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Until now, computationally designed enzymes exhibited low catalytic rates' > and
required intensive experimental optimization to reach activity levels observed

in comparable natural enzymes®>®. These results exposed limitations in design
methodology and suggested critical gaps in our understanding of the fundamentals

of biocatalysis'®". We present a fully computational workflow for designing efficient
enzymes in TIM-barrel folds using backbone fragments from natural proteins and
without requiring optimization by mutant-library screening. Three Kemp eliminase
designs exhibit efficiencies greater than 2,000 M s™. The most efficient shows more
than 140 mutations from any natural protein, including a novel active site. It exhibits
high stability (greater than 85 °C) and remarkable catalytic efficiency (12,700 M*'s™)
and rate (2.8 s™), surpassing previous computational designs by two orders of
magnitude’. Furthermore, designing a residue considered essential in all previous
Kemp eliminase designs increases efficiency to more than10° M s and rateto 30 s,
achieving catalytic parameters comparable to natural enzymes and challenging
fundamental biocatalytic assumptions. By overcoming limitations in design
methodology", our strategy enables programming stable, high-efficiency, new-to-
nature enzymes through a minimal experimental effort.

Natural enzymes are exceptionally versatile, selective and highly effi-
cient catalysts. Yet, computational design of enzymes that match this
proficiency, particularly for non-natural reactions, remains elusive.
Recent advances in computational design have enabled rapid and
effective optimization of natural enzyme stability, expressibility, cat-
alytic rate and selectivity through fully computational workflows'>",
Furthermore, advances in fold design enabled the grafting of natural
orengineered active sites into idealized de novo backbones™". By con-
trast, enzymes designed de novo, thatis, without recourse to naturally
occurring enzymes that catalyse the same reaction, were orders of
magnitude less active relative to comparable natural ones' >, Previous
studies have therefore used repeated cycles of laboratory evolution,
involving high-throughput screening of mutants, to reach effective
enzymes®®. Such cycles are inefficient and are restricted to reactions
that can be assayed in medium-to-high-throughput fashion™. Criti-
cally, continuing torely onlarge-library screening of random mutants
suggests that our understanding and control of the fundamentals of
biocatalysis are far from complete.

The Kemp elimination (KE) reaction (Fig. 1a), a prototype for natu-
ral base-catalysed proton abstraction, has long served as a model for
studying de novo enzyme design, as no natural enzyme is known to
have been evolved for this reaction. Despite increasing sophistication
inprotein design methods, computationally designed Kemp eliminases
exhibited low catalytic efficiencies and rates (k_,,/K\;1-420 M s and
k.,:0.006-0.7 s}, respectively)® and required further optimization

by iterative mutational library screening to achieve catalytic param-
eters comparable to” or above® the median values of enzymes in nature
(kea/ K10°M sk, 10 571,

The underlying reasons for the low efficiencies of de novo designed
enzymes havebeenintensely studied®”, These analyses revealed that
the designed active sites exhibited significant structural distortions
relative to the design conception”*’, Notably, catalysis is extremely
sensitive to molecular details, and shifts of the catalytic constella-
tion by a few degrees or tenths of an Angstrom from optimality may
translate into orders of magnitude decreases in efficiency?. Further-
more, designs often exhibited low stability and expressibility’, limit-
ing their ability to accommodate activity-enhancing mutations™?.
Further concerns were that fixed-backbone design methods fail to
precisely position non-native catalytic groups'; the molecular details
of the designed transition state (theozyme) were uncertain®?; and that
protein dynamics® and long-range electrostatic interactions may be
necessary toachieve high catalytic efficiency but are unaccounted for
in the design process®**>,

Recent analyses suggested that overcoming the shortcomings
of de novo enzyme design methodology may require artificial
intelligence-based approaches, more accurate physics-based ener-
getics and data from high-throughput screening™?¢. Here, we test
whether recent developments in atomistic protein design that allow
accurate backbone? and sequence®? design in natural protein folds
addressthe limitations of de novo enzyme design methodology without

'Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel. 2School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA. *Department
of Chemistry, Lund University, Lund, Sweden. “Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary. °Department of Chemistry - BMC, Uppsala
University, Uppsala, Sweden. °Structural Proteomics Unit, Weizmann Institute of Science, Rehovot, Israel. ®e-mail: sarel@weizmann.ac.il

Nature | Vol 643 | 31July2025 | 1421


https://doi.org/10.1038/s41586-025-09136-2
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-09136-2&domain=pdf
mailto:sarel@weizmann.ac.il

Article

a g &
B 0 k - N
) g =
ON }
\ E— — + BH
N
Y )
b

Modular assembly

Stability design

Geometric matching and

filtering

Expression

Absorbance
(380 nm)

[Substrate]

Active-site optimization

8

Experimental screening

Purification

Active site and core position
stabilization

Fig.1|Key stepsinthe design workflow. a, KE of 5-nitrobenzisoxazole.B’is a
base,implemented as the sidechain of Asp or Glu. b, Thousands of backbones
aregenerated through combinatorial backbone assembly (step 1) and stabilized
using PROSS? (step 2, red spheres). Geometric matching* and active-site
(purple spheres) optimization with Rosetta yield millions of designs that are

resorting to experimental optimization or big-dataanalyses. To directly
compare with previous design approaches, we apply the strategy to
the KE reaction and generate enzymes that rival laboratory-evolved
eliminases without recourse to high-throughput screening or itera-
tive mutagenesis.

Designing stability, foldability and activity

Ourworking hypothesis is that effective enzyme design demands con-
trol over all protein degrees of freedom to establish stability, foldability
and accurate positioning of the theozyme. Foldability, the ability of
the protein to fold uniquely into the design conception, has been a
long-standing challenge for de novo enzyme design. Over the past dec-
ade, foldability has been partly addressed through de novo fold design,
enabling the generation of numerous stable and accurately designed
proteins®, These design methods, however, maximize foldability,
generatingbackbones that are dominated by ideal secondary structure
elements that lack the non-ideal elements that may lower foldability
butare nonetheless needed for sophisticated functions'?**. Until now,
functionalizing de novo generated folds has produced enzymes that
exhibited rates (k.,,) well below 1s7%. In certain cases, de novo designs
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filtered by balancing energy terms that contribute to stability and activity
(step 3). Afewdozentop designs are chosen for further core (green spheres)
and active-site stabilization (step 4). Following experimental screening (step 5),
we apply FuncLib? to the active sites of select functional designs (step 6).
lllustrationsinb (step 5) were created using BioRender (https://biorender.com).

exhibited high catalytic efficiencies (10* to 10° M s™)*>* but only
through very low K, values (0.3-30 pM). Low K, values indicate tight
binding of the substrate inits ground state, suggesting that the designs
optimize molecular recognition of their substrates before the catalytic
step. By contrast, turnover numbers (k) reflect the chemical trans-
formation following substrate binding and are a more stringent test
of the ability to design high-efficiency catalysts rather than effective
binders®. The persistently low k_,, values, including in recent studies™>*,
highlight the challenge of achieving catalytic controlin enzyme design.

Given these limitations, we focused on the TIM-barrel fold, whichiis
one of the most prevalent protein folds found among enzymes®, In
this fold, the residues of the central 3 barrel are oriented towards the
active-site cavity, providing many opportunities for optimally placing
the catalytic and substrate-binding groups. We reasoned that despite
the challenges in designing accurate and functional TIM barrels**°,
this fold provides an attractive framework for engineering new enzy-
matic functions.

We developed acomputational method that canbe applied, in prin-
ciple, to any reaction, given a precomputed theozyme. The workflow
starts by generating thousands of backbones using combinatorial
assembly and design (Fig. 1b, step 1), which combines fragments from
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Fig.2|Improving catalytic efficiency through low-throughputscreening
of FuncLib designs. a, Catalytic efficiencies of 12 FuncLib designs encoding
5-8active-site mutationsrelative to Des27. Datarepresent mean £ s.d. of 2-5
biological replicates, except for Des27.2and Des27.3 (n =1). b, Michaelis-Menten

homologous proteins to generate new backbones”*“2, Subsequently,
Protein Repair One Stop Shop (PROSS) design calculations are applied
tostabilize the designed conformation® (Fig. 1b, step 2). The resulting
structures show backbone variations within the active-site pocket,
increasing the likelihood of obtaining foldable backbones that position
the theozyme and supporting residues inacatalytically competent and
energetically relaxed constellation. Following backbone generation,
we implement geometric matching® to position the KE theozyme in
each of the designed structures and optimize the remainder of the
active site using Rosetta atomistic calculations*, in effect mutating
all active-site positions, including the vestigial catalytic residues of
the naturalenzyme (Fig. 1b, step 3). The workflow results in millions of
designs which arefiltered using a ‘fuzzy-logic’ optimization objective
function®. This approach balances potentially conflicting objectives
that are critical for design of function, such as low system energy and
high desolvation of the catalytic base. Selecting afew dozen top-scoring
designs, we next stabilize the active site and positions in the protein
core*® (Fig. 1b, step 4), resulting in designs with more than 100 muta-
tions from any natural protein. Unlike previous approaches, this work-
flow emphasizes stability across the entire protein. It capitalizes on
the ability to generate thousands of stable, natural-like TIM barrels
that exhibit backbone diversity in the active site”’ and on automated
scaffold” and active-site?® sequence design methods that have been
validated on dozens of natural enzymes'.

Efficient, stable and accurate Kemp eliminases

We applied our pipeline to the indole-3-glycerol-phosphate syn-
thase (IGPS) enzyme family, which can sterically accommodate the
5-nitrobenzisoxazole substrate and was previously used to design
Kemp eliminases'”. The theozyme builds on a catalytic constellation
derived from quantum-mechanical calculations**3. Itincludes a nucleo-
phile, suchas Asp or Glu, which serves as abase for proton abstraction
from the substrate, and an aromatic sidechain that forms t-stacking
interactions with the substrate in the transition state (Fig. 1b, step 3).
Thelatterinteraction hasbeen used inall previous computational Kemp
eliminase design studies to promote binding to the aromatic benzisoxa-
zolerings">. Typical design studies also introduced a polar interaction
with the isoxazole oxygen to stabilize the developing negative charge
in the transition state'?. We excluded this requirement from our the-
ozyme because a water molecule can satisfy it, and a misplaced polar
group could reducereactivity by lowering the pK, of the catalytic base.

Weselected 73 designs for experimental testing. The designs ranged
from245t0268 amino acids and were diverse, with 30-93% sequence
identity to one another and 41-59% identity to any natural protein.

analysis of Des27.7. Dataare the mean of two technical repeats. ¢, The crystal
structure of theligand-unbound Des27.7 (grey, PDB entry 9HVB) verifies the
accuracy of the designed active site (blue) withr.m.s.d.< 0.5 A.

Intotal, 66 designs were solubly expressed and 14 showed cooperative
thermal denaturation (Extended Data Fig. 1). Three designs showed
measurable KE activity in an initial screen, with the top two designs,
Des27 and Des61, exhibiting k,/K\ values of 130 and 210 M ' s, respec-
tively, and k., <1s™ (Extended Data Fig. 2, Extended Data Table 1and
Supplementary Table1).

The catalytic rate and efficiency of these designs are on a par with
previously designed enzymes'?, falling short by several orders of
magnitude from comparable natural eliminases and from designed
Kemp eliminases that were optimized through laboratory-evolution
campaigns®’. To optimize these designs computationally, we applied
FuncLibto active-site positions, excluding the theozymeresidues. The
FuncLib method restricts amino acid mutations to those likely to appear
inthe natural diversity of homologous proteins®. To develop an optimi-
zation strategy for ade novo reaction, we removed allhomology-based
restrictions in the active site, thus using atomistic energy as the sole
optimization objective function. We selected 6 and 12 low-energy
designs for experimental testing for Des61 and Des27, respectively,
each comprising 5-8 specific mutations relative to their origin. All
designs exhibited high expression yields and showed cooperative dena-
turation (Extended Data Fig.1and Supplementary Table1). One design
derived from Des61showed catalytic efficiency of 3,600 M™ s and k,,
of 0.85 s™. Remarkably, eight designs on the basis of Des27 showed
increased catalytic rates by 10-70-fold (Extended Data Table 1and
Supplementary Table 1), with Des27.7, harbouring seven mutations rela-
tive to Des27, reaching k_,./K\ 12,700 M s and k. 2.85 s, arate that
isan order of magnitude greater than that of any previously reported
computational design® (Fig. 2a,b). This design diverges significantly
from natural IGPSs, and a pairwise sequence alignment to the closest
proteininthe non-redundant sequence database reveals 141 mutations
and multiple insertions and deletions (Extended Data Fig. 3). It also
diverges in sequence and backbone from previously designed Kemp
eliminases in natural IGPS scaffolds’ and features a different active-site
constellation and position.

We analysed the structural models of Des27 and its FuncLib-derived
variants to understand the mechanistic basis for the differencesin cata-
lytic efficiency, which span three orders of magnitude, using the Rosetta
force field and molecular dynamics (MD) simulations. A sequence
alignment of the FuncLib designs shows that lle136Val, lle216Val and
Val183lle are associated with high catalytic efficiency (Fig. 3a). Con-
trasting the structure models of Des27 and Des27.7 reveals that these
mutations may increase hydrophobic packing around the catalytic
Aspl62, probably improving its preorganization and desolvation and
increasingits reactivity (Fig. 3a,b, top). Indeed, the Rosetta-computed
van der Waals (vdW) energy of Asp162 is highly correlated with catalytic
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Fig.3|Structural, energetic and dynamic contributions to theimproved
catalyticrate of Des27.7. a, Mutations (grey background) at positions 136, 216
and 236 trend with increasing catalytic efficiency, which also trends with
Rosetta-computed vdW energy of the catalytic Asp162.Spearman p =-0.88,
P=6x107.b, Analysis of the structural basis of increased KE activity by comparing
substrate-bound models of Des27 (left) and Des27.7 (right). ¢, Percentage of
MD simulation timein which the substrate is within the active site for Des27 and
Des27.7 (less than or equal to 4 A between the substrate and the active site
centre of mass; blue) or distant from the active site (wheat). For 24% of the time
spentinthe bound conformation the substrate adopts areactive donor-acceptor
geometry (highlighted arc). The bars on theright of each pie chart show the
distribution of conformations (in, out and other) in the reactive mode.d, In

MD simulations, 5-nitrobenzisoxazole (sticks) can assume two catalytically

efficiency among the FuncLib designs (Spearman p=-0.88,P=6 x10~;
Fig.3a). Asfurther support, MD simulations show that Asp162 is confor-
mationally dynamicin theligand-unbound models, sampling multiple
metastable conformations, and that the fraction of non-productive
conformations decreases in Des27.7 relative to Des27 (Extended Data
Fig.4a). Furthermore, the Des27 model suggests that Leu236 may partly
overlap with the substrate (Fig. 3b, middle), and that the mutation to Val
inDes27.7would alleviate this unfavourable interaction while increasing
the volume of the pocket from 717 to 829 A® (Extended Data Fig. 4b,c).
Finally, Ile54Val, Phe92His and Leu183Val may improve the solvation of
the polar nitromoiety of the substrate (Fig. 3b, bottom), and Phe92His
may enable water-mediated polar interactions with the nitro group.
Thus, although the seven mutations in Des27.7 are mostly conserva-
tive, their aggregate markedly improves the catalytic parameters by
reshaping the active-site pocket for better substrate recognition and
optimizing the preorganization and reactivity of the catalytic base.
To analyse the stability of the substrate within the active site, we
conducted microsecond MD simulations of Des27 and Des27.7, starting
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competent conformations: onein which the nitro groupis buried inside the
TIMbarrel (in, blue) and another in whichitis solventexposed (out, orange).
Shown are two representative conformations from the MD simulations.

e, Activation free energy for the proton abstraction of 5-nitrobenzisoxazole,
comparing AG* computed from the experimentally determined k., values
(mean +s.d.of2and 5 biological replicates for Des27 and Des27.7, respectively)
using the Eyring rate equation, assuming 7=298 K (experiment), and the
corresponding values calculated for ‘in”’and ‘out’ substrate conformations
(mean +s.d.over30independent EVB trajectories per system). A two-sample
Wilcoxonrank-sumtest (two-sided) indicated statistically significant differences
inthe calculated activation free energies between the ‘in’and ‘out’ conformations
forDes27.7 (P=7.7 x107°) but not for Des27 (P=0.088).R.e.u., Rosettaenergy
units.

from their ligand-bound design models. In both cases and across all
replicas, the substrate exited and re-entered the active-site pocket mul-
tiple times (Extended DataFig. 5), with Des27.7 showing five times more
substrate retention (Fig. 3cand Supplementary Table 2). This contrasts
with the typical scenarioin MD simulations inwhich unbinding events
are terminal**°. Thus, the MD simulations indicate that our designs
exhibit high affinity for the substrate, and that Des27.7 improves it
further. We also noticed that the substrate may enter the pocketin two
reactive conformations that are inverted: one that closely matches the
design model, with the nitro substituent occupying the entrance to
the active site, and one in which it is inverted by approximately 180°
(Fig. 3d). Empirical valence bond (EVB) calculations of reaction free
energies* show similar energy profiles for both conformations, indicat-
ing that both are catalytically competent (Fig. 3e and Supplementary
Table 3). Taken together, the MD and EVB calculations suggest that
the experimentally measured results reflect the sum of both reaction
modes, with the ‘out’ conformation (Fig. 3¢) being occupied agreater
fraction of MD simulation time than the ‘in’ conformation, but with EVB
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predicting the in conformation as being slightly more reactive in the
optimized Des27.7 variant (Fig. 3e). Further, although such desolvated
nitro group (‘in’) conformations were observed in previous de novo
designed Kemp eliminases®***, in those studies only one conformation
was catalytically competent™. Thus, the high efficiency of Des27.7 may
be partly due to the high preorganization of the active-site pocket and
its ability toaccommodate productive substrate interactions through
distinct conformations.

To verify the molecular accuracy of the design process, we deter-
mined the structure of Des27.7 in the unbound form by crystallographic
analysis (Extended Data Table 2; PDB 9HVB). All active-site positions
aligned well with the design conception (less than 0.7 A all-atom root
mean squared deviation (r.m.s.d.) across 20 residues), including the
catalytic Asp162, although aslight shift (r.m.s.d. 0.78 A) was observed
inthe orientation of Phell3. Outside the active-site pocket, 180 of 257
positions aligned with backbone r.m.s.d. < 0.6 A, but 65 amino acids
either deviated or did not exhibit significant electron density, probably
duetobackbone flexibility in this region (Extended Data Fig. 6a,b). This
fragmentis known to be dynamic in the IGPS protein family*?, but it lies
outside theactive-site pocket and probably does not contribute directly
to reactivity and substrate recognition. Taken together, our results
verify afully computational pipeline that designs an accurate de novo
active site and generates a stable and high-efficiency new-to-nature
enzyme.

Necessary and sufficient conditions for design

Our computational workflow is based on the combination of several
design components, each of which introduces multiple mutations
that address aspects that are critical for efficient biocatalysis, such as
backbone diversity, stability, foldability and activity. We next probed
whether each of these components contributes to the intended prop-
erty and whether all are essential.

We started by examining whether modular assembly and design
is essential for generating diverse backbones. Instead of applying
modular assembly and design, we applied the subsequent steps of
the workflow to 1,072 representative IGPSs that were modelled using
AlphaFold2 (Methods). We tested 55 designs (design round 2), of
which 49 were solubly expressed (89%) and 28 (50%) exhibited appar-
ent cooperative unfolding with apparent melting temperature (T;,)
values 47-88 °C. In total, 70% of the cooperatively folded designs

The number of mutations relative to the modular assembly baselineisindicated
in parentheses. Datarepresent the mean +s.d. of 2-5biological replicates.
Muts, number of mutations; ND, not detected.

(20 designs) showed measurable KE activity with k,/Ky,in the range
of 0.5-155M™s™, demonstrating that the workflow can design stable
and functional Kemp eliminases in a wide range of different starting
points. As expected, designs that did not show cooperative unfolding
lacked KE activity. We applied FuncLib to the active sites of six designs
and tested 9-14 variants for each starting point. In five cases, catalytic
efficiencies improved by 3-10-fold (Supplementary Table 1), with the
highest catalytic efficiency reaching 300 M’ s (R2.Des39.2). We deter-
mined the crystallographic structure of two designs, R2.Des39 (k ,./Ky
100 M*s™) and Des49 (k.,./K),150 M s™) (Extended DataFig. 6¢-i, PDB
IDs 9HVH and 9HVG and Extended Data Table 2). The active sites were
closeto their design conceptions (r.m.s.d. < 0.6 Aandr.m.s.d. <0.82 A,
respectively), but, in both cases, several loops either lacked electron
density or exhibited significant conformational changes compared with
the designs, which could impede substrate entry to the active site®.
To explore whether the foldability of these loops could be improved,
we applied FuncLib to stabilize these regions according to the design
models. Three of 16 FuncLib variants of Des39.2 showed a significant
increasein catalytic efficiency, withimprovements up to 20-fold com-
pared with the original design, reaching k,./K,,2,000 M s* (Extended
Data Table1and Supplementary Table 1), but none surpassed the perfor-
mance of Des27.7. These results demonstrate that large-scale artificial
intelligence-based structure prediction of natural enzymes provides
avaluable resource for de novo enzyme design, and that the compu-
tational workflow reproducibly generates efficient enzymes. In this
case, however, optimization with FuncLib reached superior catalytic
parametersinthe designs derived from modular assembly, which may
reflect the greater structural diversity in these designs.

Asanextstep to understanding the necessary and sufficient condi-
tions for design of high-efficiency enzymes, we deconvoluted the con-
tributions of each design component to the high stability and activity of
Des27.7. Asabaseline, we tested the outcome of combinatorial assembly
and design alone (with 92 mutations relative to any natural protein),
excluding both the PROSS-based stability mutations and the active-site
design. This variant exhibited an apparent melting temperature of 57 °C
and no detectable KE activity. Adding the 11 PROSS-designed muta-
tions substantially improved both bacterial expression and thermal
stability (69 °C) (Fig. 4 and Supplementary Fig.1). Separately, grafting
the active site from Des27.7 (15 mutations) onto the combinatorial
assembly starting point (without PROSS stabilizing mutations) con-
ferred high activity levels (2,900 Ms™) but fourfold lower thanin
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Des27.7. Combining the modular assembly, PROSS and the designed
activesiteyielded asynergistic, higher-than-expected improvementin
bothstability and reactivity beyond the contribution of the individual
components. Thus, despite the large number of mutationsintroduced
by each computational component, resulting designs did not exhibit
the trade-offs between stability and activity that were often reported
in laboratory-evolution campaigns’?"**. Furthermore, although
active-site mutations are often assumed to compromise stability?, in
our case, the designed active site contributed positively to stability.
Collectively, these findings emphasize the importance of stabilizing
the entire protein to obtain efficient enzymes and the potential for
synergy between stability and activity-promoting mutations when
using reliable sequence design methods?.

Finally, we evaluated the contribution of the theozyme to the activity
of Des27.7. Mutating the catalytic base Asp162 to Alacompletely abol-
ished activity, verifying that the designed base is essential. Remarkably,
this single-point mutation also markedly increased protein stability,
with the apparent melting temperaturerising from 85 °Cin Des27.7 to
above boiling point (Fig.4). This significantincrease in stability under-
scores the strong destabilization induced by desolvating a charged
group in the core of the active site and the importance of effective
stability design methods.

We then tested whether the second theozyme residue, Phell3, was
essential by replacing it with point mutations suggested by atomis-
tic design. Replacement with Met and Leu exhibited similar Rosetta
energies to the original Phe, and we subjected these point mutants
to experimental analysis. The Met mutation showed similar catalytic
parametersto Phe (Extended Data Table1), suggesting that an aromatic
identity is not essential at this position. Strikingly, Phell3Leuled toan
order of magnitudeincreasein catalytic efficiency and rate to k.,/Ky, of
123,000 M*'sand k., 0f 30 s}, surpassing by two orders of magnitude
recently designed enzymesin artificial intelligence-generated proteins
(k.. =0.03-0.7 s™)*153 To understand the reasons for this large gainin
efficiency, we compared Leull3 in models of the unbound and transi-
tion states. Unlike the reorientation observed for Phell3 between the
ligand-bound model and unbound experimental structure of Des27.7
(Extended Data Fig. 7a), Leul13 exhibits almost no sidechain conforma-
tion changes (Extended Data Fig. 7b), suggesting that this mutation
improves active-site preorganization.

We note that the aromatic theozyme residue was forced in all our
design steps and was based on previous Kemp eliminase design stud-
ies'®. The fact thatacompletely aliphatic active-site pocket effectively
accelerates the KE reactionisinline with the observation that London
dispersion forces are sufficient for transition-state stabilization®. This
finding challenges a two-decade assumption in computational Kemp
eliminase design that an aromatic residue isimportant for ligand bind-
ing"?, demonstrating how de novo design of function can expose short-
comingsinourunderstanding of fundamental aspectsin biocatalysis.

Conclusions

De novo enzyme design has until now resulted in rudimentary catalytic
rates and required iterative random mutagenesis to close the gap with
enzymes foundin nature. Our strategy uses recent approaches for reli-
ablebackbone and sequence designin natural folds to generate diverse
TIM-barrel backbones, stabilize the protein and design preorganized
active-site constellations. This comprehensive design approach
allowed us to explore the principles underlying high stability and activ-
ity in KE biocatalysis. In a single step, we generated a dozen designs
with activities that spanned three orders of magnitude and gained
insights into the determinants of high-efficiency catalysis. The best
variant showed high stability and remarkable catalytic efficiency for
afully designed enzyme (greater than 85 °Cand 12,700 M's™, respec-
tively), which was increased to over 10° M s™ with a single designed
mutation. Active-site preorganization combined with the ability to
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adopt multiple catalytically competent substrate-bound modes dis-
tinguishes this design from previously generated ones. Importantly,
our best design exhibited a catalytic rate (30 s™) and efficiency on par
with the median values of natural enzymes'. Thus, the ability to design
large sets of diverse backbones and encode high protein stability and
active-site preorganization is necessary and sufficient for generating
high-efficiency enzymes of model reactions. Furthermore, contrary to
recent suggestions™, the results confirm that current atomistic meth-
ods are already sufficiently reliable to generate efficient enzymes in
natural folds without extensive experimental screening, big-dataanaly-
sesor artificial intelligence-generated scaffolds. Future improvements
inmodelling theozymes may enable fully programmable biocatalysis.
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Methods

Backbone generation and stabilization

Modular assembly and design was applied as described in ref. 42. In
brief, five different IGPS structures (PDB entries 1ILBF, 114A,1JCM, 1VC4
and 4FB7) were aligned and segmented into five fragments according
to points of maximum structure conservation at positions 44,105,154
and 206 (numbering relative to PDB entry 114N). The fragments were
then computationally combined all against all, and Rosetta sequence
designwas applied to optimize the stability and compatibility between
the segments, resulting in 2,500 backbones. Design calculations were
constrained using a position-specific scoring matrix (PSSM) that was
generated for each structure using PROSS?. For designs 37-73, afurther
stabilization protocol was applied. This protocol, based on mutational
scanning with PSSM constraints, identifies the most beneficial muta-
tions across the protein. These mutations are combined and threaded
onto theinputstructure. These backbones were then evaluated by an
activity predictor” and the top 1,000 designs were chosen.

To implement the workflow without recourse to modular assem-
bly and design (design round 2), we used BLAST to search the non-
redundant sequence database with the sequence of the Thermotoga
maritima IGPS (PDB entry 114N), identifying 4,381 IGPS homologues.
These were clustered with CD-HIT*® by 30-90% sequence identity to
one another and 1,200 were selected for further analysis. The struc-
tures of these sequences were modelled using ColabFold AlphaFold2
(refs. 57,58). Models with average local confidence in predicted struc-
tures (predicted local distance difference test (pLDDT)) scores below
90 were discarded, leaving 1,072 backbones. All structures were sub-
jected to PROSS stability design calculations® and Design 8 for each
was selected for further calculations. For models generated using
AlphaFold2, PROSS design was disabled in amino acids that exhibited
low predicted confidence (pLDDT < 90%) and those that were 5 A from
these residues®.

Catalytic site generation

Theozyme geometries (Supplementary Table 4) were based on previous
calculations'. Geometric parameters that define the catalytic place-
ments, such as tolerance, penalty coefficient, periodicity and number
of matching samples to test, were manually adjusted®®. The interaction
between the catalytic base and the acidic carbon on the ligand was
defined as covalent to mimic transition-state geometry. Theozyme
placement was carried out using the Rosetta Matcher algorithm*, All
positions inside or in the opening of the active site were allowed for
theozyme matching (Fig. 1, step 3).

Initial active-site design and filtering

After matching, Rosetta sequence design was performedinan 8 A shell
around the ligand and catalytic residues. The design was performed
under theozyme and PSSM constraints. To constrain the sequence
space, the catalytic residues of the IGPS family, as described by the
M-CSA database®, underwent Rosetta computational mutation scan-
ning, and all mutations with AAG., < +1R.e.u. compared with the
starting identity were included as allowed for design. The Rosetta
Match and design steps generated 10° to 10° designs for each starting
structure. Designs were filtered on the basis of a ‘fuzzy’-logic objective
function® that balanced potentially conflicting criteria: energy density
(systemenergy divided by the proteinlength), energy rank relative to
other designsin the same backbone, active-site vdW energy, catalytic
base vdW, ligand solvation and accuracy of theozyme geometry. vdW
energy is defined as the sum of the Rosetta atomistic energy terms
fa_atr and fa_rep (as weighted in Rosetta scoring function®?).

Active-site and core stabilization
To enhance active-site stability, we performed an enumeration of
all low-energy mutations in the active site with AAG g < +3 R.€.UL.

and chose the top variant. To ensure amino acid optimality through-
out the protein, a pSUFER*® scan was performed on the whole pro-
tein excluding the active site. Flagged positions, those with at least
five favourable amino acid substitutions (AAG;y.n < 0), were rede-
signed using FuncLib calculations®. The lowest-energy design was
selected.

Computational validation

Active-site preorganization was analysed by performing extensive
rigid-body minimization in the absence of the ligand. Structures in
which the catalytic base exhibited an r.m.s.d. > 1.2 A relative to the
ligand-unbound model were discarded. For the R2 series the work-
flow included an extra validation step comparing the bound model
and the AlphaFold2-predicted model. Designs were accepted if the
r.m.s.d. between the AlphaFold2 model and the Rosetta model was
lessthan1A.

Active-site optimization

Allfunctional variants identified through experimental screening were
optimized by identifying diverse and stable active-site constellations
using FuncLib®, FuncLib uses two filters to constrain the enumerated
sequence space: afilter based on homologous sequences and exclusion
of destabilizing point mutations. However, in de novo design of func-
tion, the homologous sequence filter is irrelevant and was omitted.
For experimental screening, the 10-15 lowest-energy designs were
selected.

Protein expression

The designed genes were ordered from Twist Bioscience, cloned into
pET28 plasmid with an N-terminal His-tag, followed by a bdSUMO
tag. Plasmids were transformed into Escherichia coli BL21 (DE3) cells.
For expression, 50 ml of 2YT medium supplemented with 50 pg ml™
kanamycin wasinoculated with 500 pl of overnight culture produced
from a single colony and grown at 37 °C until optical density (OD)4q
0.6-0.8. Overexpression was induced by adding 1 mM IPTG and the
cultureswere grown for 20 hat 16 °C and collected, and the pellet was
frozen at 20 °C. The cells were resuspended in basic buffer (50 mM
Tris-ClpH7.25,200 mM NaCl) supplemented with10 pg ml” lysozyme,
protease-inhibitor cocktail (Sigma) and benzonase, lysed by sonication
and centrifuged at20,000g for 30 minat4 °C. The soluble fraction was
loaded onto an Ni-NTA (nitrilotriacetic acid) column and washed twice
with basic buffer and 20 mM imidazole. The protein was subjected
to overnight on-column Sumo protease cleavage at 4 °C (5pg ml?in
basic buffer). Protein purity was assessed by SDS-PAGE. Protein con-
centration was determined using Pierce BCA protein assay kit. For
crystallography, large-scale expression was performed in 1,500 ml of
culture. After Ni-NTA purification and bdSUMO cleavage, the protein
was purified by gelfiltration (HiLoad 26/600 Superdex75 preparative
grade column, GE).

Activity assay and determination of kinetic parameters

Product formation was monitored spectrophotometrically at 380 nmin
200-plreaction volumes using 96-well plates. For initial screening, the
reactions were started by adding 150 pl of 1 mM 5-nitrobenzisoxazole
in basic buffer to 50 pl of purified protein. 5-Nitrobenzisoxazole was
used from 0.1 M stock in acetonitrile. For the kinetic characteriza-
tion, 150 pl of 5-nitrobenzisoxazole at various concentrations (final
0.05-0.75 mM in basic buffer with 1 mM acetonitrile) was mixed
with 50 pl of purified protein. Kinetic parameters were obtained by
fitting the data to the Michaelis—-Menten equation v, = k., [E],[S]o/
([Sl, + Ky). At low substrate concentrations the data were fitted to
the linear regime of the Michaelis—-Menten model v, = [SIo[Elokca/ K
and k.,/Ky values were inferred from the slope. All measure-
ments in the main text were performed in biological duplicates or
triplicates.
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Thermal stability

Apparent T,, measurements were performed using nanoscale differen-
tial scanning fluorimetry (nanoDSF) experiments (Prometheus NT.Plex
instrument, NanoTemper Technologies). The temperature ramp was
20-95°C with 1.0 °C min~'slope.

Crystallization, data collection and structure determination
Crystals were grown at 19 °C using the sitting-drop vapour diffu-
sion method. Diffraction data were collected from a single crystal
flash-cooled to 100 K, using awavelength of 1.34 A. Data were collected
using an in-house Rigaku liquid-metal-jet X-ray Synergy System with
a HyPix Arc 150° detector. AlphaFold2 (ref. 57) was used to generate
all three models for molecular replacement (Extended Data Table 2).
Initial models were iteratively rebuilt and refined using COOT® and
PHENIX®*. Model geometry was evaluated using MOLPROBITY®. Atomic
coordinates and structure factors for Des27.7,R2.Des39 and R2.Des49
are deposited in the PDB database under accession numbers 9HVB,
9HVH and 9HVG, respectively.

Specific crystallization conditions

Des27.7: the well solution contained 0.15 M lithium sulfate monohy-
drate, 0.1 Mcitricacid (pH3.5) and 18% polyethylene glycol (PEG) 6000.
Diffraction datawere collected to 2.0 A. Des27.7 crystallized in the P6,
space group, with one subunit in the asymmetric unit.

R2.Des39: the well solution contained 0.07 M citric acid, 0.03 M
Bis-Tris propane (pH 3.4) and 14% PEG 3350. Diffraction data were col-
lectedto2.1Aresolution. R2.Des39 crystallized in the P2, space group,
with two subunits in the asymmetric unit.

R2.Des49: the well solution contained 8% Tacsimate (pH 7.0) and
20% PEG 3350. Diffraction data were collected to 1.9 A resolution.
R2.Des49 crystallized in the C222, space group, with one subunit in
the asymmetric unit.

MD and EVB simulations

System setup. Two designed Kemp eliminases, Des27 and Des27.7,
were simulated in both their ligand-bound and unbound forms,
using MD simulations to model dynamics, and EVB simulations®.
All simulations were initiated from the FuncLib design models for
eachvariant. Ligand-bound simulations were performed in complex
with the substrate 5-nitrobenzisoxazole. The partial charges for the
substrate were calculated using restrained electrostatic potential®®
fitting at the HF/6-31 G(d) level of theory with Antechamber®, on
the basis of gas-phase geometries optimized at the B3LYP/6-31 G(d)
level of theory in Gaussian 16 Rev. B.01 (ref. 68). All other force field
parameters for the substrate were obtained from the General AMBER
ForceField (GAFF2)®. Residue protonation states were checked using
PROPKA 3.0 (refs. 70,71) to estimate sidechain pK,s, coupled with
visual examination using PyMOL, on the basis of which all residues
were kept in their standard protonation states at physiological pH.
For simulations of the unbound system, the catalytic residue Asp162
was modelled in its protonated form. All systems were solvated in a
truncated octahedral water box containing OPC water molecules’,
extending 11.0 A from the protein in all directions. Neutralization
was achieved using 12 Mg?* and 12 CI” counterions for the three
variants. Protonation patterns of histidine residues for each system
are collected in Supplementary Table 5. Non-standard substrate
parameters are provided in Supplementary Table 6 and in the Zenodo
data package available at https://doi.org/10.5281/zenodo.14563437
(ref.73).

Classical MD simulations. All MD simulations in this work were per-
formed using the HIP-accelerated version of Amber24 (ref. 74) using
the ff19SB force field” and the OPC water model’. MD simulations for
all systems followed the same protocol, used also in previous work

modelling designed Kemp eliminases®. For a detailed description,
see ref. 50. In brief, each trajectory was first energy minimized with
100 steps of the steepest-descent algorithm, followed by 900 steps of
conjugate gradient minimization, applying a 100-kcal mol™ A2 res-
traint to all solute (protein and substrate) atoms. The system was
then heated from 50 to 300 K in an NVT ensemble using simulated
annealing, reaching 300 K within the first 100 ps and continuing for
atotal of 1 ns with a 1-fs time step. Langevin temperature control™
was used with a collision frequency of 1 ps™. During this stage, the
100-kcal mol™ A2 solute restraints were maintained and subsequently
reduced to10 kcal mol™ A%inlater equilibration steps. A second energy
minimization and heating step followed, with positional restraints
applied to solute heavy atoms. During subsequent equilibration, the
restraints were progressively reduced from10 to1to 0.1 kcal mol™ A2
before being fully removed. The systems, now with no restraints
applied, underwent final equilibration for 1 nsin an NPT ensemble
(300 K,1atm) using a Berendsen barostat” with a 1-ps pressure relax-
ation time and Langevin temperature control (collision frequency
of 1 ps™). The SHAKE algorithm” was applied to constrain all bonds
involving hydrogen atoms, and all equilibration simulations used a1-fs
time step. Production MD runs were performed using a 4-fs time step,
enabled by hydrogen mass repartitioning’® and the SHAKE algorithm’®,
withan 8 A direct space non-bonded cutoff, Langevin temperature con-
trol (collision frequency of 1 ps™) and a Berendsen barostat (pressure
relaxation time of 1 ps). Equilibration of these trajectories is shownin
Extended Data Fig. 4d,e. The final production trajectories were 1-pus
long for each system, with 5 independent replicas per system, result-
ing in atotal of 5 s of simulation time per system and 15 pis across all
systems.

EVB simulations. EVB simulations were performed on the Des27
and Des27.7 variants, using both substrate conformers (‘in” and
‘out’; Fig. 3¢) observed as being dominant in the MD simulations,
and following the same protocol described in detail in ref. 50. Reac-
tive in and out conformers were extracted from our MD simula-
tions and overlaid onto the FuncLib predicted structures of Des27
and Des27.7 as starting coordinates for the EVB simulations. Before
the EVB simulations, in all cases, the enzyme-substrate complex
was minimized with Amber24 (ref. 74) in vacuum, with 2,500 steps
of the steepest-descent algorithm, followed by 2,500 steps of con-
jugate gradient minimization, applying 10-kcal mol™ A positional
restraints on all heavy (non-hydrogen) atoms. The minimization
was repeated with the same steps, with 5-kcal mol™ A2 positional
restraint on protein C,-atoms, and substrate heavy atoms, and with
twice as many steps, keeping the restraint only on the substrate heavy
atoms.

AllEVB simulations were performed using the Q6 simulation pack-
age®’, the OPLS-AAforce field®, the TIP3P water model® and the surface
constrained all atom solvent (SCAAS) model® to describe solvent.
Long-range interactions were described using the local reaction field
approach®, Protonation states of ionizable residues within the explicit
simulation sphere, as well as histidine protonation patterns (both of
whichwere validated by PROPKA 3.0 (refs. 70,71) and visual inspection),
canbe found in Supplementary Table 7. Each system was simulated in
30 replicas of 30-ns equilibration, with 5-kcal mol™ A2 distance-based
harmonic restraints applied between the substrate hydrogen donor
carbonandthe acceptor oxygen of Asp162. Each equilibration was fol-
lowed by10.2 ns of EVB simulations (200-ps window over 51discrete EVB
windows), carried out without the distance restraint applied, leading
to a cumulative 612 ns of EVB simulation time per system (including
‘in”and ‘out’ substrate conformations), and 3.6 s of EVB equilibration
timeand1.2 ps of EVB simulation time across all systems studied in this
work (4.8 ps of simulation time in total). The corresponding r.m.s.d.
values of the equilibration phase (calculated with the QCalc6 module
of Q6) are shown in Extended Data Fig. 8a,b. We note that in one of
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the initial 30 EVB trajectories for Des27.7 with the substrate in the out
conformation, we observed active-site distortion with the catalytic
Asp moving into a non-reactive conformation. This trajectory was
excluded from further analysis, with an extra trajectory being run to
create afull set of 30 replicas.

Representative stationary points for the KE reaction catalysed by
Des27, extracted from EVB simulations of this system, are shown in
Extended Data Fig. 8c,d. To extract the conformations representing
each stationary point, all 30 replicas were evaluated together. The
MDTraj software (version 1.10.0)* was applied to convert the trajec-
tories toa CPPTRAJ compatible format, and clustering was performed
based on the r.m.s.d. of the substrate heavy atoms, using the average
linkage clustering method, with an e value of 0.75. We note that the key
stationary points for Des27.7 are visually similar to those for Des27.
Sample input files, parameter files, starting structures and simula-
tion snapshots have allbeen made available on Zenodo at https://doi.
org/10.5281/zenodo0.14563437 (ref. 73).

Simulation analysis. Unless otherwise stated, all MD analyses were
performed using the CPPTRA) module® of AmberTools24 (ref. 87).
Trajectory frames were extracted every 400 ps, and results (where
applicable) are reported as averages and standard deviations over
5 x 1-ps trajectories per system. The fractions of unbound and bound
modes during the simulations were determined by counting trajec-
tory frames. A bound mode was defined on the basis of the distance
between the ligand and the centre of mass of the active site, includ-
ing residues 54, 84, 86, 92,136,162, 183 and 236. A threshold of 4 A
was defined to classify the frames into unbound or bound. Unbound
modes have left the active-site pocket, but not necessarily dissoci-
ated fromthe proteinitself (sampling non-productive conformations
out of the active site). The substrate orientation was defined using
the distance between the C,-atom of residue Leu41 and the N1 and
N2 atoms of the substrate. Conformations with a Leu41-N1distance
between 0 and 15 A and L41-N2 distance between 15 and 20 A were
classified as ‘out’, and otherwise as ‘in’. Pocket volumes of Des27 and
Des27.7 systems were calculated using MDPocket®®%?, with snapshots
taken every 4 ns of the simulations for unbound systems. Addition-
ally, the volume of the ligand was calculated using the mol_volume
package in VMD®°, Finally, PyMOL was used for all visualization
analyses.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data generated and analysed during the study are available within
the paper andits Supplementary Information. The crystal structures of
Des27.7,R2.Des39 and R2.Des49 are deposited in the Protein Data Bank
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crystal structures for all IGPS enzymes are available through the PDB
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Extended DataFig.1| Expression and stability of the initial design round. For gelsource data, see Supplementary Datal.b. Temperature melts of

a.66designs were solubly expressed. High-functioning designs wereexpressed  representative cooperatively folded (left) and unfolded (right) designs.
independently 2-5 times; otherwise, protein expression was performed once. Alltemperature melts are performed in technical duplicates.
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Score Expect Method Identities Positives Gaps
196 bits(499) 7e-58 Compositional matrix adjust. 118/259(46%) 168/259(64%) 7/259(2%)

Query 2 PSALDAIVADVREDVAAREAVVPFDEIKERAARAPPPRDVLAALRAPGVGIIAVYLRKSP 61
Shjct 10 «eV.eS..DG.uuLoVeoAD e e R...K.A..H..M.T..... I.V..EVK.R.. 69

Query 62  SGLDVE--RDPIEYAKT-AEKYAVALVVITDEKYHNGSYEDLEKIRSAVDIPVICFDFIV 118
Shjct 70 .KG.LATIS..A.L.ASY..GG.RVIS.L.EQRRFH..LA..DAV.A..... ILRK.... 129

Query 119 DPYQIYLARAYQADAIVLILSVLDDEQYRQLAAVAHSLNMGVIVDVHTEEELERALKAGA 178
Shjct 130 S...VHE...HG..LVL..VAA.EQNVLVA.LDRVE..G.TAL.E......AD...E... 189

Query 179 EIIGIVNQDLKTFEVDRNTAERLGRLARERGFTGVLLAIGGYSTKEELKSMRGL-FDAVV 237
Shbjct 190 GL..VNARN.H.L..N.SI---F.QI.PGLPNDVLRV.ES.VRGPGD.LTYA.WGA...L 246

Query 238 IGESLMRAPDPEKAIRELV 256
Shjct 247 V..G.VTSG..QS.V.S.. 265

Extended DataFig. 3 |Protein BLAST search using the Des27.7 sequence as query against the NCBI “nr” database. Top hitin nr. Mutations areinred, hyphens
indicateinsertions and deletions.
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Extended DataFig. 4 | Simulations of dynamics, Asp162 conformations,
and active-site pocket volume of Des27 and Des27.7. a.Joint distribution of
the Asp162 conformational space in the unbound state. Conformation sampled
by the y,and x, dihedral angles of the Asp162 side chain along MD simulations of
theDes27 and Des27.7.In Des27 there are three distinct metastable Asp162
conformations, which areillustratedinthe right panel. The conformation
numberslabeled onthe plots correspond to the stick representations onthe
right, with 5-nitrobenzisoxazole depicted in white sticks for reference.
b-c.Visual representation of the calculated active site pocketsinb. Des27 and

c.Des27.7, using MDPocket isosurfaces. Yellow spheres represent the pocket
volume. Aspl62isshowninsticks. Des27.7 exhibits an active site pocket that
canbetteraccommodate 5-nitrobenzisoxazole.d-e. Root meansquare
deviations (rmsd, A) of the C,-atoms from MD simulations. Datawas collected
every400 psfromSreplicas of 1puslengtheach. The graylines show the five
individual runs, and the colored solid line shows arolling average of the rmsd
fromallfivereplicas for each system.d.rmsd for unbound systems Des27 (left),
Des27.7 (right) e. rmsd for bound systems Des27 (left), Des27.7 (right).
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Extended DataFig. 5| Time evolution ofthe active site center of mass (COM)
andligand distance during total 5 x1 ps of MD simulations. a. Des27 and

b.Des27.7. The dotted gray line at 4 Amarks the threshold for defining the ligand
asbeing within the activesite. Intwo out of ten replicas across the two systems,
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we observe ligand dissociation without rebinding towards the end of the
trajectory onthe timescale of our simulations;inathird, in the case of Des27.7,
we observe substantial dissociation mid-trajectory with ligand rebinding
within the simulation timeframes.
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Extended DataFig. 6| Model and crystallographic structure of Des27.7,
Des39 and Des49. The substrate, 5-nitrobenzisoxazole, in yellow sticks. Loop
regionsinwheat represented misfolded/missing regionsin the experimentally
determined structure.a.Des27.7 model. b. Des27.7 crystallographic structure
(PDB9HVB). Wheat-colored loop corresponds totheonein panelb.c.R2.Des39
model.d.R2.Des39 crystallographic structure (PDB9HVH).R2.Des39
crystallized asadimerin the asymmetric unit with few crystallographic contacts
that stabilize the wheat-colored loop. The two monomers arein pink and white.
Wheat-colored loop correspondsto the onein panel c. e. Active site model

(blue sticks) usstructure (white sticks). rmsd between the active sitesis 0.61A.
Catalytic Glul68 fits the modeled rotamer and there are only subtle rotameric
changesinother active-siteresidues. These changes donotinduce clashes with
themodeled ligand.f. Asp62 stabilizes an alternative conformationin the
crystalstructure. Tyr97 (pink sticks) is from the second monomer. Colorsasin
paneld.g.R2.Des49 model. h.R2.Des49 crystallographic structure (PDB 9HVG).
Wheat-colored loop corresponds to the one in panel g.i. Active-site model (blue
sticks) vsstructure (white sticks). rmsd between the active sitesis 0.82A. Trpl15
acquiresarotamer different than modeled and might overlap with the ligand.
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Extended DataFig.7| Comparison of substrate-bound and unbound
structure of Des27.7 Phell3Leu. a. Aslight sidechain conformational change
isobserved, withanrmsd of 0.28 A between the substrate-bound and unbound
models of Des27.7 at position 113. b. No sidechain shiftis observed in the case of
Des27.7 Leull3. White sticks represent the substrate bound model, wheat sticks
representthe unbound model, blue sticks represent unbound crystal structure.
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Extended DataFig. 8| EVB equilibration dynamics and representative
structures of the Des27 system. a-b Root mean square deviations (rmsd, A) of
allsolute atoms of the Des27 and Des27.7 calculated for the equilibration phase
prior to our EVB simulations. Data were collected every 10 ps from the initial
equilibration runs and shown as averages and standard deviations over ten
individual 25 ns MD simulations per system (i.e., 750 ns cumulative simulation
time per system). The average rmsd per systemis denoted by the colored solid
line, and the standard deviations per point over all trajectories are illustrated
by theshaded areaoneach plot.a.rmsd for EVB equilibration from “out”
substrate conformation. b. rmsd for EVB equilibration from “in” substrate

Des27
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conformation. c-d EVB Representative structures of the Des27 system. c. For
the “in” ligand conformation. d. For the “out” ligand conformation. Michaelis
complex (MC, left panel), transition state (TS, middle panel), and product
complex (PC, right panel) for the KE reaction catalyzed by this enzyme, extracted
fromEVB trajectories of thisreaction. Structures were selected based on
clustering analysis. The clustering was performed at the MC, TSand PC
independently, in order to obtain representative structures for each state.
Donor-acceptor distances (A) are shown for each stationary point. These values
areaverages of the snapshots takenevery 5 ps of the trajectory, determined
based onthe combined evaluation of 30 replicas.



Extended Data Table 1| Apparent thermal stability and catalytic parameters of designed Kemp eliminases

ke (s7) K. (mM) ka/Ky (M-s7) T. (°C)

Des27 0.07+£0.02 0.5+0.05 131 £37 79
Des27.1 n.c. n.c. 344 + 94 73
Des27.2 n.c. n.c. 21 83
Des27.3 1.40 1.00 1,294 81
Des27.4 0.03 0.78 59 +30 82
Des27.5 n.c. n.c. 54+4 83
Des27.6 n.c. n.c. 90 +49 84
Des27.7 2.85+1.20 0.22+0.06 12,696+ 1738 85
Des27.9 3.10+£0.14 1.55+0.64 2,136+692 82
Des27.10 n.c. n.c. 327+ 129 81
Des27.11 0.64+023 0.89+0.09 718+183 80
Des27.12 5.15+247 130+0.28 3,837 £ 864 80
Des27.13 245+148 1.15+£021 2,014+907 86
De61 0.3 1.3 213 65
Des61.1 0.85+0.02 027+0.06 3,205+ 555 63
Des61.2 0.65 0.48 1,347 58
Des61.3 0.6 0.76 770 70
Des61.4 n.d. n.d. n.d. 67
Des61.5 n.c. n.c. 542 62
Des61.6 0.77 0.43 1,778 58
R2.Des39 n.c. n.c. 92 81
R2.Des39.2 n.c. n.c. 298 + 58 81
R2.Des39.2.1 n.c. n.c. 1,136 n.m.
R2.Des39.2.17 n.c. n.c. 1,121 n.m.
R2.Des39.2.18 n.c. n.c. 2,044 +£ 163 n.m.
MA n.d. n.d. n.d. 60
MA + PROSS n.d. n.d. n.d. 71
MA + active site 24+1 0.80+£0.23 2,911 £642 62
MA+ PROSS + active site 3.8 £ 1 0.34+£0.06 11,531+4,323 79
Des27.7 D162A n.d. n.d. n.d. >100
Des27.7 F113M 6.7+6 0.72+0.1 11,511 +£8,971 85
Des27.7 F113L 30.0+8 0.25+0.03 123,274 +£40,707 84

*n.c. not calculable; n.d. not detectable; n.m. not measured; MA-modular assembly.
All kinetic measurements were obtained at 25°C and pH 7.3. Data are means+SD of 2-5 biological replicates; all measurements in technical duplicates.
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Extended Data Table 2 | Data collection and refinement statistics (molecular replacement)

Des27.7 R2.Des39 R2.Des49
Data collection
Space group P6, P2 C222,
Cell dimensions
a, b, c(A) 98.54, 98.54, 40.48 48.84 69.55 79.60 48.53, 88.94, 131.18
a,b,g (°) 90.00, 90.00, 120.00  90.00, 101.04, 90.00 90.00, 90.00, 90.00
Resolution (A) 25.23-2.0 (2.07- 21.24-2.1 (2.17- 21.06-1.9 (1.97-
2.00)* 2.10) 1.90)

R 0.114 (0.507) 0.104 (0.377) 0.066 (0.384)
1/sl 19.7 (6.0) 17.6 (4.3) 26.2 (4.0)
Completeness (%) 99.86 (100.00) 98.47 (99.97) 99.50 (100.00)
Redundancy 15.0 (16.4) 6.6 (6.0) 6.9 (6.6)
Refinement
Resolution (A) 2.0 2.10 1.90
No. reflections 15,395 30,227 22,668
R/ R 0.1915/0.2419 0.2034 /0.2556 0.1975/0.2591
No. atoms 1837 4205 2159

Protein 1726 3939 2013

Ligand/ion 10 0

Water 101 266 146
B-factors

Protein 24.06 28.77 33.80

Ligand/ion 27.16

Water 29.20 29.22 41.01
R.m.s. deviations

Bond lengths (A) 0.007 0.008 0.007

Bond angles (°)  0.77 0.95 0.89
Ramachandran

Favored (%) 97.73 96.72 98.02

Allowed (%) 2.27 2.70 1.98

Outliers (%) 0.00 0.58 0.00

*Values in parentheses are for highest-resolution shell.
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All tools used for molecular dynamics are listed in methods section and are available at DOI: 10.5281/zenodo.14563437
All nano-DSF data were analysed using the Prometheus NT. 48 default software and nano-DSF graphs were made using Python 3.6.
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For MD simulations: Amber24
For EVB simulations: Q6
For protonation states: Propka 3.0
For partial charges: Gaussian 16 Rev. B.01
For MD analysis: CPPTRAJ: Trajectory Analysis. V6.18.1 from AmberTools24
For pocket volume: MDpocket from fpocket 4.2
For ligand volume: VMD version 1.9.4
For visualization: PyMOL 3.1.1

Python packages used:
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Duplicates or greater as specified in figure legends. Sample size between 2-5 was chosen based on experimental effort required to express,
produce and experimentally verify the biochemical parameters of the enzymes.

Data exclusions  Inone of the 30 EVB trajectories for Des27.7 with the substrate in the out conformation, we observed active-site distortion with the catalytic
Asp moving into a non-reactive conformation. This trajectory was excluded from further analysis, with an additional trajectory being run to
create a full set of 30 replicas. Exclusion criteria were not pre-established.

Replication All specified in the legends and methods section.
Biochemical assays used 2—5 biological replicates.
MD simulations employed 5-10 replicas;
EVB simulations used 30 replicas.

Randomization  Randomization is not relevant to this study. In vitro biochemical assays did not involve treatment groups or subjective measurements
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