Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards more effective nature-based climate solutions in global forests

Abstract

Terrestrial ecosystems could contribute to climate mitigation through nature-based climate solutions (NbCS), which aim to reduce ecosystem greenhouse gas emissions and/or increase ecosystem carbon storage. Forests have the largest potential for NbCS, aligned with broader sustainability benefits, but—unfortunately—a broad body of literature has revealed widespread problems in forest NbCS projects and protocols that undermine the climate mitigation of forest carbon credits and hamper efforts to reach global net zero. Therefore, there is a need to bring better science and policy to improve NbCS climate mitigation outcomes going forward. Here we synthesize challenges to crediting forest NbCS and offer guidance and key next steps to make improvements in the implementation of these strategies immediately and in the near-term. We structure our Perspective around four key components of rigorous forest NbCS, illuminating key science and policy considerations and providing solutions to improve rigour. Finally, we outline a ‘contribution approach’ to support rigorous forest NbCS that is an alternative funding mechanism that disallows compensation or offsetting claims.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key criteria for effective climate mitigation in forests.
Fig. 2: Key fluxes that mediate climate benefits of forests.

Similar content being viewed by others

References            

  1. Friedlingstein, P. et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  ADS  Google Scholar 

  2. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. 114, 11645–11650 (2017). This paper is a seminal global synthesis on the potential of nature-based climate solutions to contribute to climate mitigation.

    Article  CAS  ADS  Google Scholar 

  3. Nolan, C. J., Field, C. B. & Mach, K. J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2, 436–446 (2021).

    Article  ADS  Google Scholar 

  4. Seddon, N. Harnessing the potential of nature-based solutions for mitigating and adapting to climate change. Science 376, 1410–1416 (2022).

    Article  CAS  ADS  Google Scholar 

  5. Ellis, P. W. et al. The principles of natural climate solutions. Nat. Commun. 15, 547 (2024). This review synthesizes the wide array of dimensions for high-quality nature-based climate solutions, including co-benefits and avoiding social harm.

    Article  CAS  ADS  Google Scholar 

  6. Buma, B. et al. Expert review of the science underlying nature-based climate solutions. Nat. Clim. Change 14, 402–406 (2024).

    Article  ADS  Google Scholar 

  7. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  8. Maguire, P. et al. A Green Growth Spurt: State of Forest Carbon Finance 2021 (Forest Trends’ Ecosystem Marketplace, 2021).

  9. Donofrio, S., Procton, A., Weatherer, L., Calderon, C. & Bennett, G. All in on Climate: The Role of Carbon Credits in Corporate Climate Strategies (Forest Trends’ Ecosystem Marketplace, 2023).

  10. Hale, T. et al. Assessing the rapidly-emerging landscape of net zero targets. Clim. Policy 22, 18–29 (2022).

    Article  Google Scholar 

  11. Seddon, N. et al. Getting the message right on nature‐based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).

    Article  ADS  Google Scholar 

  12. Haya, B. Policy brief: The California Air Resources Board’s U.S. Forest offset protocol underestimates leakage (2019).

  13. Hurteau, M. D., Hungate, B. A. & Koch, G. W. Accounting for risk in valuing forest carbon offsets. Carbon Balance Manag. 4, 1 (2009).

    Article  Google Scholar 

  14. Hurteau, M. D., Hungate, B. A., Koch, G. W., North, M. P. & Smith, G. R. Aligning ecology and markets in the forest carbon cycle. Front. Ecol. Environ. 11, 37–42 (2013).

    Article  Google Scholar 

  15. Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020). This review paper synthesizes the increasing climate risks to durability of nature-based climate solutions in forests and highlights key gaps between present science and policy.

    Article  CAS  Google Scholar 

  16. Badgley, G. et al. California’s forest carbon offsets buffer pool is severely undercapitalized. Front. For. Glob. Change 5, 30426 (2022).

    Article  Google Scholar 

  17. Badgley, G. et al. Systematic over‐crediting in California’s forest carbon offsets program. Glob. Change Biol. 28, 1433–1445 (2022).

    Article  CAS  Google Scholar 

  18. Haya, B. K. et al. Quality Assessment of REDD+ Carbon Credit Projects (Berkeley Carbon Trading Project, 2023).

  19. Haya, B. K. et al. Comprehensive review of carbon quantification by improved forest management offset protocols. Front. For. Glob. Change 6, 958879 (2023).

    Article  Google Scholar 

  20. Stapp, J. et al. Little evidence of management change in California’s forest offset program. Commun. Earth Environ. 4, 331 (2023). This study demonstrates that a notable compliance forest offset programme shows little to no evidence of additionality in changing practices.

    Article  ADS  Google Scholar 

  21. West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci. 117, 24188–24194 (2020).

    Article  CAS  ADS  Google Scholar 

  22. West, T. A. P. et al. Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science 381, 873–877 (2023). This landmark study documents very little additionality owing to poor baselines in several notable tropical Reducing Emissions from Deforestation and Forest Degradation (REDD) projects.

    Article  CAS  ADS  Google Scholar 

  23. Coffield, S. R. et al. Using remote sensing to quantify the additional climate benefits of California forest carbon offset projects. Glob. Change Biol. 28, 6789–6806 (2022).

    Article  CAS  Google Scholar 

  24. Randazzo, N. A., Gordon, D. R., & Hamburg, S. P. Improved assessment of baseline and additionality for forest carbon crediting. Ecol. Appl. 33, e2817 (2023).

    Article  Google Scholar 

  25. Guizar‐Coutiño, A., Jones, J. P. G., Balmford, A., Carmenta, R. & Coomes, D. A. A global evaluation of the effectiveness of voluntary REDD+ projects at reducing deforestation and degradation in the moist tropics. Conserv. Biol. 36, e13970 (2022).

    Article  Google Scholar 

  26. Macintosh, A. et al. Australian human-induced native forest regeneration carbon offset projects have limited impact on changes in woody vegetation cover and carbon removals. Commun. Earth Environ. 5, 149 (2024). This study observes little additionality in a notable forest regeneration carbon offset programme using time-series satellite data.

    Article  ADS  Google Scholar 

  27. Live Carbon Prices Today. CarbonCredits.com https://carboncredits.com/carbon-prices-today/ (2024).

  28. Novick, K. A. et al. Informing nature‐based climate solutions for the United States with the best‐available science. Glob. Change Biol. 28, 3778–3794 (2022).

    Article  Google Scholar 

  29. Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Article  ADS  Google Scholar 

  30. Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Change 11, 1027–1034 (2021).

    Article  ADS  Google Scholar 

  31. Novick, K. A. et al. We need a solid scientific basis for nature-based climate solutions in the United States. Proc. Natl Acad. Sci. 121, e2318505121 (2024).

    Article  CAS  Google Scholar 

  32. Pande, R. Fixing forest carbon credits. Science 383, eadn4923 (2024).

    Article  Google Scholar 

  33. Chang, C. H. et al. Global evidence of human well-being and biodiversity impacts of natural climate solutions. Nat. Sustain. 8, 75–85 (2024).

    Article  Google Scholar 

  34. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  ADS  Google Scholar 

  35. Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).

    Article  ADS  Google Scholar 

  36. Williams, C. A., Gu, H. & Jiao, T. Climate impacts of U.S. forest loss span net warming to net cooling. Sci. Adv. 7, eaax8859 (2021).

    Article  CAS  ADS  Google Scholar 

  37. Bright, R. M., Zhao, K., Jackson, R. B. & Cherubini, F. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Change Biol. 21, 3246–3266 (2015).

    Article  ADS  Google Scholar 

  38. Hasler, N. et al. Accounting for albedo change to identify climate-positive tree cover restoration. Nat. Commun. 15, 2275 (2024). This study provides a global analysis of where albedo change from restoration or reforestation activities greatly alters the net climate impact.

    Article  CAS  ADS  Google Scholar 

  39. Randerson, J. T. et al. The impact of boreal forest fire on climate warming. Science 314, 1130–1132 (2006).

    Article  CAS  ADS  Google Scholar 

  40. Kuusinen, N. et al. Measured and modelled albedos in Finnish boreal forest stands of different species, structure and understory. Ecol. Model. 284, 10–18 (2014).

    Article  Google Scholar 

  41. Amiro, B. D. et al. The effect of post-fire stand age on the boreal forest energy balance. Agric. For. Meteorol. 140, 41–50 (2006).

    Article  ADS  Google Scholar 

  42. Rohatyn, S., Rotenberg, E., Tatarinov, F., Carmel, Y. & Yakir, D. Large variations in afforestation-related climate cooling and warming effects across short distances. Commun. Earth Environ. 4, 18 (2023).

    Article  ADS  Google Scholar 

  43. Weber, J. et al. Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits. Science 383, 860–864 (2024).

    Article  CAS  ADS  Google Scholar 

  44. Teuling, A. J. et al. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 8, 14065 (2017).

    Article  CAS  ADS  Google Scholar 

  45. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article  ADS  Google Scholar 

  46. Coop, J. D. et al. Wildfire-driven forest conversion in western North American landscapes. BioScience 70, 659–673 (2020).

    Article  Google Scholar 

  47. Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. 116, 6193–6198 (2019).

    Article  CAS  ADS  Google Scholar 

  48. Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Article  ADS  Google Scholar 

  49. Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    Article  CAS  ADS  Google Scholar 

  50. Matthews, H. D. & Caldeira, K. Stabilizing climate requires near‐zero emissions. Geophys. Res. Lett. 35, 2007GL032388 (2008).

    Article  Google Scholar 

  51. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  ADS  Google Scholar 

  52. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article  CAS  ADS  Google Scholar 

  53. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  ADS  Google Scholar 

  54. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. 106, 16129–16134 (2009).

    Article  CAS  ADS  Google Scholar 

  55. Allen, M. R. et al. Net zero: science, origins, and implications. Annu. Rev. Environ. Resour. 47, 849–887 (2022).

    Article  Google Scholar 

  56. Matthews, H. D. et al. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun. Earth Environ. 3, 65 (2022).

    Article  ADS  Google Scholar 

  57. Cullenward, D. A framework for assessing the climate value of temporary carbon storage. Carbon Market Watch https://carbonmarketwatch.org/publications/a-framework-for-assessing-the-climate-value-of-temporary-carbon-storage/ (2023).

  58. Fankhauser, S. What next on net zero? One Earth 4, 1520–1522 (2021).

    Article  ADS  Google Scholar 

  59. Cullenward, D., Badgley, G. & Chay, F. Carbon offsets are incompatible with the Paris Agreement. One Earth 6, 1085–1088 (2023).

    Article  Google Scholar 

  60. Oldfield, E. E. et al. Crediting agricultural soil carbon sequestration. Science 375, 1222–1225 (2022).

    Article  CAS  ADS  Google Scholar 

  61. Wu, C. et al. Uncertainty in US forest carbon storage potential due to climate risks. Nat. Geosci. 16, 422–429 (2023). This study demonstrates substantially increasing climate-driven disturbance risks to durability for US forests and how it is likely to affect offset programmes.

    Article  ADS  Google Scholar 

  62. Wu, C. et al. Carbon reversal risks from climate-sensitive disturbances in US forests. In AGU Fall Meeting Abstracts Vol. 2023, GC54D-06 (2023).

  63. Anderegg, W. R. et al. Future climate risks from stress, insects and fire across US forests. Ecol. Lett. 25, 1510–1520 (2022).

    Article  Google Scholar 

  64. Anderegg, W. R. L., Trugman, A. T., Vargas G., G., Wu, C. & Yang, L. Current forest carbon offset buffer pool contributions do not adequately insure against disturbance‐driven carbon losses. Glob. Change Biol. 31, e70251 (2025).

  65. Kriebel, D. et al. The precautionary principle in environmental science. Environ. Health Perspect. 109, 871–876 (2001).

    Article  CAS  Google Scholar 

  66. Schneider, S. H. & Lane, J. Dangers and thresholds in climate change and the implications for justice. In Fairness in Adaptation to Climate Change (eds Adger, W. N., Paavola, J., Huq, S. & Mace M. J.) (MIT Press, 2006).

  67. McFarland, B. J. Carbon reduction projects and the concept of additionality. Sustain. Dev. Law Policy 11, 15–18 (2011).

    Google Scholar 

  68. Bushnell, J. B. The Economics of Carbon Offsets, Working Paper 16305 (National Bureau of Economic Research, 2010).

  69. McFarland, B. Origins, Development and Potential of the International REDD Market. Master’s thesis, American Univ. (2010).

  70. West, T. A. P., Bomfim, B. & Haya, B. K. Methodological issues with deforestation baselines compromise the integrity of carbon offsets from REDD+. Glob. Environ. Change 87, 102863 (2024).

    Article  Google Scholar 

  71. California Air Resources Board Offset Credit Regulatory Conformance and Invalidation Guidance (California Air Resources Board, 2015).

  72. Seyller, C. et al. The ‘virtual economy’ of REDD+ projects: does private certification of REDD+ projects ensure their environmental integrity? Int. For. Rev. 18, 231–246 (2016).

    Google Scholar 

  73. Delacote, P., Le Velly, G. & Simonet, G. Revisiting the location bias and additionality of REDD+ projects: the role of project proponents status and certification. Resour. Energy Econ. 67, 101277 (2022).

    Article  Google Scholar 

  74. van Kooten, G. C., Bogle, T. N. & de Vries, F. P. Forest carbon offsets revisited: shedding light on darkwoods. For. Sci. 61.2, 370–380 (2015).

    Google Scholar 

  75. Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).

    Article  CAS  ADS  Google Scholar 

  76. Wang, J. A., Baccini, A., Farina, M., Randerson, J. T. & Friedl, M. A. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change 11, 435–441 (2021).

    Article  CAS  ADS  Google Scholar 

  77. Nepstad, D. et al. Re-framing REDD+ (Amazon Environmental Research Institute (IPAM), 2012).

  78. Busch, J. et al. Structuring economic incentives to reduce emissions from deforestation within Indonesia. Proc. Natl Acad. Sci. 109, 1062–1067 (2012).

    Article  CAS  ADS  Google Scholar 

  79. Teo, H. C. et al. Uncertainties in deforestation emission baseline methodologies and implications for carbon markets. Nat. Commun. 14, 8277 (2023).

    Article  CAS  ADS  Google Scholar 

  80. Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    Article  CAS  ADS  Google Scholar 

  81. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  ADS  Google Scholar 

  82. Mertz, O. et al. Uncertainty in establishing forest reference levels and predicting future forest-based carbon stocks for REDD+. J. Land Use Sci. 13, 1–15 (2018).

    Article  Google Scholar 

  83. Schneider, L., Fuessler, J., Oberpriller, Q. & Spalding-Fecher, R. The ICVCM approval of three REDD methodologies presents risks to the integrity of the initiative. Öko-Institut https://www.oeko.de/blog/the-icvcm-approval-of-three-redd-methodologies-presents-risks-to-the-integrity-of-the-initiative (2024).

  84. Haya, B. Re: Comments on California’s proposed REDD program and linkage with Acre, Brazil (2016).

  85. Teo, H. C., Sarira, T. V., Tan, A. R. P., Cheng, Y. & Koh, L. P. Charting the future of high forest low deforestation jurisdictions. Proc. Natl Acad. Sci. 121, e2306496121 (2024).

    Article  Google Scholar 

  86. Gan, J. & McCarl, B. A. Measuring transnational leakage of forest conservation. Ecol. Econ. 64, 423–432 (2007).

    Article  Google Scholar 

  87. Ingalls, M. L., Meyfroidt, P., To, P. X., Kenney-Lazar, M. & Epprecht, M. The transboundary displacement of deforestation under REDD+: problematic intersections between the trade of forest-risk commodities and land grabbing in the Mekong region. Glob. Environ. Change 50, 255–267 (2018).

    Article  Google Scholar 

  88. Filewod, B. & McCarney, G. Avoiding carbon leakage from nature-based offsets by design. One Earth 6, 790–802 (2023).

    Article  ADS  Google Scholar 

  89. Pan, W., Kim, M.-K., Ning, Z. & Yang, H. Carbon leakage in energy/forest sectors and climate policy implications using meta-analysis. For. Policy Econ. 115, 102161 (2020).

    Article  Google Scholar 

  90. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  CAS  ADS  Google Scholar 

  91. Wang, J. A., Randerson, J. T., Goulden, M. L., Knight, C. A. & Battles, J. J. Losses of tree cover in California driven by increasing fire disturbance and climate stress. AGU Adv. 3, e2021AV000654 (2022).

    Article  ADS  Google Scholar 

  92. European Union. Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on substantiation and communication of explicit environmental claims (Green Claims Directive). EUR-Lex https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2023%3A0166%3AFIN (2023).

  93. State of California. AB-1305 Voluntary carbon market disclosures. California Legislative Information https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202320240AB1305 (2023).

  94. Isometric Standard. Validation and verification process. Isometric https://registry.isometric.com/standard#validation-and-verification-process (2025).

  95. Duflo, E., Greenstone, M., Pande, R. & Ryan, N. Truth-telling by third-party auditors and the response of polluting firms: experimental evidence from India. Q. J. Econ. 128, 1499–1545 (2013).

    Article  Google Scholar 

  96. Trouwloon, D., Streck, C., Chagas, T. & Martinus, G. Understanding the use of carbon credits by companies: a review of the defining elements of corporate climate claims. Glob. Chall. 7, 2200158 (2023).

    Article  Google Scholar 

  97. Ivanova, I. Delta faces lawsuit alleging its ‘carbon-neutral’ claim is greenwashing. CBS News https://www.cbsnews.com/news/delta-lawsuit-cabon-neutral-greenwashing-carbon-offsets/ (2023).

  98. Airlines Facing ‘Greenwashing’ Litigation on Three Continents. Jones Day https://www.jonesday.com/en/insights/2023/08/ airlines-facing-greenwashing-litigation-on-three-continents (2023).

  99. Trencher, G., Nick, S., Carlson, J. & Johnson, M. Demand for low-quality offsets by major companies undermines climate integrity of the voluntary carbon market. Nat. Commun. 15, 6863 (2024).

    Article  CAS  Google Scholar 

  100. Broekhoff, D., Gillenwater, M., Colbert-Sangree, T. & Cage, P. Securing Climate Benefit: A Guide to Using Carbon Offsets. https://offsetguide.org/ (2019).

  101. Giles, C. What carbon offsets tell us about why environmental programs fail. The Regulatory Review https://www.theregreview.org/2023/12/18/ giles-what-carbon-offsets-tell-us-about- why-environmental-programs-fail/ (2023).

  102. Blanchard, L. et al. Funding forests’ climate potential without carbon offsets. One Earth 7, 1147–1150 (2024).

    Article  Google Scholar 

  103. Kirschbaum, M. U. F. Temporary carbon sequestration cannot prevent climate change. Mitig. Adapt. Strateg. Glob. Change 11, 1151–1164 (2006).

    Article  Google Scholar 

  104. European Union. Unfair commercial practices directive. European Commission https://commission.europa.eu/law/ law-topic/consumer-protection-law/unfair- commercial-practices-and-price-indication /unfair-commercial-practices-directive_en (2021).

  105. SBTi Corporate Net-Zero Standard. Version 2.0 - Initial Consultation Draft with Narrative. Science Based Targets Initiative https://sciencebasedtargets.org/ consultations/cnzs-v2-initialdraft (2025).

  106. Benson, S. et al. Above and Beyond: An SBTi Report on the Design and Implementation of Beyond Value Chain Mitigation (BVCM) Version 1.0. Science Based Targets Initiative https://sciencebasedtargets.org/resources/files/Above-and-Beyond-Report-on-BVCM.pdf (2024).

  107. Hewlett, O., Magrath, D., Höglund, R., Hutton, W. & Stanton, I. Funding Beyond Value Chain Mitigation: Step by Step Guidance for Organisations Taking Responsibility for Their Emissions Version 1.0. Gold Standard https://www.goldstandard.org/publications/ funding-beyond-value-chain-mitigation (2024).

  108. Moore, F. C. et al. Synthesis of evidence yields high social cost of carbon due to structural model variation and uncertainties. Proc. Natl Acad. Sci. 121, e2410733121 (2024).

    Article  CAS  Google Scholar 

  109. Rennert, K. et al. Comprehensive evidence implies a higher social cost of CO2. Nature 610, 687–692 (2022).

    Article  CAS  ADS  Google Scholar 

  110. Tol, R. S. J. Social cost of carbon estimates have increased over time. Nat. Clim. Change 13, 532–536 (2023).

    Article  ADS  Google Scholar 

  111. Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article  CAS  ADS  Google Scholar 

  112. Prest, B. C., Rennels, L., Errickson, F. & Anthoff, D. Equity weighting increases the social cost of carbon. Science 385, 715–717 (2024).

    Article  CAS  Google Scholar 

  113. Lou, J., Hultman, N., Patwardhan, A. & Mintzer, I. Corporate motivations and co-benefit valuation in private climate finance investments through voluntary carbon markets. Npj Clim. Action 2, 32 (2023).

    Article  Google Scholar 

  114. Iovino, R., Testa, F. & Iraldo, F. Do consumers understand what different green claims actually mean? An experimental approach in Italy. J. Advert. 53, 200–214 (2024).

    Article  Google Scholar 

  115. Environmental Claims in Advertising. Qualitative Research Report. American Student Assistance https://www.asa.org.uk/static/6830187f-cc56-4433-b53a4ab0fa8770fc/CCE- Consumer-Understanding-Research-2022Final-090922.pdf (2022).

  116. Berrone, P., Fosfuri, A. & Gelabert, L. Does greenwashing pay off? Understanding the relationship between environmental actions and environmental legitimacy. J. Bus. Ethics 144, 363–379 (2017).

    Article  Google Scholar 

  117. Höglund, R. & Mitchell-Larson, E. Bridging the ambition gap: a framework for scaling corporate funds for carbon removal and wider climate action. Carbon Gap https://carbongap.org/wp-content/ uploads/2022/11/Ambition_Gap_Report_Nov22.pdf (2022).

Download references

Acknowledgements

This article is the product of the Wilkes Center for Climate Science and Policy at the University of Utah’s Working Group on Rigorous Nature-based Climate Solutions in Forests. We thank S. Cook-Patton, who was a co-author on the initial manuscript and contributed to idea generation, writing and revisions, but is not listed in the final draft owing to differences in opinions about final recommendations. We thank K. Riley and P. Ellis for providing feedback on this work. W.R.L.A. acknowledges support from US National Science Foundation grants 2003017, 2044937 and 2330582 and Alan T. Waterman Award IOS-2325700.

Author information

Authors and Affiliations

Authors

Contributions

W.R.L.A. and L.B. wrote the first draft of the manuscript. W.R.L.A., L.B., C.A., G.B., D.C., P.G., M.L.G., B.H., J.A.H., M.D.H., M. Lague, M. Liu, K.A.N., J.R., A.T.T., J.A.W., C.A.W., C.W. and L.Y. contributed to idea generation, literature synthesis, writing of several drafts and revisions.

Corresponding author

Correspondence to William R. L. Anderegg.

Ethics declarations

Competing interests

D.C. previously consulted for Isometric and is a member of the Milkywire Climate Transformation Fund Advisory Board, the UNFCCC Article 6.4 Mechanism Methodological Expert Panel and California’s Independent Emissions Market Advisory Committee. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jiehong Lou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderegg, W.R.L., Blanchard, L., Anderson, C. et al. Towards more effective nature-based climate solutions in global forests. Nature 643, 1214–1222 (2025). https://doi.org/10.1038/s41586-025-09116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09116-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing