interactors of endosomal proteins were included
only when connected to atleast onedirectinteractor by crosslinkand/
ortwodirectinteractors by BN (Extended DataFig. 3e). The core com-
ponent of the network (that is, biggest module) was visualized using
Cytoscape v3.10.1(RRID:SCR_003032), and protein communities were
detected by unsupervised edge-betweenness analysis (Fig. 2a). Gene
Ontology (GO) enrichment analysis was performed for each commu-
nity using g:Profiler (RRID:SCR_022865) with the whole proteome as
background (Supplementary Table 2, including only significant GO
Cellular Component, GO Biological Process and CORUM terms with at
least two proteins). Path distance analysis between proteins assigned
to complexes was based on CORUM and GO:CC (only terms related to
protein complexes; Fig.3b and Extended Data Fig. 3f). Graph rewiring
with the same degree distribution (100 permutations) was used as a
randomized control (Fig. 3c). Disease over-representation analysis of
the endosomal proteome was performed on endosomal proteins as
defined by our scoring method and as annotated in GO (GO:0005768,
date December 2024). Enrichment analysis for the gene network (Dis-
GeNET)™* was performed as implemented in the DOSE R package.
Enrichment analysis for neurodegenerative disordersincluded autism
spectrumdisorders, epilepsy and severe neurodevelopmental disorder,
and schizophreniawas based onref. 155, and was performed using the
clusterProfiler R package (RRID:SCR_016884) with brain-expressed
genes as background. Path distance analysis between proteins linked
to neurodegenerative disorders was based on Diseases 2.0 (ref. 156;
2024-02 update; RRID:SCR_015664), Parkinson’s disease reviewed
genes'®and Parkinson’s disease genome-wide association studies™"*
(Extended Data Fig. 3j,k).

AF-M, AlphaLink2 and structural modelling

AF-M was run with ColabFold v1.5.2 (ref. 8; RRID:SCR_025453) on
40-GB A100 NVIDIA GPUs for all protein pairs identified by XL-MS
and three-clique combinations within EndoMAP.v1 (with a maxi-
mum of 3,600 amino acids in total). AF-M version 3 was used with
weights models 1, 2 and 4 with three recycles, templates enabled,
one ensemble, no dropout, and no AMBER relaxation. The multiple
sequence alignments supplied to AF-M were generated by the MMSeq
server (RRID:SCR_022962) with default settings (paired + unpaired
sequences). SPOC and contact sites were calculated as described pre-
viously?****, The quality of the predictions was considered acceptable
withaSPOC > 0.33 for pairwise predictions and at least two interfaces
with interface average models >0.5 for timer predictions. AlphaLink2



(https://github.com/lhatsk/AlphaLink) was performed as described
previously? usingintraprotein and interprotein DSSO crosslinks. Three
predictions for each protein pair were generated with AlphaLink2 by
using different seeds.

AIIPDB structures containing protein pairs identified by XL-MS were
retrieved by querying the PDB API for X-ray and cryogenic electron
microscopy structures with overall resolutions <3.5 A. PDB chains were
mapped to their corresponding UniProt identifiers with PDB SIFTS
API. Crosslinks were mapped onto the AF-M and PDB structures, and
crosslinked residues with a maximum Ca-Ca distance of 35 A were
considered to match the crosslinker constraints. For AlphaLink2, the
maximum Ca-Ca distance considered was 30 A for all crosslinkers,
amore stringent threshold as DSSO crosslinks were already used to
assist the prediction generation. For AF-M and AlphaLink2 predictions,
only crosslinked residues with both pLDDTs >70 were considered for
distance analysis. Crosslinks involving HSP90AAland HSP90OABI, which
presentalarge number of crosslinks, were excluded from the distance
distribution plotsin AlphaLink2 predictions (Extended Data Fig.4m-o)
to make the analysis more representative of the entire dataset.

The association of mTORC1-ragulator complex with V-ATPase was
modelled using HADDOCK2.4 web server'*® (RRID:SCR_019091). The
crosslinks identified between ATP6V1IC1-LAMPTOR2 and ATP6V1C1-
LAMPTOR4 were used as unambiguous restraints with an upper dis-
tance limit of 23 A and centre-of-mass restraints enabled. The complete
mTORC1-ragulator complex structure (PDB 7UXH)** was included with
selected subunits of V-ATPase owing to the limitation in the maximum
number of atoms (PDB 6WM2 chains I and J from ATP6V1E1, chains L
and M from ATP6V1G]L, chain O from ATP6VIC], chains 8 and 9 from
ATP6VOC)*. The hypothetical model with the best score compat-
ible with the expected membrane topology was selected (cluster 5;
Extended DataFig.11b). Structure images were generated with PyMOL
2.6.0 (RRID:SCR_000305). Allinput, parameter and output files are
available viaZenodo at https://doi.org/10.5281/zenod0.14679635.

Software and resources

The following software, packages and resources were additionally
used for analysis and visualization: Rstudio (2023.06.0 Build 421 withR
4.2.1,RRID:SCR_001905); R package ggplot2 (3.5.1, RRID:SCR_014601);
Rpackage RColorBrewer (1.1.3, SCR_016697); R package ggrepel (0.9.5,
RRID:SCR_016223); R package dplyr (1.1.4); R package FactoMineR (2.11,
RRID:SCR_014602); R package pheatmap (1.0.12, RRID:SCR_016418);
Rpackagefactoextra(1.0.7, RRID:SCR_016692); R package pROC (1.18.5);
R package reshape2 (1.4.4); R package igraph (2.1.2); R package tidyr
(1.3.1, RRID:SCR_017102); R package Ime4 (1.1.13.5, RRID:SCR_015654);
R package ggsignif (0.6.4, RRID:SCR_023047); R package viridis (0.6.5)
(RRID:SCR_016696); Adobe lllustrator (26.5); NIAID NIH BioArt Source.

Statistics and reproducibility

Sample size, number of replicates and statistical tests are indicated
in the figure legends and corresponding sections of the Methods.
Validation and representative experiments in Fig. 3d,h and Extended
DataFigs. 5c and 7g were performed once, those in Extended Data
Figs. 5e,h,k,m and 8c were performed twice, and those in Fig. 4g and
Extended Data Fig. 7f were performed three times, with similar results
inindependent experiments.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allthe MS proteomics data (289 .RAW files) have been deposited to the
ProteomeXchange Consortium viathe PRIDE repository (http://www.
proteomexchange.org/; project accessions PXD054684, PXD054728,

PXD059547 and PXD054765). The data, code, protocols and key lab-
oratory materials used and generated in this study are listed in a
Key Resource Table alongside their persistent identifiers at Zenodo
(https://doi.org/10.5281/zenodo.14180546 (ref. 161) and https://doi.
org/10.5281/zenodo.14180545 (ref. 162)).
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Extended DataFig.1|See next page for caption.



Extended DataFig.1|Endosomal proteome scoring method and
optimization oflarge-scale Endo-IP. a, Overview of datasets used for
endosomalscoring, including the number of proteinsidentified ineachand
across datasets, and the number of well-known endosomal proteinsidentified
intheindicated studies. b, Multiple correspondence analysis (MCA) showing
anoverview of therelationship among datasets froma. Eachnode representsa
dataset color-coded by isolation method and proportional size to the total
number of proteinsidentified. ¢, Bar plot depicting the number of proteins
identified across multiple datasets for several subcellular compartments.

d, Linegraphshowing the percentage of proteinsidentified across all 16 datasets
inaand their protein abundance in our Endo-IP experiments from HEK293 cells
(Supplementary Table 1) represented as loess (Locally Estimated Scatterplot
Smoothing) regression line and 95% confidence level interval band. f,g, Number
ofbait proteins, protein-proteininteractions (PPIs), and PPIs per proteinin
Bioplex? (panel f) and Open Cell (panel g) according to organelle assignment

(nnumber of proteinsin each category isindicated on top). For box plots, the
middleline correspondsto the median, the lower and upper end of the box
correspondrespectively to the firstand third quartiles, and the whiskers
extend fromthe box to1.5 times the inter-quartile range. h, Schematic of the
purification steps from Endo-IP to endosomal pellet used for complexomics.
i,j, Number of proteinsidentified (panel i) and abundance per compartment
(panelj) inendosomal pellet compared to the input (PNS), supernatant, or
NP40 eluate from the Endo-IP as depicted in panel h.k, Violin plot showing the
fold-change enrichment of proteins fromindividual organelle compartments
inendosomal pellets compared to input (PNS). 1, Volcano plot showing fold-
changes and FDR adjusted p-value for proteinsin endosomal pellets compared
toinput (PNS) (n =3 biologicallyindependent replicates). DEqQMS algorithm
was used for statistical analysis with multiple testing correction asimplemented
in**®. h, Images modified fromref. 44 (Copyright (2024) National Academy of
Sciences).
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Extended DataFig.2|See next page for caption.
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Extended DataFig.2|Application of correlation profiling and cross-linking
proteomics toendosomes purified by Endo-IP. a, Co-fractionation profiles
of selected protein complexes from BN-MS. b, Number of Bioplex interactions
identified by BN-MS compared to co-fractionation PCProphetscores. ¢, Number
of Bioplexinteractionsidentified using PCProphetineither2 or 3 replicates of
the Endo-IP BN-MS compared to the maximum number of proteins per complex
allowed inthe analysis. d, Box plot depicting the protein MS signal intensity in
Endo-IP compared to the number of DSSO cross-links identified for each protein
(nnumber of proteins in each categoryisindicated on top). e, Box plot depicting
the minimum protein MS signal intensity for PPIs identified by BN and DSSO
cross-linking compared to all proteinsidentified in Endo-IP (n number of
interactionsineach categoryisindicated ontop). f, Distribution of protein copy
number (log,,)*® for cross-linked proteins compared to the whole proteome.
g-i, Box plots depicting the protein copy number (g), number of interactorsin
BioPlex (h),and molecular weight (i) compared to the number of interprotein
DSSO cross-links identified for each protein (n number of proteinsin each

categoryisindicated ontop).j, Venn diagram showing the number of protein
pairsidentified by yeast two hybrid (YTH), Bioplex, and cross-linking proteomics
forthe sameset of proteins. k, Boxplot showing co-fractionation SECAT p-values
for cross-linked proteins identified by different number of DSSO cross-links
(nnumber ofinteractionsin each categoryisindicated ontop).l,m, Number
(panell) and rank (panel m) of cross-linked proteininteractions that have been
previously reported (or not) compared to their co-fractionation SECAT p-value
(Supplementary Table 2). SECAT was used for statistical analysis'**'7°.n, Overview
of proteininteractions within EndoMAP.vlincluding the method, organelle and
previousreports. o, Venndiagram showing the overlap of endosomalinteractions
between EndoMAP.vl and Bioplex for interactionsin which both proteins are
presentinboth datasets. Forallbox plot panels, the middle line corresponds to
the median, the lower and upper end of the box correspond respectively to the
firstand third quartiles, and the whiskers extend from the box to 1.5 times the
inter-quartilerange.
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Extended DataFig.3|EndoMAP.vlnetwork characterizationand
application of AlphaFold-M across DSSO cross-linked protein pairs.
a,Degreedistribution (number of edges per node) of the complete network.
b, Powerlaw log-log plot of the complete network showing the degree of a
node (number of edges) and the probability. ¢, Distribution of the shortest
pathdistances between all proteinsin the complete interaction network.

d, Distributionand number of PPIs within and between selected organelles
(Supplementary Table 2). e, Criteria for network filtering to create anintegrated
endosomal network (EndoMAP.vl, see METHODS). f, Mapping of known
protein complexes from CORUM™ onto the core components of the EndoMAP.
vlnetwork (Supplementary Table 2). g,h, DisGeNET enrichment analysis of
endosomal proteins as defined by our scoring method (panel g) and Gene
Ontology (GO:0005768, panel h). Top 15 categories by highest generatio are
depicted. Disordersrelated to the nervous systemare indicated in bold.
p-values by hypergeometric test were adjusted with Benjamini-Hochberg
correction. i, Enrichment analysis of the endosomal proteome within
several neurodegenerative diseases (LSD, Lysosomal Storage Disorders;
ALS, Amyotrophic Lateral Sclerosis, PD, Parkinson’s disease; ASD, Autism
Spectrum Disorders; DD/ID, epilepsy and severe neurodevelopmental
disorder).j, Mapping of neurodegenerative disease related proteins onto the
corecomponent of EndoMAP.vl network (see METHODS, Supplementary
Table 2). k, Distribution of shortest path distances within various classes of

neurodegenerative disease related proteins. Three different sources of disease
geneswereused toretrieve proteinsrelated to PD (see METHODS). I, Distances
between DSSO cross-linked lysines for AF-M predictions compared to structures
inthe PDB. Green and orange dots representinterprotein and intraprotein
cross-links, respectively. Filled and empty dots represent predictions with
SPOC>0.330rSPOC < 0.33, respectively. m, Distribution of Ca-Ca distances
(A) for intraprotein DSSO cross-linked lysines in all AF-M predictions compared
toalllysines. n, Distribution of Ca-Ca distances (A) for interprotein DSSO cross-
linked lysines inall AF-M predictions compared to all lysines. o, Distribution of
SPOCscoresandaverage pLDDT for predictions with SPOC > 0. Number of
interprotein DSSO cross-links evaluated and exceeding the cross-linker distance
restrainareindicated by point size and the color, respectively. p, Box plot
showing the distribution of SPOC scores relative to the number of DSSO cross-
links identified for eachinteraction (n number of interactionsin each category
isindicated ontop). The middleline corresponds to the median, the lower and
upper end of the box correspond respectively to the first and third quartiles,
and the whiskers extend from thebox to 1.5 times theinter-quartile range.

q,r, Distribution of Ca-Ca distances (A) for intraprotein (q) and interprotein (r)
DSSO cross-linked lysinesin AF-M predictions involving endosomal proteins
compared toall lysines. s, Distribution of Ca-Ca distances (A) for interprotein
DSSO cross-links reflecting predictions involving endosomal proteins with
SPOC > 0.33 (orange) and SPOC < 0.33 (red).
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Extended DataFig.4 | EndoMAP.vl extensionby AlphaLink2 and XL-MS
using DHSO/DMTMM cross-linkers. a, Overlap of DSSO cross-linking data
analyzed using XlinkX at 5% FDR compared to Scoutat1%FDR. b, Number of
proteininteractions based on DSSO cross-links identified with XlinkX and Scout
forknowninteractionsand across the selection criteria used in EndoMAP.v1
(i.e.filtering for AF-M score, endosomal protein and cross-link distance).
c,ipTMscores for AF-M compared to AlphaLink2 predictions. Color gradient
represents thescore difference; higher in AlphaLink2 (red) or AF-M (blue).

d, Distances between DSSO cross-linked lysines for AF-M compared to
AlphaLink2 predictions. Green and orange dots represent interprotein and
intraprotein cross-links, respectively. e-i, Individual and overlay AF-M and

AlphaLink2 predictions for several protein pairs (see Supplementary Text).
DSSO and DHSO/DMTMM interprotein cross-links are indicated withred and
cyanlinesand arrowheads, respectively.j, Mapping DHSO/DMTMM cross-
linking datato the proteins and interactions identified with DSSO. k, Pie chart
showing the number of protein pairsidentified withboth DMTMM and DSSO
(top) or DHSO and DSSO (bottom).1, Identified DSSO (red) and DHSO/DMTMM
(cyan) cross-links mapped into the endolysosomal V-ATPase (PDB:6WM2)*°.
m,n, Distribution of Ca-Ca distances (A) for intraprotein (m) and interprotein (n)
cross-linked residuesin AlphaLink2 predictions. o, Distribution of Ca-Cax
distances (A) for interprotein cross-links reflecting predictions with SPOC > 0.33.
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Extended DataFig. 5|See next page for caption.




Extended DataFig. 5|Interface variants disruptinteraction of TMEM230
withendosomal P4 lipid flippases ATP11B and ATP8A1/2. a, Individual and
overlay AF-M and AlphaLink2 predictions for TMEM230 and ATP11B. AF-M:
TMEM230 (light blue), ATP11B (cyan), cross-link (red line and arrowhead).
AlphaLink2: TMEM230 (dark blue), ATP11B (teal), cross-link (wheat line and
arrowhead). b, Overlay of yeast DNF1-LEM3 structure (PDB:7DRX) in the EP2
conformation with AF-M prediction for ATP11B-TMEM30A-TMEM230.c, Co-
precipitation of Flag-ATP11B and TMEM30A-V5with HA-TMEM230. Theindicated
plasmids were transfected into HEK293 cells and a-HA immunoprecipitates or
input samples were immunoblotted for the indicated proteins. Black dots
indicate proteins expressed ineachsample.d, Sequence validation of
TMEM2307 and TMEM230*2'" clones in HAAVSTNCNZFlag EEAL ce [ (H9-Flag-EEAL),
showing thelocation of the sgRNA used (green) and base pairs deleted to create
anoutof frame mutation and point mutation, respectively. e, Immunoblot
oftotal celllysates from the indicated H9-Flag-EEA1 cell lines probed with
o-TMEM230. The X121W mutation adds a six-residue extension (WHPPHS),
which canbe detected as aband with slightly higher molecular weight. Stain-
free gelwas used toindicate equalloading of extracts. f, Volcano plots (log,
FCrelative to TMEM2307 cells) of TMEM230 immunoprecipitationsin H9-
TMEM2307 iNeurons with or without lentiviral expression of WT and interface

variant HA-TMEM230 proteins. g, Mass spectrometry (MS) TMT reporter signal
for ATP11Band TMEM30Ain the indicated TMEM230 variantimmunoprecipitation
fromiNeurons. Dots indicate individual biological replicates (n=2, exceptn=3
for Control given the limitation of the maximum number of TMT channels).

h, Immunoblots of total cell extracts from TMEM230” iNeurons transduced
with lentiviruses expressing the indicated variants of HA-TMEM230 protein.
Stain-free gel was used as loading control. i, AF-M prediction fora TMEM230-
ATP8A1-TMEM30A complex (Y29, R78, and C-terminal D120-D121, purple space
fill). Thelocation of a cross-link between ATP8Aland TMEM30A isindicated by
theredline and arrowhead. ipTM = 0.74 for ATP8AI-TMEM230 prediction.

j, Volcano plot for Endo-IP proteomic analysis from H9-Flag-EEA1iNeurons
(21days) (n=3biologically independentreplicates). Proteins annotated as
endosomal (green), lysosomal (blue), or plasma membrane (PM, orange) are
indicated. k, Immunofluorescence microscopy showing the colocalization of
Flag-EEA1(green) with RABS5 (magenta) iniNeurons from H9-Flag-EEA1 cells.

1, Violin plot showing the fold-change enrichment (log,) of proteins from
individual organelle compartments (color-coded as panelj) in Endo-IP samples
from H9-Flag-EEAliNeurons (day 21). m, Immunoblots of Endo-IP orinput
samples (PNS) from H9-Flag-EEA1iNeurons and untagged H9 control (21 days).
Blots were probed with the indicated antibodies.
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Extended DataFig. 6 | Proteomic profiling of postnuclear supernatant
(PNS) and Endo-IP from TMEM230 mutantiNeurons. a,b, Volcano plots of
PNS proteomic analysis from TMEM2307 (panel a) and TMEM230*2¥ (panel b)
iNeurons compared to WT (day 21) (n =3 biologicallyindependent replicates).
¢, Violin plot showing the fold-change enrichment (log,) of proteins from
individual organelle compartments in PNS from TMEM2307 and TMEM230%*'2'V
iNeurons compared to WT (day 21).d, SynGO location enrichment analysis

of proteins significantly regulated in PNS from TMEM230**" iNeurons
(Supplementary Table 4). The indicated categories were significantly enriched
(-log,og-value). ,f, Volcano plots of Endo-IP proteomic analysis from TMEM230"
(panel e) and TMEM230%?'¥ (panel f) iNeurons compared to WT (day 21) (n=3
biologicallyindependentreplicates). g, Heatmap showing the abundance
fold-changes (log,) for all significantly regulated proteins in Endo-IPs from
TMEM2307 or TMEM230**?'ViNeurons (21 day) compared to WT. Synaptic
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proteins annotated in SynGO (see METHODS) are indicated in bold. Asterisks
indicate significantly regulated proteins (q-value < 0.05 and fold-change > 1.5).
Abundance fold-changesin PNS are also indicated, except for proteins not
detected (nd). h, Heatmap for the abundance fold-changes (log,FC) of selected
proteinsin PNS and Endo-IPs from TMEM2307 or TMEM230*?"ViNeurons
(21day) compared to WT. Asterisks indicate significantly regulated proteins
(g-value < 0.05and fold-change >1.5) and nd for proteins not detected.

i, Summary of pairwise AF-M predictions harboring candidate disease variants
within2amino acids of the interface forendosomal and non-endosomal proteins.
j,Candidate disease variants at the interaction interface of pairwise protein
AF-Mpredictions. Predicted aligned error plots (left), predicted structures
withipTMs (center left, interprotein DSSO cross-links indicated by red lines)
and close-up view of disease variant residues (yellow) at theinteractioninterface
(center right, and right; dotted lines indicate predicted hydrogen bonds).
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b, Individual and overlay AF-M and AlphaLink2 predictions for CLCN3-TMEM9. orinputsamples wereimmunoblotted with theindicated antibodies. Loading
AF-M: TMEMO (dark blue), CLCN3 (cyan), cross-link (red bar and arrowhead). controls as stain-free gels are shown. Black dots indicate proteins expressed in
AlphaLink2: TMEMO (light blue), CLCN3 (teal), cross-link (wheat bar and eachsample. h,i, Sequence validation of HO TMEM9” cells, showing the location
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Extended DataFig. 8| Proteomic profiling of postnuclear supernatant
(PNS) and Endo-IP from TMEM9” and TMEM9/9B"*°iNeurons. a, Volcano
plots for PNS (post-nuclear supernatants) proteomic analysis from TMEM9”
and two clones of TMEM9/9B"*°iNeurons (day 21) compared toWT (n=3
biologicallyindependent replicates). b, Volcano plots for Endo-IP proteomic
analysis from TMEM9” and one clone of TMEM9/9B°*° iNeurons compared to
WT (n=3biologicallyindependent replicates). c,Immunoblots ofinput and

Endo-IP samples from the experiment outlined in Fig. 4i. Blots were probed
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withtheindicated antibodies. d, Heatmap showing the abundance fold-changes

(log,) for all significantly regulated proteinsin Endo-IPs from TMEM9” and
TMEM9/9B*° iNeurons (day 21) compared to WT. Asterisks indicate significantly
regulated proteins (q-value < 0.05 and fold-change >1.5). Abundance fold-changes

inPNSarealsoindicated, except for proteins not detected (nd).
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Extended DataFig. 9|See next page for caption.
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Extended DataFig.9|3-way Clique and higher order AF-M predictions
reveal extensive SNARE interactions and assemblies. a, Pairwise (top) and
3-way clique (bottom) AF-M predictions and associated DSSO cross-links for
components of the Class Il PI3K complex. Identified cross-links are also mapped
ontothecryo-EMstructure of the PI3K complex (PDB:7bl1) (lower right).

b, Overlay of AF3 predictions of a VPS29-VPS35-VPS26A-RAB7A®™ complex and
associated DSSO cross-links withaRAB7A®™ crystal structure (PDB:1T91).

¢, Summary of cross-link and AF-M predictions for SNARE components and
theirinteractors. R-SNARE, Q-SNARE, known and candidate regulators and
RAB proteins found with cross-links within EndoMAP.vl are shown. Lines
indicate one or more cross-links and are shown indistinct forms to facilitate
visualization of connections. Colored dotsindicate SPOCscore for each AF-M
pairwise prediction.d, Cross-links and pairwise AF-M predictions for “core”
SNARE components VAMP3,STX7,STX8, and VTI1B.ipTM and SPOC scores are
indicated for pairwise combinations. e, Examples of asubset of 3-way clique
predictions and associated cross-links involving core SNARE components
aswellasNAPA. f, Core SNARE AF-M predictions and associated cross-links.

The prediction resembles a post-vesical fusion-like conformation. g, AF-M
predictions and associated cross-links for SNARE association with soluble
fusions factors. h, Predicted interactions and cross-links for association of
VPS16 with either STX8 or STX8in the core SNARE complex. i, Core SNARE
assembly predictions and associated cross-links with candidate interactors
SCAMP1and SCFDL1.j, Summary of physicalinteractionsinvolving SCAMP
proteinsin OpenCell and cross-links identified in our study. Intraprotein
cross-links are not shown (see Supplementary Table 2). k, Summary of physical
interactions involving PTTG1IP proteinsin OpenCell"? and cross-links identified
inourstudy. 1, AF-M prediction for tetrameric SNARE complex composed of
VTI1B,STX7,STX8,and VAMP7.m, Pentameric prediction for VTI1B, STX7,
STX8, and VAMP7 together with PTTG1IP. Grey rectangles represent the
transmembrane section of the complex. Left, cross-links not shown; Right,
cross-links shown. n, Pentameric AF3 prediction for VTI1B, STX7,STX8, and
VAMPS8 together with PTTG1IP. DSSO and DHSO/DMTMM interprotein cross-
links areindicated withred and cyanlines and arrowheads, respectively.
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Extended DataFig.10 | Endosomal Regulatory Proteins, Channels, Cargo,
and Trafficking Complex AF-MPredictions. a, Pairwise AF-M predictions and
associated cross-links for two pairs of RABs with high scoring predictions.

b,c, Pairwise AF-M predictions and associated cross-links for selected RABGEF
complexes presentin EndoMAP.v1 (panel b), and foraRAB11A-SH3BP5 complex
(panel ¢) overlayed witha previously determined structure of the complex
(PDB:6DJL).d, Pairwise AF-M prediction and associated cross-links for a
RABS8A-SYTL4 (synaptotagmin-like) Snare complex. e-g, AF-M predictions
and associated cross-links for selected channel/transporter assembliesin
EndoMAP.v1. LRRC8 proteins (panel e) form hexamers and are components

of volume regulated anion channelsimportant for cell volume homeostasis.
OSTMI-CLCN7 (panelf) isan endolysosomal voltage-gated channel mediating
exchange of chloride against protons and is known to form a heterotetramer.
CLCN7 was found cross-linked to RMC1 (panel g), a subunit of the CCZ1-MON1
GEF for RAB7 on endolysosomes. h, Pairwise AF-M predictions for cross-link
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containing AP1components AP1Gland either AP1S1or AP1S2 (left) and
tetramer AF-M prediction for AP1G1-AP1B1-AP1M1and either AP1S10or AP1S2
(upper panel). Pairwise and 3-way clique predictions for AP2 components
AP2M1, AP2B1, or AP2A2 (lower panel). i, Pairwise predictions and associated
cross-links for ESCRT and ubiquitin (Ub)-related modules within EndoMAP.v1.
j, Pairwise predictions and associated cross-links for INSR and IGF1R. k, Pairwise
AF-Mpredictions and associated cross-links for selected HOPS complex
components (left) and a 3-way clique prediction (right) that maintains
compatible cross-link distances. 1, Pairwise predictions and associated cross-
links for the FLOT1/2 complex that participates as a scaffolding protein within
caveolar membranes, and the ITSN1-EPS15L complex that links endosomal
membrane trafficking with actin assembly machinery. For all panels, DSSO
and DHSO/DMTMM interprotein cross-links areindicated with red and cyan
lines and arrowheads, respectively. Intraprotein cross-links are not shown
(seeSupplementary Table 2).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX [0 O OX O O0Os

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Orbitrap Eclipse Tribrid Mass Spectrometer (RRID:SCR_020559) - Thermo Fisher Scientific
Orbitrap Fusion Lumos Tribrid Mass Spectrometer (RRID:SCR_020562) - Thermo Fisher Scientific
Orbitrap Exploris 480 Mass Spectrometer (RRID:SCR_022215) - Thermo Fisher Scientific
BioRad ChemiDoc Imaging System
Yokogawa CSU-X1 spinning disk confocal on a Nikon Eclipse Ti-E motorized microscope and a Plan Apochromat 100x/1.45 N.A oil-objective
lens
Hamamatsu ORCA-Fusion BT CMOS camera (6.5 um2 photodiode, 16-bit)
Illumina MiSeq (RRID:SCR_016379)
Sony Biotechnology SH800S Cell Sorter (RRID:SCR_018066)

Data analysis XlinkX module implemented in Proteome Discoverer (version 2.5.0.400)
Comet (2019.01) (PMID: 23148064)
NIS-Elements image acquisition software (5.21.03 Build 1489)
Scout v.1.6.2; https://github.com/diogobor/Scout/releases/tag/1.6.2
AlphaLink: Integrating crosslinking MS data into OpenFold (V1.0); https://github.com/Ihatsk/AlphaLink
JACOP plugin for Imagel/Fili (https://imagej.net/Fiji)
BioRad Image Lab software (version 6.1.0)
MSConvert (3.0.22317) (PMID: 23051804)
MSstats (PMID: 36622173)
DIA-NN (version 1.8) (PMID: 31768060)
MS-DAP (PMID: 36541440)
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PCprophet (PMID: 33859439)

SECAT (PMID: 37182203)

g:Profiler (PMID: 27098042)

Cytoscape v3.10.1

ColabFold v 1.5.2 (PMID: 35637307)
HADDOCK?2.4 web server (PMID: 38886530)
PyMOL 2.6.0 (https://www.pymol.org/)
Rstudio (2023.06.0 Build 421) + R(4.2.1)
R package: ggplot2 (3.5.1)

R package: RColorBrewer (1.1.3)

R package: ggrepel (0.9.5)

R package: dplyr (1.1.4)

R package: FactoMineR (2.11)

R package: pheatmap (1.0.12)

R package: factoextra (1.0.7)

R package: pROC (1.18.5)

R package: reshape? (1.4.4)

R package: igraph (1.3.5)

R package: tidyr (1.3.1)

R package: Ime4 (1.1.13.5)

R package: ggsignif (0.6.4)

R package: viridis (0.6.5)

R package: BiomaRt (2.54.1)

R package: circlize (0.4.16)

R package: DOSE (3.24.2)

R package: clusterProfiler (4.6.2)

Adobe lllustrator (26.5)

Code generated here: (https://github.com/harperlaboratory/EndoMAP)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All the mass spectrometry proteomics data (289 .RAW files) have been deposited to the ProteomeXchange Consortium via the PRIDE repository (http://
www.proteomexchange.org/; project accession: PXD054684, PXD054728, PXD059547 and PXD054765). The data, code, protocols, and key lab materials used and
generated in this study are listed in a Key Resource Table alongside their persistent identifiers at Zenodo (10.5281/zenodo.14180546).

All AF-M and Alphalink2 predictions can be downloaded from https://endomap.hms.harvard.edu (RRID:SCR_026690) and have also been deposited at Zenodo
(10.5281/zeno0do.14447604 and 10.5281/zenodo.14632928). Input/output files used for modeling mTORC1-Ragulator-VATPase complex using HADDOCK2.4 have
been deposited in Zenodo (10.5281/zenodo.14679635). Raw imaging data has been deposited in Zenodo (10.5281/zen0do0.14826176 and 10.5281/
zenodo.14828025).

We used canonical protein entries from the Human reference proteome database in our study (UniProt Swiss-Prot release 2021-11, 2022-05 and 2024-01; https://
ftp.uniprot.org/pub/databases/uniprot/previous_major_releases/).

Full version of all gels and blots are provided in Sl Fig. 1. Source data is provided in Sl when not already available in Supplementary Tables.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design; whether sex and/or gender was determined based on self-reporting or assigned and methods used.

Provide in the source data disaggregated sex and gender data, where this information has been collected, and if consent has
been obtained for sharing of individual-level data, provide overall numbers in this Reporting Summary. Please state if this
information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructedy/relevant variables
groupings (for example, race or ethnicity should not be used as a proxy for socioeconomic status).
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
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Please provide details about how you controlled for confounding variables in your analyses.
Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed. The sample size for each experiment is indicated in figures, legends and methods section. Number
of biological replicates for TMT-based proteomic experiments was determined given the limitation of the available TMT channels. Extensive
work in the field has shown that this approach provides the necessary statistical significance. E.g. An et al Systematic quantitative analysis of
ribosome inventory during nutrient stress. Ordureau A, Kraus F, Zhang J, An H, Park S, Ahfeldt T, Paulo JA, Harper JW. Temporal proteomics
during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy. Mol Cell. 2021 Dec
16;81(24):5082-5098.e11. doi: 10.1016/j.molcel.2021.10.001.

Data exclusions  No data were excluded from the analyses.

Replication All attempts of replication were successful. Most experiments were replicated three times and the number of biological replicates is provided
for each experiment in the figure legend and Statistics and Reproducibility methods section.

Randomization | Most experiments do not require randomization since either no group comparison was performed or samples were analyzed simultaneously
(TMT-based proteomics). For DIA-based proteomics, the experiments were performed in randomized blocks.

Blinding Blinding was not relevant in this study since either no group comparison was performed or samples were analyzed simultaneously (TMT-
based proteomics).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

[ 1|X Antibodies [] chip-seq

|:| |Z Eukaryotic cell lines |Z |:| Flow cytometry

X |:| Palaeontology and archaeology |:| MRI-based neuroimaging
X |:| Animals and other organisms

XI|[] Clinical data

X |:| Dual use research of concern

XI|[] Plants

Antibodies

Antibodies used FLAG (Sigma-Aldrich, F1804; RRID:AB_262044)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
HA (Cell Signaling Technology, 3724; RRID:AB_353989)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
V5 (Invitrogen, 14-6796-82; RRID:AB_10718239)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
TMEM230 (Origene, TA504888; RRID:AB_2622676)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
LAMP1 (Cell Signaling Technology, D2D11; RRID:AB_2927691)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
RABS (Cell Signaling Technology, C8B1; RRID:AB_2300649)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
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CLR (ProteinTech, 10292-1-AP; RRID:AB_2314206)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence

Golgin 97 (ProteinTech, 12640-1-AP; RRID:AB_2115315)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
VDACI (ProteinTech, 55259-1-AP; RRID:AB_10837225)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
CLCN3 (Cell Signaling Technology, 13359S; RRID:AB_2486248)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
GFP (Thermo Scientific, a10262; RRID:AB_770014)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence

mCherry (Thermo Scientific, M11217; RRID:AB_2536611)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
EEA1 (Cell Signaling Technology, C45B10; RRID:AB_2221630)Dilution: 1:1,000 for immunoblotting, 1:400 for immunofluorescence
Anti-rabbit immunoglobulin-G (IgG) horse radish peroxidase (HRP) conjugate (BioRad, 1706515; RRID:AB_11125142)Dilution: 1:1,000
for immunoblotting, 1:400 for immunofluorescence

Anti-mouse IgG HRP conjugate (BioRad, 1706516; RRID:AB_11125547)Dilution: 1:1,000 for immunoblotting, 1:400 for
immunofluorescence

Goat anti-Chicken IgY (H+L), Alexa Fluor 488 (Thermo Scientific, A-11039; RRID:AB_2534096)Dilution: 1:1,000 for immunoblotting,
1:400 for immunofluorescence

Goat anti-Rat IgG (H+L) Cross-Adsorbed, Alexa Fluor 555 (Thermo Scientific, A-21434; RRID:AB_2535855)Dilution: 1:1,000 for
immunoblotting, 1:400 for immunofluorescence

Goat anti-Rabbit 1gG (H+L) Cross-Adsorbed, Alexa Fluor 647 (Thermo Scientific, A-21244; RRID:AB_2535812)Dilution: 1:1,000 for
immunoblotting, 1:400 for immunofluorescence
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Validation FLAG, HA, V5 and TMEM230 were validated by immunoblotting using cells with the target gene tagged or deleted by CRISPR (see
Figure 3d, 3h, Extended Data Figure 5c, 5e, 5h, 5m, 7g, 8c). Validation and publications for other antibodies were provided by the
suppliers.

FLAG antibody was validated for highly sensitive and specific detection of FLAG fusion proteins by immunoblotting (WB),
immunoprecipitation (IP), immunohistochemisty (IHC), immunofluorescence (IF) and immunocyotchemistry (ICC) (https://
www.sigmaaldrich.com/US/en/product/sigma/f1804).

HA antibody was validated for WB, IHC, IP, IF, Flow cytometry (FC) and ChIP (https://www.cellsignal.com/products/primary-
antibodies/ha-tag-c29f4-rabbit-mab/3724).

V5 antibody application was validated for recombinant proteins containing a V5 epitope tag in WB and ICC/IF (https://
www.thermofisher.com/antibody/product/V5-Tag-Antibody-clone-TCM5-Monoclonal/14-6796-82).

TMEM230 was additionally tested by the vendor in WB, IF and FC (Origene, TA504888).

LAMP1 antibody was tested by the vendor and a large body of literature for WB, IP, IHC, IF and FC (https://www.cellsignal.com/
products/primary-antibodies/lamp1-d2d11-xp-rabbit-mab/9091).

RABS antibody detects endogenous levels of total Rab5A, Rab5B and Rab5C protein in WB and ICC (https://www.cellsignal.com/
products/primary-antibodies/rab5-c8b1-rabbit-mab/3547).

CLR antibody was tested for application in WB, ICC and FC and validated in several publication with KD/KO controls (https://
www.ptglab.com/products/CALR-Antibody-10292-1-AP.htm).

Golgin 97 antibody was tested by vendor for application in WB, ICC, IF and FC (https://www.ptglab.com/products/GOLGA1-
Antibody-12640-1-AP.htm).

VDAC1 antibody was tested for application in WB, IHC, IF and FC and validated in several publication with KD/KO controls (https://
www.ptglab.com/products/VDAC1-Antibody-55259-1-AP.htm).

CLCN3 antibody recognizes endogenous levels of total CLCN3 protein in WB, IP and IF (https://www.cellsignal.com/products/primary-
antibodies/clcn3-d8y5g-rabbit-mab/13359).

GFP antibody specificity was demonstrated by detection of different targets fused to GFP tag in transiently transfected lysates, and
tested for application in WB, ICC and IF (https://www.thermofisher.com/antibody/product/GFP-Antibody-Polyclonal/A10262).
mCherry antibody was extensively validated by the vendor and publications for WB, IHC, IF, FC and IP (https://
www.thermofisher.com/antibody/product/mCherry-Antibody-clone-16D7-Monoclonal/M11217).

EEA1 antibody detects endogenous levels of total EEA1 protein and is validated for WB, ICC, IF and IP (https://www.cellsignal.com/
products/primary-antibodies/eeal-c45b10-rabbit-mab/3288).

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK293 and HEK293T cells (RRID:CVCL_0045). From ATCC (#CRL-3216 and #CRL-1573).
HEK293EL (RRID:CVCL_COI7). Generated by us in a previous study (PMID: 36245040).
SUM159PT (RRID:CVCL_5423). Gift from Tobias Walther (Memorial Sloan Kettering). Bioivt HUMANSUM-0003006
H9 hESC Wicell WA9 (RRID:CVCL_9773).
H9 AAVS1-TRE3G-NGN2 3xFLAG-EEAT (RRID:CVCL_D1KV). Generated by us in a previous study (PMID: 39636867).

Authentication ATCC preforms quality testing to ensure authentication of the HEK293T cell line using Short Tandem Repeat Analysis (STR).
H9 ES cells (from WiCell) are authenticated by WiCell using G-band karyotyping and Short Tandem Repeat Analysis (STR).
Genetically edited H9 hESCs were confirmed by karyotyping. Successful conversion of stem cells to NGN2 induced neurons
was confirmed by mass spectrometry and microscopy analysis.

Mycoplasma contamination All cell lines tested free of mycoplasma using Mycoplasma Plus PCR assay kit (Agilent).

Commonly misidentified lines  none
(See ICLAC register)




Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied: ) )
DPescribe-any-atithentication-proceduresforeach-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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