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Complete computational design of high- 
efficiency Kemp elimination enzymes

Dina Listov1, Eva Vos2, Gyula Hoffka3,4, Shlomo Yakir Hoch1, Andrej Berg5, 
Shelly Hamer-Rogotner6, Orly Dym6, Shina Caroline Lynn Kamerlin2,3 & Sarel J. Fleishman1 ✉

Until now, computationally designed enzymes exhibited low catalytic rates1–5 and 
required intensive experimental optimization to reach activity levels observed  
in comparable natural enzymes5–9. These results exposed limitations in design 
methodology and suggested critical gaps in our understanding of the fundamentals 
of biocatalysis10,11. We present a fully computational workflow for designing efficient 
enzymes in TIM-barrel folds using backbone fragments from natural proteins and 
without requiring optimization by mutant-library screening. Three Kemp eliminase 
designs exhibit efficiencies greater than 2,000 M−1 s−1. The most efficient shows more 
than 140 mutations from any natural protein, including a novel active site. It exhibits 
high stability (greater than 85 °C) and remarkable catalytic efficiency (12,700 M−1 s−1) 
and rate (2.8 s−1), surpassing previous computational designs by two orders of 
magnitude1–5. Furthermore, designing a residue considered essential in all previous 
Kemp eliminase designs increases efficiency to more than 105 M−1 s−1 and rate to 30 s−1, 
achieving catalytic parameters comparable to natural enzymes and challenging 
fundamental biocatalytic assumptions. By overcoming limitations in design 
methodology11, our strategy enables programming stable, high-efficiency, new-to- 
nature enzymes through a minimal experimental effort.

Natural enzymes are exceptionally versatile, selective and highly effi-
cient catalysts. Yet, computational design of enzymes that match this 
proficiency, particularly for non-natural reactions, remains elusive11.  
Recent advances in computational design have enabled rapid and 
effective optimization of natural enzyme stability, expressibility, cat-
alytic rate and selectivity through fully computational workflows12,13. 
Furthermore, advances in fold design enabled the grafting of natural 
or engineered active sites into idealized de novo backbones14,15. By con-
trast, enzymes designed de novo, that is, without recourse to naturally 
occurring enzymes that catalyse the same reaction, were orders of 
magnitude less active relative to comparable natural ones1–5,11. Previous 
studies have therefore used repeated cycles of laboratory evolution, 
involving high-throughput screening of mutants, to reach effective 
enzymes5–9. Such cycles are inefficient and are restricted to reactions 
that can be assayed in medium-to-high-throughput fashion11. Criti-
cally, continuing to rely on large-library screening of random mutants 
suggests that our understanding and control of the fundamentals of 
biocatalysis are far from complete.

The Kemp elimination (KE) reaction (Fig. 1a), a prototype for natu-
ral base-catalysed proton abstraction, has long served as a model for 
studying de novo enzyme design, as no natural enzyme is known to 
have been evolved for this reaction. Despite increasing sophistication 
in protein design methods, computationally designed Kemp eliminases 
exhibited low catalytic efficiencies and rates (kcat/KM 1–420 M−1 s−1 and 
kcat 0.006–0.7 s−1, respectively)1,3 and required further optimization 

by iterative mutational library screening to achieve catalytic param-
eters comparable to7 or above6 the median values of enzymes in nature 
(kcat/KM 105 M−1 s−1, kcat 10 s−1)16.

The underlying reasons for the low efficiencies of de novo designed 
enzymes have been intensely studied10,17–19. These analyses revealed that 
the designed active sites exhibited significant structural distortions 
relative to the design conception17,19. Notably, catalysis is extremely 
sensitive to molecular details, and shifts of the catalytic constella-
tion by a few degrees or tenths of an Ångstrom from optimality may 
translate into orders of magnitude decreases in efficiency20. Further-
more, designs often exhibited low stability and expressibility7, limit-
ing their ability to accommodate activity-enhancing mutations7,21. 
Further concerns were that fixed-backbone design methods fail to 
precisely position non-native catalytic groups1; the molecular details 
of the designed transition state (theozyme) were uncertain6,22; and that 
protein dynamics23 and long-range electrostatic interactions may be 
necessary to achieve high catalytic efficiency but are unaccounted for 
in the design process6,24,25.

Recent analyses suggested that overcoming the shortcomings 
of de  novo enzyme design methodology may require artificial 
intelligence-based approaches, more accurate physics-based ener-
getics and data from high-throughput screening11,26. Here, we test 
whether recent developments in atomistic protein design that allow 
accurate backbone27 and sequence28,29 design in natural protein folds 
address the limitations of de novo enzyme design methodology without 
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resorting to experimental optimization or big-data analyses. To directly 
compare with previous design approaches, we apply the strategy to 
the KE reaction and generate enzymes that rival laboratory-evolved 
eliminases without recourse to high-throughput screening or itera-
tive mutagenesis.

Designing stability, foldability and activity
Our working hypothesis is that effective enzyme design demands con-
trol over all protein degrees of freedom to establish stability, foldability 
and accurate positioning of the theozyme. Foldability, the ability of 
the protein to fold uniquely into the design conception, has been a 
long-standing challenge for de novo enzyme design. Over the past dec-
ade, foldability has been partly addressed through de novo fold design, 
enabling the generation of numerous stable and accurately designed 
proteins30–33. These design methods, however, maximize foldability, 
generating backbones that are dominated by ideal secondary structure 
elements that lack the non-ideal elements that may lower foldability 
but are nonetheless needed for sophisticated functions12,34. Until now, 
functionalizing de novo generated folds has produced enzymes that 
exhibited rates (kcat) well below 1 s−1. In certain cases, de novo designs 

exhibited high catalytic efficiencies (104 to 105 M−1 s−1)15,35 but only 
through very low KM values (0.3–30 µM). Low KM values indicate tight 
binding of the substrate in its ground state, suggesting that the designs 
optimize molecular recognition of their substrates before the catalytic 
step. By contrast, turnover numbers (kcat) reflect the chemical trans-
formation following substrate binding and are a more stringent test 
of the ability to design high-efficiency catalysts rather than effective 
binders36. The persistently low kcat values, including in recent studies15,35, 
highlight the challenge of achieving catalytic control in enzyme design.

Given these limitations, we focused on the TIM-barrel fold, which is 
one of the most prevalent protein folds found among enzymes37,38. In 
this fold, the residues of the central β barrel are oriented towards the 
active-site cavity, providing many opportunities for optimally placing 
the catalytic and substrate-binding groups. We reasoned that despite 
the challenges in designing accurate and functional TIM barrels39,40, 
this fold provides an attractive framework for engineering new enzy-
matic functions.

We developed a computational method that can be applied, in prin-
ciple, to any reaction, given a precomputed theozyme. The workflow 
starts by generating thousands of backbones using combinatorial 
assembly and design (Fig. 1b, step 1), which combines fragments from 

Modular assembly Stability design
Geometric matching and

filtering 

Active site and core position
stabilization

Expression

Active-site optimization Experimental screening

Purification

a

b

56 4

3

f = 1

21

[Substrate]

A
b

so
rb

an
ce

(3
80

 n
m

)
 

O

N

H

O2N

O2N
NO2

B

O

N

B

H

O-

N

BH+

δ+

δ–

1 + e
x–


∏

Fig. 1 | Key steps in the design workflow. a, KE of 5-nitrobenzisoxazole. ‘B’ is a 
base, implemented as the sidechain of Asp or Glu. b, Thousands of backbones 
are generated through combinatorial backbone assembly (step 1) and stabilized 
using PROSS29 (step 2, red spheres). Geometric matching43 and active-site 
(purple spheres) optimization with Rosetta yield millions of designs that are 

filtered by balancing energy terms that contribute to stability and activity 
(step 3). A few dozen top designs are chosen for further core (green spheres) 
and active-site stabilization (step 4). Following experimental screening (step 5),  
we apply FuncLib28 to the active sites of select functional designs (step 6). 
Illustrations in b (step 5) were created using BioRender (https://biorender.com).

https://biorender.com
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homologous proteins to generate new backbones27,41,42. Subsequently, 
Protein Repair One Stop Shop (PROSS) design calculations are applied 
to stabilize the designed conformation29 (Fig. 1b, step 2). The resulting 
structures show backbone variations within the active-site pocket, 
increasing the likelihood of obtaining foldable backbones that position 
the theozyme and supporting residues in a catalytically competent and 
energetically relaxed constellation. Following backbone generation, 
we implement geometric matching43 to position the KE theozyme in 
each of the designed structures and optimize the remainder of the 
active site using Rosetta atomistic calculations44, in effect mutating 
all active-site positions, including the vestigial catalytic residues of 
the natural enzyme (Fig. 1b, step 3). The workflow results in millions of 
designs which are filtered using a ‘fuzzy-logic’ optimization objective 
function45. This approach balances potentially conflicting objectives 
that are critical for design of function, such as low system energy and 
high desolvation of the catalytic base. Selecting a few dozen top-scoring 
designs, we next stabilize the active site and positions in the protein 
core46 (Fig. 1b, step 4), resulting in designs with more than 100 muta-
tions from any natural protein. Unlike previous approaches, this work-
flow emphasizes stability across the entire protein. It capitalizes on 
the ability to generate thousands of stable, natural-like TIM barrels 
that exhibit backbone diversity in the active site27 and on automated 
scaffold29 and active-site28 sequence design methods that have been 
validated on dozens of natural enzymes12.

Efficient, stable and accurate Kemp eliminases
We applied our pipeline to the indole-3-glycerol-phosphate syn-
thase (IGPS) enzyme family, which can sterically accommodate the 
5-nitrobenzisoxazole substrate and was previously used to design 
Kemp eliminases1,7. The theozyme builds on a catalytic constellation 
derived from quantum-mechanical calculations47,48. It includes a nucleo-
phile, such as Asp or Glu, which serves as a base for proton abstraction 
from the substrate, and an aromatic sidechain that forms π-stacking 
interactions with the substrate in the transition state (Fig. 1b, step 3). 
The latter interaction has been used in all previous computational Kemp 
eliminase design studies to promote binding to the aromatic benzisoxa-
zole rings1,3. Typical design studies also introduced a polar interaction 
with the isoxazole oxygen to stabilize the developing negative charge 
in the transition state1,3. We excluded this requirement from our the-
ozyme because a water molecule can satisfy it, and a misplaced polar 
group could reduce reactivity by lowering the pKa of the catalytic base.

We selected 73 designs for experimental testing. The designs ranged 
from 245 to 268 amino acids and were diverse, with 30–93% sequence 
identity to one another and 41–59% identity to any natural protein.  

In total, 66 designs were solubly expressed and 14 showed cooperative 
thermal denaturation (Extended Data Fig. 1). Three designs showed 
measurable KE activity in an initial screen, with the top two designs, 
Des27 and Des61, exhibiting kcat/KM values of 130 and 210 M−1 s−1, respec-
tively, and kcat < 1 s−1 (Extended Data Fig. 2, Extended Data Table 1 and 
Supplementary Table 1).

The catalytic rate and efficiency of these designs are on a par with 
previously designed enzymes1,3, falling short by several orders of 
magnitude from comparable natural eliminases and from designed 
Kemp eliminases that were optimized through laboratory-evolution 
campaigns6,7. To optimize these designs computationally, we applied 
FuncLib to active-site positions, excluding the theozyme residues. The 
FuncLib method restricts amino acid mutations to those likely to appear 
in the natural diversity of homologous proteins28. To develop an optimi-
zation strategy for a de novo reaction, we removed all homology-based 
restrictions in the active site, thus using atomistic energy as the sole 
optimization objective function. We selected 6 and 12 low-energy 
designs for experimental testing for Des61 and Des27, respectively, 
each comprising 5–8 specific mutations relative to their origin. All 
designs exhibited high expression yields and showed cooperative dena-
turation (Extended Data Fig. 1 and Supplementary Table 1). One design 
derived from Des61 showed catalytic efficiency of 3,600 M−1 s−1 and kcat 
of 0.85 s−1. Remarkably, eight designs on the basis of Des27 showed 
increased catalytic rates by 10–70-fold (Extended Data Table 1 and 
Supplementary Table 1), with Des27.7, harbouring seven mutations rela-
tive to Des27, reaching kcat/KM 12,700 M−1 s−1 and kcat 2.85 s−1, a rate that 
is an order of magnitude greater than that of any previously reported 
computational design3 (Fig. 2a,b). This design diverges significantly 
from natural IGPSs, and a pairwise sequence alignment to the closest 
protein in the non-redundant sequence database reveals 141 mutations 
and multiple insertions and deletions (Extended Data Fig. 3). It also 
diverges in sequence and backbone from previously designed Kemp 
eliminases in natural IGPS scaffolds1 and features a different active-site 
constellation and position.

We analysed the structural models of Des27 and its FuncLib-derived 
variants to understand the mechanistic basis for the differences in cata-
lytic efficiency, which span three orders of magnitude, using the Rosetta 
force field and molecular dynamics (MD) simulations. A sequence 
alignment of the FuncLib designs shows that Ile136Val, Ile216Val and 
Val183Ile are associated with high catalytic efficiency (Fig. 3a). Con-
trasting the structure models of Des27 and Des27.7 reveals that these 
mutations may increase hydrophobic packing around the catalytic 
Asp162, probably improving its preorganization and desolvation and 
increasing its reactivity (Fig. 3a,b, top). Indeed, the Rosetta-computed 
van der Waals (vdW) energy of Asp162 is highly correlated with catalytic 
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Fig. 2 | Improving catalytic efficiency through low-throughput screening 
of FuncLib designs. a, Catalytic efficiencies of 12 FuncLib designs encoding 
5–8 active-site mutations relative to Des27. Data represent mean ± s.d. of 2–5 
biological replicates, except for Des27.2 and Des27.3 (n = 1). b, Michaelis–Menten 

analysis of Des27.7. Data are the mean of two technical repeats. c, The crystal 
structure of the ligand-unbound Des27.7 (grey, PDB entry 9HVB) verifies the 
accuracy of the designed active site (blue) with r.m.s.d. < 0.5 Å.
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efficiency among the FuncLib designs (Spearman ρ = −0.88, P = 6 × 10−5; 
Fig. 3a). As further support, MD simulations show that Asp162 is confor-
mationally dynamic in the ligand-unbound models, sampling multiple 
metastable conformations, and that the fraction of non-productive 
conformations decreases in Des27.7 relative to Des27 (Extended Data 
Fig. 4a). Furthermore, the Des27 model suggests that Leu236 may partly 
overlap with the substrate (Fig. 3b, middle), and that the mutation to Val 
in Des27.7 would alleviate this unfavourable interaction while increasing 
the volume of the pocket from 717 to 829 Å3 (Extended Data Fig. 4b,c). 
Finally, Ile54Val, Phe92His and Leu183Val may improve the solvation of 
the polar nitro moiety of the substrate (Fig. 3b, bottom), and Phe92His 
may enable water-mediated polar interactions with the nitro group. 
Thus, although the seven mutations in Des27.7 are mostly conserva-
tive, their aggregate markedly improves the catalytic parameters by 
reshaping the active-site pocket for better substrate recognition and 
optimizing the preorganization and reactivity of the catalytic base.

To analyse the stability of the substrate within the active site, we 
conducted microsecond MD simulations of Des27 and Des27.7, starting 

from their ligand-bound design models. In both cases and across all 
replicas, the substrate exited and re-entered the active-site pocket mul-
tiple times (Extended Data Fig. 5), with Des27.7 showing five times more 
substrate retention (Fig. 3c and Supplementary Table 2). This contrasts 
with the typical scenario in MD simulations in which unbinding events 
are terminal49,50. Thus, the MD simulations indicate that our designs 
exhibit high affinity for the substrate, and that Des27.7 improves it 
further. We also noticed that the substrate may enter the pocket in two 
reactive conformations that are inverted: one that closely matches the 
design model, with the nitro substituent occupying the entrance to 
the active site, and one in which it is inverted by approximately 180° 
(Fig. 3d). Empirical valence bond (EVB) calculations of reaction free 
energies51 show similar energy profiles for both conformations, indicat-
ing that both are catalytically competent (Fig. 3e and Supplementary 
Table 3). Taken together, the MD and EVB calculations suggest that 
the experimentally measured results reflect the sum of both reaction 
modes, with the ‘out’ conformation (Fig. 3c) being occupied a greater 
fraction of MD simulation time than the ‘in’ conformation, but with EVB 
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predicting the in conformation as being slightly more reactive in the 
optimized Des27.7 variant (Fig. 3e). Further, although such desolvated 
nitro group (‘in’) conformations were observed in previous de novo 
designed Kemp eliminases6,49,50, in those studies only one conformation 
was catalytically competent50. Thus, the high efficiency of Des27.7 may 
be partly due to the high preorganization of the active-site pocket and 
its ability to accommodate productive substrate interactions through 
distinct conformations.

To verify the molecular accuracy of the design process, we deter-
mined the structure of Des27.7 in the unbound form by crystallographic 
analysis (Extended Data Table 2; PDB 9HVB). All active-site positions 
aligned well with the design conception (less than 0.7 Å all-atom root 
mean squared deviation (r.m.s.d.) across 20 residues), including the 
catalytic Asp162, although a slight shift (r.m.s.d. 0.78 Å) was observed 
in the orientation of Phe113. Outside the active-site pocket, 180 of 257 
positions aligned with backbone r.m.s.d. < 0.6 Å, but 65 amino acids 
either deviated or did not exhibit significant electron density, probably 
due to backbone flexibility in this region (Extended Data Fig. 6a,b). This 
fragment is known to be dynamic in the IGPS protein family52, but it lies 
outside the active-site pocket and probably does not contribute directly 
to reactivity and substrate recognition. Taken together, our results 
verify a fully computational pipeline that designs an accurate de novo 
active site and generates a stable and high-efficiency new-to-nature 
enzyme.

Necessary and sufficient conditions for design
Our computational workflow is based on the combination of several 
design components, each of which introduces multiple mutations 
that address aspects that are critical for efficient biocatalysis, such as 
backbone diversity, stability, foldability and activity. We next probed 
whether each of these components contributes to the intended prop-
erty and whether all are essential.

We started by examining whether modular assembly and design 
is essential for generating diverse backbones. Instead of applying 
modular assembly and design, we applied the subsequent steps of 
the workflow to 1,072 representative IGPSs that were modelled using 
AlphaFold2 (Methods). We tested 55 designs (design round 2), of 
which 49 were solubly expressed (89%) and 28 (50%) exhibited appar-
ent cooperative unfolding with apparent melting temperature (Tm) 
values 47–88 °C. In total, 70% of the cooperatively folded designs  

(20 designs) showed measurable KE activity with kcat/KM in the range 
of 0.5–155 M−1 s−1, demonstrating that the workflow can design stable 
and functional Kemp eliminases in a wide range of different starting 
points. As expected, designs that did not show cooperative unfolding 
lacked KE activity. We applied FuncLib to the active sites of six designs 
and tested 9–14 variants for each starting point. In five cases, catalytic 
efficiencies improved by 3–10-fold (Supplementary Table 1), with the 
highest catalytic efficiency reaching 300 M−1 s−1 (R2.Des39.2). We deter-
mined the crystallographic structure of two designs, R2.Des39 (kcat/KM 
100 M−1 s−1) and Des49 (kcat/KM 150 M−1 s−1) (Extended Data Fig. 6c–i, PDB 
IDs 9HVH and 9HVG and Extended Data Table 2). The active sites were 
close to their design conceptions (r.m.s.d. < 0.6 Å and r.m.s.d. < 0.82 Å, 
respectively), but, in both cases, several loops either lacked electron 
density or exhibited significant conformational changes compared with 
the designs, which could impede substrate entry to the active site53. 
To explore whether the foldability of these loops could be improved, 
we applied FuncLib to stabilize these regions according to the design 
models. Three of 16 FuncLib variants of Des39.2 showed a significant 
increase in catalytic efficiency, with improvements up to 20-fold com-
pared with the original design, reaching kcat/KM 2,000 M−1 s−1 (Extended 
Data Table 1 and Supplementary Table 1), but none surpassed the perfor-
mance of Des27.7. These results demonstrate that large-scale artificial 
intelligence-based structure prediction of natural enzymes provides 
a valuable resource for de novo enzyme design, and that the compu-
tational workflow reproducibly generates efficient enzymes. In this 
case, however, optimization with FuncLib reached superior catalytic 
parameters in the designs derived from modular assembly, which may 
reflect the greater structural diversity in these designs.

As a next step to understanding the necessary and sufficient condi-
tions for design of high-efficiency enzymes, we deconvoluted the con-
tributions of each design component to the high stability and activity of 
Des27.7. As a baseline, we tested the outcome of combinatorial assembly 
and design alone (with 92 mutations relative to any natural protein), 
excluding both the PROSS-based stability mutations and the active-site 
design. This variant exhibited an apparent melting temperature of 57 °C 
and no detectable KE activity. Adding the 11 PROSS-designed muta-
tions substantially improved both bacterial expression and thermal 
stability (69 °C) (Fig. 4 and Supplementary Fig. 1). Separately, grafting 
the active site from Des27.7 (15 mutations) onto the combinatorial 
assembly starting point (without PROSS stabilizing mutations) con-
ferred high activity levels (2,900 M−1 s−1) but fourfold lower than in 
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in parentheses. Data represent the mean ± s.d. of 2–5 biological replicates. 
Muts, number of mutations; ND, not detected.
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Des27.7. Combining the modular assembly, PROSS and the designed 
active site yielded a synergistic, higher-than-expected improvement in 
both stability and reactivity beyond the contribution of the individual 
components. Thus, despite the large number of mutations introduced 
by each computational component, resulting designs did not exhibit 
the trade-offs between stability and activity that were often reported 
in laboratory-evolution campaigns7,21,54. Furthermore, although 
active-site mutations are often assumed to compromise stability21, in 
our case, the designed active site contributed positively to stability. 
Collectively, these findings emphasize the importance of stabilizing 
the entire protein to obtain efficient enzymes and the potential for 
synergy between stability and activity-promoting mutations when 
using reliable sequence design methods21.

Finally, we evaluated the contribution of the theozyme to the activity 
of Des27.7. Mutating the catalytic base Asp162 to Ala completely abol-
ished activity, verifying that the designed base is essential. Remarkably, 
this single-point mutation also markedly increased protein stability, 
with the apparent melting temperature rising from 85 °C in Des27.7 to 
above boiling point (Fig. 4). This significant increase in stability under-
scores the strong destabilization induced by desolvating a charged 
group in the core of the active site and the importance of effective 
stability design methods.

We then tested whether the second theozyme residue, Phe113, was 
essential by replacing it with point mutations suggested by atomis-
tic design. Replacement with Met and Leu exhibited similar Rosetta 
energies to the original Phe, and we subjected these point mutants 
to experimental analysis. The Met mutation showed similar catalytic 
parameters to Phe (Extended Data Table 1), suggesting that an aromatic 
identity is not essential at this position. Strikingly, Phe113Leu led to an 
order of magnitude increase in catalytic efficiency and rate to kcat/KM of 
123,000 M−1 s−1 and kcat of 30 s−1, surpassing by two orders of magnitude 
recently designed enzymes in artificial intelligence-generated proteins 
(kcat = 0.03–0.7 s−1)14,15,35. To understand the reasons for this large gain in 
efficiency, we compared Leu113 in models of the unbound and transi-
tion states. Unlike the reorientation observed for Phe113 between the 
ligand-bound model and unbound experimental structure of Des27.7 
(Extended Data Fig. 7a), Leu113 exhibits almost no sidechain conforma-
tion changes (Extended Data Fig. 7b), suggesting that this mutation 
improves active-site preorganization.

We note that the aromatic theozyme residue was forced in all our 
design steps and was based on previous Kemp eliminase design stud-
ies1,3. The fact that a completely aliphatic active-site pocket effectively 
accelerates the KE reaction is in line with the observation that London 
dispersion forces are sufficient for transition-state stabilization55. This 
finding challenges a two-decade assumption in computational Kemp 
eliminase design that an aromatic residue is important for ligand bind-
ing1,3, demonstrating how de novo design of function can expose short-
comings in our understanding of fundamental aspects in biocatalysis.

Conclusions
De novo enzyme design has until now resulted in rudimentary catalytic 
rates and required iterative random mutagenesis to close the gap with 
enzymes found in nature. Our strategy uses recent approaches for reli-
able backbone and sequence design in natural folds to generate diverse 
TIM-barrel backbones, stabilize the protein and design preorganized 
active-site constellations. This comprehensive design approach 
allowed us to explore the principles underlying high stability and activ-
ity in KE biocatalysis. In a single step, we generated a dozen designs 
with activities that spanned three orders of magnitude and gained 
insights into the determinants of high-efficiency catalysis. The best 
variant showed high stability and remarkable catalytic efficiency for 
a fully designed enzyme (greater than 85 °C and 12,700 M−1 s−1, respec-
tively), which was increased to over 105 M−1 s−1 with a single designed 
mutation. Active-site preorganization combined with the ability to 

adopt multiple catalytically competent substrate-bound modes dis-
tinguishes this design from previously generated ones. Importantly, 
our best design exhibited a catalytic rate (30 s−1) and efficiency on par 
with the median values of natural enzymes16. Thus, the ability to design 
large sets of diverse backbones and encode high protein stability and 
active-site preorganization is necessary and sufficient for generating 
high-efficiency enzymes of model reactions. Furthermore, contrary to 
recent suggestions11, the results confirm that current atomistic meth-
ods are already sufficiently reliable to generate efficient enzymes in 
natural folds without extensive experimental screening, big-data analy-
ses or artificial intelligence-generated scaffolds. Future improvements 
in modelling theozymes may enable fully programmable biocatalysis.
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Methods

Backbone generation and stabilization
Modular assembly and design was applied as described in ref. 42. In 
brief, five different IGPS structures (PDB entries 1LBF, 1I4A, 1JCM, 1VC4 
and 4FB7) were aligned and segmented into five fragments according 
to points of maximum structure conservation at positions 44, 105, 154 
and 206 (numbering relative to PDB entry 1I4N). The fragments were 
then computationally combined all against all, and Rosetta sequence 
design was applied to optimize the stability and compatibility between 
the segments, resulting in 2,500 backbones. Design calculations were 
constrained using a position-specific scoring matrix (PSSM) that was 
generated for each structure using PROSS29. For designs 37–73, a further 
stabilization protocol was applied. This protocol, based on mutational 
scanning with PSSM constraints, identifies the most beneficial muta-
tions across the protein. These mutations are combined and threaded 
onto the input structure. These backbones were then evaluated by an 
activity predictor27 and the top 1,000 designs were chosen.

To implement the workflow without recourse to modular assem-
bly and design (design round 2), we used BLAST to search the non- 
redundant sequence database with the sequence of the Thermotoga 
maritima IGPS (PDB entry 1I4N), identifying 4,381 IGPS homologues. 
These were clustered with CD-HIT56 by 30–90% sequence identity to 
one another and 1,200 were selected for further analysis. The struc-
tures of these sequences were modelled using ColabFold AlphaFold2 
(refs. 57,58). Models with average local confidence in predicted struc-
tures (predicted local distance difference test (pLDDT)) scores below 
90 were discarded, leaving 1,072 backbones. All structures were sub-
jected to PROSS stability design calculations29 and Design 8 for each 
was selected for further calculations. For models generated using 
AlphaFold2, PROSS design was disabled in amino acids that exhibited 
low predicted confidence (pLDDT < 90%) and those that were 5 Å from 
these residues59.

Catalytic site generation
Theozyme geometries (Supplementary Table 4) were based on previous 
calculations1. Geometric parameters that define the catalytic place-
ments, such as tolerance, penalty coefficient, periodicity and number 
of matching samples to test, were manually adjusted60. The interaction 
between the catalytic base and the acidic carbon on the ligand was 
defined as covalent to mimic transition-state geometry. Theozyme 
placement was carried out using the Rosetta Matcher algorithm43. All 
positions inside or in the opening of the active site were allowed for 
theozyme matching (Fig. 1, step 3).

Initial active-site design and filtering
After matching, Rosetta sequence design was performed in an 8 Å shell 
around the ligand and catalytic residues. The design was performed 
under theozyme and PSSM constraints. To constrain the sequence 
space, the catalytic residues of the IGPS family, as described by the 
M-CSA database61, underwent Rosetta computational mutation scan-
ning, and all mutations with ΔΔGsystem < +1 R.e.u. compared with the 
starting identity were included as allowed for design. The Rosetta 
Match and design steps generated 105 to 106 designs for each starting 
structure. Designs were filtered on the basis of a ‘fuzzy’-logic objective 
function45 that balanced potentially conflicting criteria: energy density 
(system energy divided by the protein length), energy rank relative to 
other designs in the same backbone, active-site vdW energy, catalytic 
base vdW, ligand solvation and accuracy of theozyme geometry. vdW 
energy is defined as the sum of the Rosetta atomistic energy terms 
fa_atr and fa_rep (as weighted in Rosetta scoring function62).

Active-site and core stabilization
To enhance active-site stability, we performed an enumeration of 
all low-energy mutations in the active site with ΔΔGsystem < +3 R.e.u. 

and chose the top variant. To ensure amino acid optimality through-
out the protein, a pSUFER46 scan was performed on the whole pro-
tein excluding the active site. Flagged positions, those with at least 
five favourable amino acid substitutions (ΔΔGsystem < 0), were rede-
signed using FuncLib calculations28. The lowest-energy design was  
selected.

Computational validation
Active-site preorganization was analysed by performing extensive 
rigid-body minimization in the absence of the ligand. Structures in 
which the catalytic base exhibited an r.m.s.d. > 1.2 Å relative to the 
ligand-unbound model were discarded. For the R2 series the work-
flow included an extra validation step comparing the bound model 
and the AlphaFold2-predicted model. Designs were accepted if the 
r.m.s.d. between the AlphaFold2 model and the Rosetta model was 
less than 1 Å.

Active-site optimization
All functional variants identified through experimental screening were 
optimized by identifying diverse and stable active-site constellations 
using FuncLib28. FuncLib uses two filters to constrain the enumerated 
sequence space: a filter based on homologous sequences and exclusion 
of destabilizing point mutations. However, in de novo design of func-
tion, the homologous sequence filter is irrelevant and was omitted. 
For experimental screening, the 10–15 lowest-energy designs were 
selected.

Protein expression
The designed genes were ordered from Twist Bioscience, cloned into 
pET28 plasmid with an N-terminal His-tag, followed by a bdSUMO 
tag. Plasmids were transformed into Escherichia coli BL21 (DE3) cells. 
For expression, 50 ml of 2YT medium supplemented with 50 μg ml−1 
kanamycin was inoculated with 500 μl of overnight culture produced 
from a single colony and grown at 37 °C until optical density (OD)600 
0.6–0.8. Overexpression was induced by adding 1 mM IPTG and the 
cultures were grown for 20 h at 16 °C and collected, and the pellet was 
frozen at −20 °C. The cells were resuspended in basic buffer (50 mM 
Tris-Cl pH 7.25, 200 mM NaCl) supplemented with 10 µg ml−1 lysozyme, 
protease-inhibitor cocktail (Sigma) and benzonase, lysed by sonication 
and centrifuged at 20,000g for 30 min at 4 °C. The soluble fraction was 
loaded onto an Ni-NTA (nitrilotriacetic acid) column and washed twice 
with basic buffer and 20 mM imidazole. The protein was subjected 
to overnight on-column Sumo protease cleavage at 4 °C (5 μg ml−1 in 
basic buffer). Protein purity was assessed by SDS–PAGE. Protein con-
centration was determined using Pierce BCA protein assay kit. For 
crystallography, large-scale expression was performed in 1,500 ml of 
culture. After Ni-NTA purification and bdSUMO cleavage, the protein 
was purified by gel filtration (HiLoad 26/600 Superdex75 preparative 
grade column, GE).

Activity assay and determination of kinetic parameters
Product formation was monitored spectrophotometrically at 380 nm in 
200-μl reaction volumes using 96-well plates. For initial screening, the 
reactions were started by adding 150 μl of 1 mM 5-nitrobenzisoxazole 
in basic buffer to 50 μl of purified protein. 5-Nitrobenzisoxazole was 
used from 0.1 M stock in acetonitrile. For the kinetic characteriza-
tion, 150 μl of 5-nitrobenzisoxazole at various concentrations (final 
0.05–0.75 mM in basic buffer with 1 mM acetonitrile) was mixed 
with 50 μl of purified protein. Kinetic parameters were obtained by 
fitting the data to the Michaelis–Menten equation v0 = kcat[E]0[S]0/
([S]0 + KM). At low substrate concentrations the data were fitted to 
the linear regime of the Michaelis–Menten model v0 = [S]0[E]0kcat/KM, 
and kcat/KM values were inferred from the slope. All measure-
ments in the main text were performed in biological duplicates or  
triplicates.
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Thermal stability
Apparent Tm measurements were performed using nanoscale differen-
tial scanning fluorimetry (nanoDSF) experiments (Prometheus NT.Plex 
instrument, NanoTemper Technologies). The temperature ramp was 
20–95 °C with 1.0 °C min−1 slope.

Crystallization, data collection and structure determination
Crystals were grown at 19 °C using the sitting-drop vapour diffu-
sion method. Diffraction data were collected from a single crystal 
flash-cooled to 100 K, using a wavelength of 1.34 Å. Data were collected 
using an in-house Rigaku liquid-metal-jet X-ray Synergy System with 
a HyPix Arc 150° detector. AlphaFold2 (ref. 57) was used to generate 
all three models for molecular replacement (Extended Data Table 2). 
Initial models were iteratively rebuilt and refined using COOT63 and 
PHENIX64. Model geometry was evaluated using MOLPROBITY65. Atomic 
coordinates and structure factors for Des27.7, R2.Des39 and R2.Des49 
are deposited in the PDB database under accession numbers 9HVB, 
9HVH and 9HVG, respectively.

Specific crystallization conditions
Des27.7: the well solution contained 0.15 M lithium sulfate monohy-
drate, 0.1 M citric acid (pH 3.5) and 18% polyethylene glycol (PEG) 6000. 
Diffraction data were collected to 2.0 Å. Des27.7 crystallized in the P61 
space group, with one subunit in the asymmetric unit.

R2.Des39: the well solution contained 0.07 M citric acid, 0.03 M 
Bis-Tris propane (pH 3.4) and 14% PEG 3350. Diffraction data were col-
lected to 2.1 Å resolution. R2.Des39 crystallized in the P21 space group, 
with two subunits in the asymmetric unit.

R2.Des49: the well solution contained 8% Tacsimate (pH 7.0) and 
20% PEG 3350. Diffraction data were collected to 1.9 Å resolution. 
R2.Des49 crystallized in the C2221 space group, with one subunit in 
the asymmetric unit.

MD and EVB simulations
System setup. Two designed Kemp eliminases, Des27 and Des27.7, 
were simulated in both their ligand-bound and unbound forms,  
using MD simulations to model dynamics, and EVB simulations51. 
All simulations were initiated from the FuncLib design models for 
each variant. Ligand-bound simulations were performed in complex 
with the substrate 5-nitrobenzisoxazole. The partial charges for the 
substrate were calculated using restrained electrostatic potential66 
fitting at the HF/6-31 G(d) level of theory with Antechamber67, on 
the basis of gas-phase geometries optimized at the B3LYP/6-31 G(d) 
level of theory in Gaussian 16 Rev. B.01 (ref. 68). All other force field  
parameters for the substrate were obtained from the General AMBER 
Force Field (GAFF2)69. Residue protonation states were checked using 
PROPKA 3.0 (refs. 70,71) to estimate sidechain pKas, coupled with 
visual examination using PyMOL, on the basis of which all residues 
were kept in their standard protonation states at physiological pH. 
For simulations of the unbound system, the catalytic residue Asp162 
was modelled in its protonated form. All systems were solvated in a 
truncated octahedral water box containing OPC water molecules72, 
extending 11.0 Å from the protein in all directions. Neutralization 
was achieved using 12 Mg2+ and 12 Cl− counterions for the three 
variants. Protonation patterns of histidine residues for each system 
are collected in Supplementary Table 5. Non-standard substrate  
parameters are provided in Supplementary Table 6 and in the Zenodo 
data package available at https://doi.org/10.5281/zenodo.14563437  
(ref. 73).

Classical MD simulations. All MD simulations in this work were per-
formed using the HIP-accelerated version of Amber24 (ref. 74) using 
the ff19SB force field75 and the OPC water model72. MD simulations for 
all systems followed the same protocol, used also in previous work 

modelling designed Kemp eliminases50. For a detailed description, 
see ref. 50. In brief, each trajectory was first energy minimized with 
100 steps of the steepest-descent algorithm, followed by 900 steps of  
conjugate gradient minimization, applying a 100-kcal mol−1 Å−2 res
traint to all solute (protein and substrate) atoms. The system was 
then heated from 50 to 300 K in an NVT ensemble using simulated 
annealing, reaching 300 K within the first 100 ps and continuing for 
a total of 1 ns with a 1-fs time step. Langevin temperature control76 
was used with a collision frequency of 1 ps−1. During this stage, the 
100-kcal mol−1 Å−2 solute restraints were maintained and subsequently 
reduced to 10 kcal mol−1 Å−2 in later equilibration steps. A second energy 
minimization and heating step followed, with positional restraints 
applied to solute heavy atoms. During subsequent equilibration, the 
restraints were progressively reduced from 10 to 1 to 0.1 kcal mol−1 Å−2 
before being fully removed. The systems, now with no restraints  
applied, underwent final equilibration for 1 ns in an NPT ensemble 
(300 K, 1 atm) using a Berendsen barostat77 with a 1-ps pressure relax
ation time and Langevin temperature control (collision frequency 
of 1 ps−1). The SHAKE algorithm78 was applied to constrain all bonds 
involving hydrogen atoms, and all equilibration simulations used a 1-fs 
time step. Production MD runs were performed using a 4-fs time step, 
enabled by hydrogen mass repartitioning79 and the SHAKE algorithm78, 
with an 8 Å direct space non-bonded cutoff, Langevin temperature con-
trol (collision frequency of 1 ps−1) and a Berendsen barostat (pressure 
relaxation time of 1 ps). Equilibration of these trajectories is shown in 
Extended Data Fig. 4d,e. The final production trajectories were 1-µs 
long for each system, with 5 independent replicas per system, result-
ing in a total of 5 µs of simulation time per system and 15 µs across all  
systems.

EVB simulations. EVB simulations were performed on the Des27 
and Des27.7 variants, using both substrate conformers (‘in’ and 
‘out’; Fig. 3c) observed as being dominant in the MD simulations, 
and following the same protocol described in detail in ref. 50. Reac
tive in and out conformers were extracted from our MD simula-
tions and overlaid onto the FuncLib predicted structures of Des27 
and Des27.7 as starting coordinates for the EVB simulations. Before 
the EVB simulations, in all cases, the enzyme–substrate complex 
was minimized with Amber24 (ref. 74) in vacuum, with 2,500 steps 
of the steepest-descent algorithm, followed by 2,500 steps of con-
jugate gradient minimization, applying 10-kcal mol−1 Å−2 positional 
restraints on all heavy (non-hydrogen) atoms. The minimization 
was repeated with the same steps, with 5-kcal mol−1 Å−2 positional 
restraint on protein Cα-atoms, and substrate heavy atoms, and with 
twice as many steps, keeping the restraint only on the substrate heavy  
atoms.

All EVB simulations were performed using the Q6 simulation pack-
age80, the OPLS-AA force field81, the TIP3P water model82 and the surface 
constrained all atom solvent (SCAAS) model83 to describe solvent. 
Long-range interactions were described using the local reaction field 
approach84. Protonation states of ionizable residues within the explicit 
simulation sphere, as well as histidine protonation patterns (both of 
which were validated by PROPKA 3.0 (refs. 70,71) and visual inspection), 
can be found in Supplementary Table 7. Each system was simulated in 
30 replicas of 30-ns equilibration, with 5-kcal mol−1 Å−2 distance-based 
harmonic restraints applied between the substrate hydrogen donor 
carbon and the acceptor oxygen of Asp162. Each equilibration was fol-
lowed by 10.2 ns of EVB simulations (200-ps window over 51 discrete EVB 
windows), carried out without the distance restraint applied, leading 
to a cumulative 612 ns of EVB simulation time per system (including 
‘in’ and ‘out’ substrate conformations), and 3.6 µs of EVB equilibration 
time and 1.2 µs of EVB simulation time across all systems studied in this 
work (4.8 µs of simulation time in total). The corresponding r.m.s.d. 
values of the equilibration phase (calculated with the QCalc6 module 
of Q6) are shown in Extended Data Fig. 8a,b. We note that in one of 
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the initial 30 EVB trajectories for Des27.7 with the substrate in the out 
conformation, we observed active-site distortion with the catalytic 
Asp moving into a non-reactive conformation. This trajectory was 
excluded from further analysis, with an extra trajectory being run to 
create a full set of 30 replicas.

Representative stationary points for the KE reaction catalysed by 
Des27, extracted from EVB simulations of this system, are shown in 
Extended Data Fig. 8c,d. To extract the conformations representing 
each stationary point, all 30 replicas were evaluated together. The 
MDTraj software (version 1.10.0)85 was applied to convert the trajec-
tories to a CPPTRAJ compatible format, and clustering was performed 
based on the r.m.s.d. of the substrate heavy atoms, using the average 
linkage clustering method, with an ε value of 0.75. We note that the key 
stationary points for Des27.7 are visually similar to those for Des27. 
Sample input files, parameter files, starting structures and simula-
tion snapshots have all been made available on Zenodo at https://doi.
org/10.5281/zenodo.14563437 (ref. 73).

Simulation analysis. Unless otherwise stated, all MD analyses were 
performed using the CPPTRAJ module86 of AmberTools24 (ref. 87). 
Trajectory frames were extracted every 400 ps, and results (where 
applicable) are reported as averages and standard deviations over 
5 × 1-µs trajectories per system. The fractions of unbound and bound 
modes during the simulations were determined by counting trajec-
tory frames. A bound mode was defined on the basis of the distance 
between the ligand and the centre of mass of the active site, includ-
ing residues 54, 84, 86, 92, 136, 162, 183 and 236. A threshold of 4 Å 
was defined to classify the frames into unbound or bound. Unbound 
modes have left the active-site pocket, but not necessarily dissoci-
ated from the protein itself (sampling non-productive conformations 
out of the active site). The substrate orientation was defined using 
the distance between the Cα-atom of residue Leu41 and the N1 and 
N2 atoms of the substrate. Conformations with a Leu41–N1 distance 
between 0 and 15 Å and L41–N2 distance between 15 and 20 Å were 
classified as ‘out’, and otherwise as ‘in’. Pocket volumes of Des27 and 
Des27.7 systems were calculated using MDPocket88,89, with snapshots 
taken every 4 ns of the simulations for unbound systems. Addition-
ally, the volume of the ligand was calculated using the mol_volume 
package in VMD90. Finally, PyMOL was used for all visualization  
analyses.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data generated and analysed during the study are available within 
the paper and its Supplementary Information. The crystal structures of 
Des27.7, R2.Des39 and R2.Des49 are deposited in the Protein Data Bank 
(PDB) under accession codes 9HVB, 9HVH and 9HVG, respectively. The 
crystal structures for all IGPS enzymes are available through the PDB 
with accession codes 1LBF, 1I4A, 1JCM, 1VC4 and 4FB7.

Code availability
Custom Python scripts, RosettaScripts91, command lines, Jupyter 
notebooks and datasets used for de novo enzyme design are avail-
able at https://github.com/Fleishman-Lab/denovoKemp. Code and 
specifications used for MD analysis are available at Zenodo (https://
doi.org/10.5281/zenodo.14563437)73.
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Extended Data Fig. 1 | Expression and stability of the initial design round.  
a. 66 designs were solubly expressed. High-functioning designs were expressed 
independently 2–5 times; otherwise, protein expression was performed once. 

For gel source data, see Supplementary Data 1. b. Temperature melts of 
representative cooperatively folded (left) and unfolded (right) designs.  
All temperature melts are performed in technical duplicates.



Extended Data Fig. 2 | Representative Michaelis-Menten plots. The data 
were fitted to the Michaelis-Menten equation v0=kcat[E]0[S]0/([S]0 + KM). When 
substrate saturation could not be attained due to limited substrate solubility, 
the data were fitted to the linear region of the Michaelis-Menten model and 

v0 = [S]0[E]0kcat/KM, and kcat/KM were deduced from the slope. Kinetic experiments 
were performed for all functional designs in this study with at least two 
technical replicates, and high-functioning designs were further evaluated with 
2–5 biological replicates. Data presented are mean of 2 technical repeats.
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Extended Data Fig. 3 | Protein BLAST search using the Des27.7 sequence as query against the NCBI “nr” database. Top hit in nr. Mutations are in red, hyphens 
indicate insertions and deletions.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Simulations of dynamics, Asp162 conformations, 
and active-site pocket volume of Des27 and Des27.7. a. Joint distribution of 
the Asp162 conformational space in the unbound state. Conformation sampled 
by the χ1 and χ2 dihedral angles of the Asp162 side chain along MD simulations of 
the Des27 and Des27.7. In Des27 there are three distinct metastable Asp162 
conformations, which are illustrated in the right panel. The conformation 
numbers labeled on the plots correspond to the stick representations on the 
right, with 5-nitrobenzisoxazole depicted in white sticks for reference.  
b-c. Visual representation of the calculated active site pockets in b. Des27 and 

c. Des27.7, using MDPocket isosurfaces. Yellow spheres represent the pocket 
volume. Asp162 is shown in sticks. Des27.7 exhibits an active site pocket that 
can better accommodate 5-nitrobenzisoxazole. d-e. Root mean square 
deviations (rmsd, Å) of the Cα-atoms from MD simulations. Data was collected 
every 400 ps from 5 replicas of 1 µs length each. The gray lines show the five 
individual runs, and the colored solid line shows a rolling average of the rmsd 
from all five replicas for each system. d. rmsd for unbound systems Des27 (left), 
Des27.7 (right) e. rmsd for bound systems Des27 (left), Des27.7 (right).



Extended Data Fig. 5 | Time evolution of the active site center of mass (COM) 
and ligand distance during total 5 × 1 μs of MD simulations. a. Des27 and  
b. Des27.7. The dotted gray line at 4 Å marks the threshold for defining the ligand 
as being within the active site. In two out of ten replicas across the two systems, 

we observe ligand dissociation without rebinding towards the end of the 
trajectory on the timescale of our simulations; in a third, in the case of Des27.7, 
we observe substantial dissociation mid-trajectory with ligand rebinding 
within the simulation timeframes.
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Extended Data Fig. 6 | Model and crystallographic structure of Des27.7, 
Des39 and Des49. The substrate, 5-nitrobenzisoxazole, in yellow sticks. Loop 
regions in wheat represented misfolded/missing regions in the experimentally 
determined structure. a. Des27.7 model. b. Des27.7 crystallographic structure 
(PDB 9HVB). Wheat-colored loop corresponds to the one in panel b. c. R2.Des39 
model. d. R2.Des39 crystallographic structure (PDB 9HVH). R2.Des39 
crystallized as a dimer in the asymmetric unit with few crystallographic contacts 
that stabilize the wheat-colored loop. The two monomers are in pink and white. 
Wheat-colored loop corresponds to the one in panel c. e. Active site model 

(blue sticks) vs structure (white sticks). rmsd between the active sites is 0.61Å. 
Catalytic Glu168 fits the modeled rotamer and there are only subtle rotameric 
changes in other active-site residues. These changes do not induce clashes with 
the modeled ligand. f. Asp62 stabilizes an alternative conformation in the 
crystal structure. Tyr97 (pink sticks) is from the second monomer. Colors as in 
panel d. g. R2.Des49 model. h. R2.Des49 crystallographic structure (PDB 9HVG). 
Wheat-colored loop corresponds to the one in panel g. i. Active-site model (blue 
sticks) vs structure (white sticks). rmsd between the active sites is 0.82Å. Trp115 
acquires a rotamer different than modeled and might overlap with the ligand.
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Extended Data Fig. 7 | Comparison of substrate-bound and unbound 
structure of Des27.7 Phe113Leu. a. A slight sidechain conformational change 
is observed, with an rmsd of 0.28 Å between the substrate-bound and unbound 
models of Des27.7 at position 113. b. No sidechain shift is observed in the case of 
Des27.7 Leu113. White sticks represent the substrate bound model, wheat sticks 
represent the unbound model, blue sticks represent unbound crystal structure.
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Extended Data Fig. 8 | EVB equilibration dynamics and representative 
structures of the Des27 system. a-b Root mean square deviations (rmsd, Å) of 
all solute atoms of the Des27 and Des27.7 calculated for the equilibration phase 
prior to our EVB simulations. Data were collected every 10 ps from the initial 
equilibration runs and shown as averages and standard deviations over ten 
individual 25 ns MD simulations per system (i.e., 750 ns cumulative simulation 
time per system). The average rmsd per system is denoted by the colored solid 
line, and the standard deviations per point over all trajectories are illustrated 
by the shaded area on each plot. a. rmsd for EVB equilibration from “out” 
substrate conformation. b. rmsd for EVB equilibration from “in” substrate 

conformation. c-d EVB Representative structures of the Des27 system. c. For 
the “in” ligand conformation. d. For the “out” ligand conformation. Michaelis 
complex (MC, left panel), transition state (TS, middle panel), and product 
complex (PC, right panel) for the KE reaction catalyzed by this enzyme, extracted 
from EVB trajectories of this reaction. Structures were selected based on 
clustering analysis. The clustering was performed at the MC, TS and PC 
independently, in order to obtain representative structures for each state. 
Donor-acceptor distances (Å) are shown for each stationary point. These values 
are averages of the snapshots taken every 5 ps of the trajectory, determined 
based on the combined evaluation of 30 replicas.



Extended Data Table 1 | Apparent thermal stability and catalytic parameters of designed Kemp eliminases

*n.c. not calculable; n.d. not detectable; n.m. not measured; MA-modular assembly. 
All kinetic measurements were obtained at 25 °C and pH 7.3. Data are means ± SD of 2–5 biological replicates; all measurements in technical duplicates.
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Extended Data Table 2 | Data collection and refinement statistics (molecular replacement)

*Values in parentheses are for highest-resolution shell.



1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Sarel Fleishman

Last updated by author(s): 26/14/25

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Rosetta Modeling Suit 2021.07 (https://www.rosettacommons.org/)  
ColabFold 1.3.0 (https://github.com/sokrypton/ColabFold)  

Data analysis All data analysis components and RosettaScripts files with detailed explanations can be found in https://github.com/Fleishman-Lab/
denovoKemp  
All tools used for molecular dynamics are listed in methods section and are available at DOI: 10.5281/zenodo.14563437 
All nano-DSF data were analysed using the Prometheus NT. 48 default software and nano-DSF graphs were made using Python 3.6. 
For crystal structures molecular replacement and analysis were done using all standard crystallographic softwares mentioned in the methods 
section. 
For MD simulations: Amber24 
For EVB simulations: Q6  
For protonation states: Propka 3.0 
For partial charges: Gaussian 16 Rev. B.01 
For MD analysis: CPPTRAJ: Trajectory Analysis. V6.18.1 from AmberTools24 
For pocket volume: MDpocket from fpocket 4.2  
For ligand volume: VMD version 1.9.4 
For visualization: PyMOL 3.1.1 
 
Python packages used:  
matplotlib 3.1.0; 



2

nature portfolio  |  reporting sum
m

ary
April 2023

pandas 0.24.0;  
SciPy 1.3.0;  
Jupyter notebook 6.0.0;  
pymol 2.5.2;  
seaborn 0.9.0; 
numpy 1.16.4; 
Biopython 1.74; 
All graphs were  made using Python 3.6.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data generated and analyzed during the study are available within the paper and its Supplementary Information. The crystal structures of  Des27.7, R2.Des39 and 
R2.Des49 are deposited in the PDB under accession codes 9HVB, 9HVH, and 9HVG respectively. The crystal structure for all IGPS enzymes is available through the 
Protein Data Bank (PDB; https://www.rcsb.org), with accession ID 1LBF, 1I4A, 1JCM, 1VC4, 4FB7.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Duplicates or greater as specified in figure legends. Sample size between 2-5 was chosen based on experimental effort required to express, 
produce and experimentally verify the biochemical parameters of the enzymes.

Data exclusions In one of the 30 EVB trajectories for Des27.7 with the substrate in the out conformation, we observed active-site distortion with the catalytic 
Asp moving into a non-reactive conformation. This trajectory was excluded from further analysis, with an additional trajectory being run to 
create a full set of 30 replicas. Exclusion criteria were not pre-established.

Replication All specified in the legends and methods section. 
Biochemical assays used 2–5 biological replicates.  
MD simulations employed 5–10 replicas;  
EVB simulations used 30 replicas.

Randomization Randomization is not relevant to this study. In vitro biochemical assays did not involve treatment groups or subjective measurements
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Blinding Blinding is not relevant to this study. Assays did not involve treatment groups or subjective measurements

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants
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