Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Addressing the safety of next-generation batteries

Abstract

Owing to increasing demand for low-cost energy storage with secure material supply chains, the battery community is approaching a pivotal shift beyond conventional lithium-ion (Li-ion) towards next-generation cells. Technologies that include alkali-metal anodes, solid electrolytes and earth-abundant materials such as sodium (Na) and sulfur (S) are reaching commercialization in cells. The abuse tolerance and thermal runaway hazards of such technologies diverge from conventional Li-ion cells. Consequently, designing safe batteries with next-generation materials requires a holistic approach to characterize cells and to understand their responses to abuse conditions from the beginning to the end of life. Here we provide a Perspective on how the safety and abuse tolerance of cells are likely to change for up-and-coming technologies; challenges and opportunities for reimagining safe cell and battery designs; gaps in our knowledge; capabilities for understanding the hazards of thermal runaway and how to address them; how standard abuse tests may need to adapt to new challenges; and how research needs to support affected professionals, from pack designers to first responders, to manage hazards and ensure safe roll-out of next-generation cells into applications like electric vehicles (EVs). Finally, given the large number of next-generation technologies being explored, we encourage giving priority to safety-focused research in proportion to the rate of manufacturing scale-up of each specific technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A detailed experimental campaign to evaluate the safety of next-generation battery cells.
Fig. 2: Stages of thermal runaway under thermal abuse conditions.
Fig. 3: Impact of ageing history on safety and abuse tolerance of batteries.
Fig. 4: Multiscale approach for enhanced safety reliability of batteries.

Similar content being viewed by others

References

  1. Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article  Google Scholar 

  2. Li, Z. et al. Revealing the thermal safety of Prussian blue cathode for safer nonaqueous batteries. Adv. Energy Mater. 11, 2101764 (2021).

    Article  CAS  Google Scholar 

  3. Lee, J., Lee, T., Char, K., Kim, K. J. & Choi, J. W. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54, 3390–3402 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, C. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021).

    Article  CAS  Google Scholar 

  5. Darmet, N., Charbonnel, J., Reytier, M., Broche, L. & Vincent, R. First experimental assessment of all-solid-state battery thermal runaway propagation in a battery pack. ACS Appl. Energy Mater. 7, 4365–4375 (2024).

    Article  CAS  Google Scholar 

  6. Charbonnel, J. et al. Preliminary study of all-solid-state batteries: evaluation of blast formation during the thermal runaway. iScience 26, 108078 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, T. et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries. Chem. Mater. 34, 9159–9171 (2022).

    Article  CAS  Google Scholar 

  8. Duh, Y.-S., Theng, J.-H., Chen, C.-C. & Kao, C.-S. Comparative study on thermal runaway of commercial 14500, 18650 and 26650 LiFePO4 batteries used in electric vehicles. J. Energy Storage 31, 101580 (2020).

    Article  Google Scholar 

  9. Zhang, S. et al. Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with in-situ thermal safety study. Chem. Eng. J. 400, 125996 (2020).

    Article  ADS  CAS  Google Scholar 

  10. Zeng, Z. et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 3, 1600066 (2016).

    Article  Google Scholar 

  11. Gribble, D. A. et al. Mechanistic elucidation of electronically conductive PEDOT:PSS tailored binder for a potassium-ion battery graphite anode: electrochemical, mechanical, and thermal safety aspects. Adv. Energy Mater. 12, 2103439 (2022).

    Article  CAS  Google Scholar 

  12. Yang, H., Zhuang, G. V. & Ross, P. N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources 161, 573–579 (2006).

    Article  ADS  CAS  Google Scholar 

  13. Wu, Y., Wang, S., Li, H., Chen, L. & Wu, F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat 3, 827–853 (2021).

    Article  CAS  Google Scholar 

  14. Wang, J. et al. Advances in thermal-related analysis techniques for solid-state lithium batteries. InfoMat 5, e12401 (2023).

    Article  CAS  Google Scholar 

  15. Adams, R. A., Varma, A. & Pol, V. G. Mechanistic elucidation of thermal runaway in potassium-ion batteries. J. Power Sources 375, 131–137 (2018).

    Article  ADS  CAS  Google Scholar 

  16. Charbonnel, J. et al. Safety evaluation of all-solid-state batteries: an innovative methodology using in situ synchrotron X-ray radiography. ACS Appl. Energy Mater. 5, 10862–10871 (2022).

    Article  CAS  Google Scholar 

  17. Ohneseit, S. et al. Thermal and mechanical safety assessment of type 21700 lithium-ion batteries with NMC, NCA and LFP cathodes–investigation of cell abuse by means of accelerating rate calorimetry (ARC). Batteries 9, 237 (2023).

    Article  CAS  Google Scholar 

  18. Bugryniec, P. J. et al. Review of gas emissions from lithium-ion battery thermal runaway failure — considering toxic and flammable compounds. J. Energy Storage 87, 111288 (2024).

    Article  Google Scholar 

  19. Lin, L. & Ezekoye, O. A. Time-resolved characterization of toxic and flammable gases during venting of Li-ion cylindrical cells with current interrupt devices. J. Loss Prev. Process Ind. 94, 105488 (2025).

    Article  CAS  Google Scholar 

  20. Liu, T., Kum, L. W., Singh, D. K. & Kumar, J. Thermal, electrical, and environmental safeties of sulfide electrolyte-based all-solid-state Li-ion batteries. ACS Omega 8, 12411–12417 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, S. S. et al. Solid electrolyte: strategies to address the safety of all solid-state batteries. Adv. Energy Sustain. Res. 4, 2300074 (2023).

    Article  CAS  Google Scholar 

  22. Wang, S. et al. Thermal stability between sulfide solid electrolytes and oxide cathode. ACS Nano 16, 16158–16176 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, S. & Xu, J. Safety behaviors and degradation mechanisms of aged batteries: a review. Energy Mater. Devices 2, 9370048 (2024).

    Article  Google Scholar 

  24. Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heenan, T. M. M. et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 10, 2002655 (2020).

    Article  CAS  Google Scholar 

  26. Sadd, M., Xiong, S., Bowen, J. R., Marone, F. & Matic, A. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy. Nat. Commun. 14, 854 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Börner, M. et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries. J. Power Sources 342, 382–392 (2017).

    Article  ADS  Google Scholar 

  28. Li, S. et al. Constant-rate heating-induced thermal runaway in 18650-type Li-ion cells charged/discharged at 1 °C: effect of undischargeable Li at anode. J. Power Sources 505, 230082 (2021).

    Article  CAS  Google Scholar 

  29. Gabryelczyk, A., Ivanov, S., Bund, A. & Lota, G. Corrosion of aluminium current collector in lithium-ion batteries: a review. J. Energy Storage 43, 103226 (2021).

    Article  Google Scholar 

  30. Ma, T. et al. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. J. Phys. Chem. Lett. 8, 1072–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Waldmann, T. et al. Electrochemical, post-mortem, and ARC analysis of Li-ion cell safety in second-life applications. J. Electrochem. Soc. 164, A3154 (2017). This paper pioneeringly demonstrates that the safety of aged cells is strongly correlated with the dominant ageing mechanism.

    Article  CAS  Google Scholar 

  32. Preger, Y., Torres-Castro, L., Rauhala, T. & Jeevarajan, J. Perspective—On the safety of aged lithium-ion batteries. J. Electrochem. Soc. 169, 030507 (2022).

    Article  ADS  CAS  Google Scholar 

  33. Zhang, X., Zhu, J. & Sahraei, E. Degradation of battery separators under charge–discharge cycles. RSC Adv. 7, 56099–56107 (2017).

    Article  ADS  CAS  Google Scholar 

  34. Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Liang, Z. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14, 259 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, F.-N. et al. Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells. Particuology 79, 10–17 (2023).

    Article  CAS  Google Scholar 

  37. Xiang, Y. et al. Advanced separators for lithium‐ion and lithium–sulfur batteries: a review of recent progress. ChemSusChem 9, 3023–3039 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Roth, E. P., Doughty, D. H. & Pile, D. L. Effects of separator breakdown on abuse response of 18650 Li-ion cells. J. Power Sources 174, 579–583 (2007).

    Article  ADS  CAS  Google Scholar 

  39. Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article  ADS  CAS  Google Scholar 

  40. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  ADS  CAS  Google Scholar 

  41. Sharifi-Asl, S., Lu, J., Amine, K. & Shahbazian-Yassar, R. Oxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv. Energy Mater. 9, 1900551 (2019).

    Article  Google Scholar 

  42. Kaur, G. & Gates, B. D. Review—Surface coatings for cathodes in lithium ion batteries: from crystal structures to electrochemical performance. J. Electrochem. Soc. 169, 043504 (2022).

    Article  ADS  CAS  Google Scholar 

  43. Finegan, D. P. et al. Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells. J. Power Sources 417, 29–41 (2019).

    Article  ADS  CAS  Google Scholar 

  44. Finegan, D. P. et al. Identifying the cause of rupture of Li-ion batteries during thermal runaway. Adv. Sci. 5, 1700369 (2018).

    Article  Google Scholar 

  45. Walker, W. et al. Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods. J. Power Sources 415, 207–218 (2019).

    Article  ADS  CAS  Google Scholar 

  46. Walker, W. Q. et al. The effect of cell geometry and trigger method on the risks associated with thermal runaway of lithium-ion batteries. J. Power Sources 524, 230645 (2022).

    Article  CAS  Google Scholar 

  47. Finegan, D. P. et al. Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits. Energy Environ. Sci. 10, 1377–1388 (2017).

    Article  CAS  Google Scholar 

  48. Finegan, D. P. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 6, 6924 (2015). To the best of our knowledge, this paper first demonstrated the use of high-speed synchrotron X-ray computed tomography and radiography, combined with thermal imaging, to monitor internal damage and thermal behaviour during thermal runaway in LIBs.

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Wang, Y. et al. Progress and challenges in ultrasonic technology for state estimation and defect detection of lithium-ion batteries. Energy Storage Mater. 69, 103430 (2024).

    Article  Google Scholar 

  50. McGee, T. M., Neath, B., Matthews, S., Ezekoye, O. A. & Haberman, M. R. Ultrasonic inspection of lithium-ion pouch cells subjected to localized thermal abuse. J. Power Sources 583, 233542 (2023).

    Article  CAS  Google Scholar 

  51. McGee, T. M., Neath, B., Matthews, S., Ezekoye, O. A. & Haberman, M. R. Ultrasonic detection of pre-existing thermal abuse in lithium-ion pouch cells. J. Power Sources 595, 234035 (2024).

    Article  CAS  Google Scholar 

  52. Davies, G. et al. State of charge and state of health estimation using electrochemical acoustic time of flight analysis. J. Electrochem. Soc. 164, A2746–A2755 (2017).

    Article  CAS  Google Scholar 

  53. Kim, J.-Y., Jo, J.-H. & Byeon, J.-W. Ultrasonic monitoring performance degradation of lithium ion battery. Microelectron. Reliab. 114, 113859 (2020).

    Article  CAS  Google Scholar 

  54. Robinson, J. B. et al. Spatially resolved ultrasound diagnostics of Li-ion battery electrodes. Phys. Chem. Chem. Phys. 21, 6354–6361 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Finegan, D. P. et al. The Battery Failure Databank: insights from an open-access database of thermal runaway behaviors of Li-ion cells and a resource for benchmarking risks. J. Power Sources 597, 234106 (2024). This paper presents a pioneering battery failure database for understanding the variation in commercial cell behaviours during thermal runaway.

    Article  CAS  Google Scholar 

  56. Masalkovaitė, K., Gasper, P. & Finegan, D. P. Predicting the heat release variability of Li-ion cells under thermal runaway with few or no calorimetry data. Nat. Commun. 15, 8399 (2024).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Bates, A. et al. A multi-scale framework for advancing battery safety through early calorimetric analysis of materials and components. Electrochem. Soc. Interface 33, 69 (2024). This paper presented a new strategy to bridge battery material and component characterization with safety prediction of large-format cells through targeted experiments and validated modelling.

    Article  CAS  Google Scholar 

  58. Li, W., Zhu, J., Xia, Y., Gorji, M. B. & Wierzbicki, T. Data-driven safety envelope of lithium-ion batteries for electric vehicles. Joule 3, 2703–2715 (2019). To the best of our knowledge, this paper presents the first demonstration of combining numerical data generation with machine learning to predict the mechanical safety of battery systems for EV applications.

    Article  CAS  Google Scholar 

  59. Hendricks, C., Williard, N., Mathew, S. & Pecht, M. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J. Power Sources 297, 113–120 (2015).

    Article  ADS  CAS  Google Scholar 

  60. Premnath, V., Wang, Y., Wright, N., Khalek, I. & Uribe, S. Detailed characterization of particle emissions from battery fires. Aerosol Sci. Technol. 56, 337–354 (2022).

    Article  ADS  CAS  Google Scholar 

  61. Finegan, D. P. et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study. Phys. Chem. Chem. Phys. 18, 30912–30919 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Franqueville, J. I., Archibald, E. J. & Ezekoye, O. A. Data-driven modeling of downwind toxic gas dispersion in lithium-ion battery failures using computational fluid dynamics. J. Loss Prev. Process Ind. 86, 105201 (2023).

    Article  CAS  Google Scholar 

  63. Lu, G., Nai, J., Luan, D., Tao, X. & Lou, X. W. Surface engineering toward stable lithium metal anodes. Sci. Adv. 9, eadf1550 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao, C. et al. Polysulfide-incompatible additive suppresses spatial reaction heterogeneity of Li-S batteries. Joule 8, 3397–3411 (2024).

    Article  CAS  Google Scholar 

  65. Kaur, A. P. et al. Overcharge protection of lithium-ion batteries above 4 V with a perfluorinated phenothiazine derivative. J. Mater. Chem. A 4, 5410–5414 (2016).

    Article  CAS  Google Scholar 

  66. Tranter, T. G. et al. Probing heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains. J. Electrochem. Soc. 167, 110538 (2020).

    Article  ADS  CAS  Google Scholar 

  67. Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Hebert, A. & McCalla, E. The role of metal substitutions in the development of Li batteries, part I: cathodes. Mater. Adv. 2, 3474–3518 (2021).

    Article  CAS  Google Scholar 

  69. Song, Y. et al. The significance of mitigating crosstalk in lithium-ion batteries: a review. Energy Environ. Sci. 16, 1943–1963 (2023).

    Article  Google Scholar 

  70. Hales, A., Marzook, M. W., Bravo Diaz, L., Patel, Y. & Offer, G. The surface cell cooling coefficient: a standard to define heat rejection from lithium ion battery pouch cells. J. Electrochem. Soc. 167, 020524 (2020).

    Article  ADS  CAS  Google Scholar 

  71. Xu, C. et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell Rep. Phys. Sci. 4, 101705 (2023).

    Article  CAS  Google Scholar 

  72. Pereira, D. J., McRay, H. A., Bopte, S. S. & Jalilvand, G. H2O/HF scavenging mechanism in cellulose-based separators for lithium-ion batteries with enhanced cycle life. ACS Appl. Mater. Interfaces 16, 5745–5757 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Ostanek, J. K., Li, W., Mukherjee, P. P., Crompton, K. R. & Hacker, C. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model. Appl. Energy 268, 114972 (2020).

    Article  CAS  Google Scholar 

  74. Yang, S.-J. et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells. eTransportation 18, 100279 (2023). This paper pioneeringly proposes that the dominant exothermic reaction in Ah-level ASSBs may arise from crosstalk between the cathode and the LPSCl solid electrolyte, rather than between the cathode and the lithium metal anode.

    Article  Google Scholar 

  75. Ruiz, V. et al. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew. Sustain. Energy Rev. 81, 1427–1452 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under contract no. DE- AC36-08GO28308. Financing is provided by the US DOE Advanced Research Projects Agency-Energy (ARPA-E) (award number DE-AR00001723, work authorization number 22/CJ000/07/03). We thank technology manager, H. Cheeseman for their support throughout this project. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. The US Government and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Contributions

C.Y., A.S., X.P., A.M. and D.P.F. contributed to forming and writing the manuscript. K.S., M.K., O.A.E., M.R.H., H.K., P.M. and R.S. contributed to reviewing and editing the manuscript and providing feedback on the layout and important topics to discuss.

Corresponding author

Correspondence to Donal P. Finegan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Xiangming He, John Hewson and Ya You for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Singh, A., Pu, X. et al. Addressing the safety of next-generation batteries. Nature 645, 603–613 (2025). https://doi.org/10.1038/s41586-025-09358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09358-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing