
1156  |  Nature  |  Vol 646  |  30 October 2025

Article

Transitions in dynamical regime and neural 
mode during perceptual decisions

Thomas Zhihao Luo1,3,8 ✉, Timothy Doyeon Kim1,4,5,8 ✉, Diksha Gupta1,6, Adrian G. Bondy1, 
Charles D. Kopec1, Verity A. Elliott1, Brian DePasquale1,7 & Carlos D. Brody1,2 ✉

Perceptual decision-making is thought to be mediated by neuronal networks with 
attractor dynamics1,2. However, the dynamics underlying the complex neuronal 
responses during decision-making remain unclear. Here we use simultaneous 
recordings of hundreds of neurons, combined with an unsupervised, deep-learning- 
based method, to discover decision-related neural dynamics in the rat frontal 
cortex and striatum as animals accumulate pulsatile auditory evidence. We found 
that trajectories evolved along two sequential regimes: an initial phase dominated 
by sensory inputs, followed by a phase dominated by autonomous dynamics, with 
the flow direction (that is, neural mode) largely orthogonal to that in the first 
regime. We propose that this transition marks the moment of decision commitment, 
that is, the time when the animal makes up its mind. To test this, we developed a 
simplified model of the dynamics to estimate a putative neurally inferred time  
of commitment (nTc) for each trial. This model captures diverse single-neuron 
temporal profiles, such as ramping and stepping3,4. The estimated nTc values were 
not time locked to stimulus or response timing but instead varied broadly across 
trials. If nTc marks commitment, evidence before this point should affect the 
decision, whereas evidence afterwards should not. Behavioural analysis aligned  
to nTc confirmed this prediction. Our findings show that decision commitment 
involves a rapid, coordinated transition in dynamical regime and neural mode and 
suggest that nTc offers a useful neural marker for studying rapid changes in internal 
brain state.

Theories of attractor dynamics have been successful at capturing 
several brain functions5, including motor planning6 and neural rep-
resentations of space7,8. Attractors are a set of states towards which 
a system tends to evolve from a variety of starting positions. In these 
theories, computations of a brain function are carried out using the 
temporal evolution or the dynamics of the system. Experimental find-
ings support the idea that the brain uses systems with attractor states 
for computations underlying working memory6 and navigation7. These 
theories often focus on the low-dimensional nature of neural popula-
tion activity2,9,10 and account for responses across a large number of 
neurons using a dynamical system model in which the variable has 
only a few dimensions7,11–13.

Attractor network models have also been proposed to underlie 
perceptual decision-making: the process by which noisy sensory 
stimuli are categorized to select an action or mental proposition.  
In these hypotheses, the network dynamics carry out the computations 
needed in decision formation1,2,14–16, such as accumulating sensory 
evidence and committing to a choice. Although some experimental 
evidence favours a role of attractors in perceptual decisions2,16,17, the 
actual population-level dynamics underlying decision-making have not 

been directly estimated. Knowledge of these dynamics would directly 
test the current prevailing attractor hypotheses, provide fundamental 
constraints on neural circuit models and account for the often complex 
temporal profiles of neural activities.

A separate line of work involves tools, sometimes based on 
deep learning, for discovering the low-dimensional component of  
neural activity in a data-driven manner10,18,19. In this approach, the 
spike trains of many simultaneously recorded neurons are modelled 
as being a function of a few latent variables that are shared across  
neurons.

To combine both lines of work, we used an innovative method20 that 
estimates, from the spike trains of simultaneously recorded neurons, 
the dynamics of a low-dimensional variable z, given by:

z z u ηF˙ = ( , ) + , (1)

where u are external inputs, η is noise and, when applied to perceptual 
decisions, z represents the dynamical state of the decision process of 
the brain at a given time (Fig. 1a–c). The instantaneous change of the 
decision variable or its dynamics is given by ż, which depends on z 
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itself, and u and η. This approach aims to estimate the function F and, 
through it, capture the nature of decision-making neural dynamics.

Differentiating dynamical hypotheses
The function F is useful for distinguishing among hypotheses of 
decision-making. F can be dissected into two components: autono-
mous dynamics and input-driven dynamics. Autonomous dynam-
ics are dynamics in the absence of sensory inputs u (that is, F(z, 0); 

Fig. 1d and Extended Data Fig. 1a,b). Input dynamics are changes in 
z driven by u, which can be distinguished from autonomous dynam-
ics as F(z, u) − F(z, 0). Input dynamics can depend on z (Fig. 1e and  
Extended Data Fig. 1c–e).

Many of the prevailing neural attractor hypotheses have been 
inspired by a classic and successful behavioural-level model, the drift 
diffusion model (DDM)21,22. In the behavioural DDM, a scalar (that is, 
one-dimensional) decision variable z is driven by sensory evidence 
inputs (Extended Data Fig. 6a,b). For example, for decisions between 
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Fig. 1 | Attractor models of decision-making were tested by recording from 
the rat frontal cortex and striatum. a, Rats were trained to accumulate 
auditory pulsatile evidence over time. While keeping its head stationary, the rat 
listened to randomly timed clicks played from loudspeakers on its left (L) and 
right (R). At the end of the stimulus, the rat received a water reward for turning 
to the side with more clicks. The earliest time when a rat could respond was 
fixed at 1.5 s relative to the moment of inserting its nose in the centre port (that 
is, not a reaction time paradigm). b, Behavioural performance in an example 
recording session. Dashed reference lines at abscissa = 0 and ordinate = 0.5.  
c, The decision process is modelled as a dynamical system. Right, the blue and  
red arrows represent the change in the decision variable in the presence of 
a left or right, respectively. z1, z dimension 1; z2, z dimension 2. d, Autonomous 
dynamics illustrated using the bistable attractor hypothesis. In the velocity 
vector field (that is, flow field; left), the arrow at each value of the decision 

variable z indicates how the instantaneous change depends on z itself.  
The orientation of the arrow represents the direction of the change, and its  
size represents the speed, also quantified using a heat map (right). e, Changes 
in z driven solely by external sensory inputs (example of bistable attractors).  
f, Bistable attractor hypothesis of decision-making, with directions of the input 
dynamics (based on ref. 1). g, A hypothesis supposing a line attractor in the 
autonomous dynamics on the basis of the DDM of decision behaviour (based 
on ref. 23). h, Recurrent neural networks can be trained to make perceptual 
decisions using a line attractor that is not aligned to the input dynamics (non- 
normal; based on ref. 2). i, Unsupervised discovery (this study) of dynamics that 
have not been previously considered. j, Six interconnected frontal cortical  
and striatal regions are examined here. vStr, ventral striatum. k, Neuropixels 
recordings (318 ± 147 neurons per session per probe, mean ± s.d.) from 12 rats in 
total (two to three regions per rat). AP, anteroposterior; ML, mediolateral.
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go right versus go left, momentary evidence for right (left) might drive 
z in a positive (negative) direction. Through these inputs, the momen-
tary evidence accumulates over time in z until the value of z reaches an 
absorbing bound, a moment thought to correspond to decision com-
mitment and after which inputs no longer affect z. Different bounds 
correspond to different choice options: a positive (or negative) bound 
would correspond to the decision to go right (or go left). A straight-
forward implementation of the DDM in neural population dynamics, 
which we refer to as the DDM line attractor, would posit a line attrac-
tor in neural space, with the position of the neural state z along that 
line representing the value of z and two point attractors at the ends 
of the line representing the decision commitment bounds23 (Fig. 1g). 
Another hypothesis approximates the DDM process using bistable 
attractors1, with each of the two attractors representing each of the 
decision bounds and, in between the two attractors, a one-dimensional 
stable manifold of slow autonomous dynamics that corresponds to the 
evidence accumulation regime (Fig. 1f). In both the DDM line attrac-
tor and bistable attractor hypotheses, evidence inputs are aligned 
with the slow dynamics manifold and the attractors at its end points. 
A third hypothesis, inspired by trained recurrent neural networks, 
also posits a line attractor (Fig. 1h) but allows for evidence inputs that 
are not aligned with the line attractor and that accumulate over time 
through non-normal autonomous dynamics2. In all three hypotheses, 
the one-dimensional line attractor and/or slow manifold is stable, mean-
ing that autonomous dynamics flow towards it (Fig. 1f–h). Because 
these three hypotheses were each designed to explain a particular 
set of the phenomena observed in decision-making experiments, a 
broader range of experimental observations could suggest dynamics 
that have not been previously considered. As but one example, autono-
mous dynamics may contain discrete attractors that do not lie at the 
end points of a one-dimensional slow dynamics manifold; many other 
arrangements are possible. In the data-driven approach we describe 
below, F is estimated purely from the spiking data and the timing of 
sensory input pulses, without incorporating any assumptions from 
the behavioural DDM or other existing hypotheses.

Dissociating between autonomous and input dynamics requires 
neural recordings during a decision unfolding over a time period that 
includes intervals both with and without momentary evidence inputs. 
We trained rats to perform a task in which they listened to randomly 
timed auditory pulses played from their left and their right and reported 
the side on which more pulses were played24 (Fig. 1a). The stochastic 
pulse trains allow us to sample neural responses time locked to pulses, 
which are useful for inferring input-driven dynamics, and also the neural 
activity in the intervals between pulses, which is useful for inferring 
autonomous dynamics. Expert rats are highly sensitive to small differ-
ences in auditory pulse number (Fig. 1b and Extended Data Fig. 2a), and 
the behavioural strategy of rats in this task is typically well captured by 
gradual accumulation of evidence, which is at the core of the DDM24–26.

While the rats performed this task, we recorded six frontal cortical 
and striatal regions with chronically implanted Neuropixels probes 
(Fig. 1j,k and Extended Data Fig. 2b). The frontal orienting fields (FOF) 
and the anterior dorsal striatum (dStr) are known to be causally neces-
sary for this task and are interconnected27–29. The dorsomedial frontal 
cortex (dmFC) is a major anatomical input to the dStr30, as confirmed 
by our retrograde tracing (Extended Data Fig. 2c), and is also causally 
necessary for the task (Extended Data Fig. 2d). The dmFC is intercon-
nected with the medial prefrontal cortex (mPFC) and, less densely, the 
FOF, the primary motor cortex (M1)31 and the anterior ventral striatum30.

Unsupervised discovery of dynamics
To test the attractor hypotheses and allow discovery of dynamics 
not previously considered, a flexible yet interpretable method was 
needed. We used an innovative deep learning method (flow field infer-
ence from neural data using deep recurrent networks; FINDR20) that 

infers the low-dimensional stochastic dynamics that best account for 
population spiking data. The low dimensionality of the description is 
critical for interpretability. Prominent alternative deep-learning-based 
approaches for inferring neural latent dynamics involve models in 
which these latent dynamics have hundreds of dimensions and are 
deterministic18. By contrast, FINDR infers latent dynamics that are low 
dimensional and stochastic. The stochasticity in the latent dynamics 
accounts for noise in the decision process that contributes to errors. 
FINDR approximates the decision-relevant dynamics F with a gated 
multilayer perceptron network32 and noise η as a Gaussian with diagonal 
covariance (equation (1) and Fig. 2a). The firing rate of each neuron at 
each time point is modelled as a weighted sum of the z variables, fol-
lowed by a softplus nonlinearity, which can be thought of as approxi-
mating neuronal current–frequency curves6 (Fig. 2b). The weighting for 
each neuron (vector wn for neuron n, comprising the nth row of a weight 
matrix W; Fig. 2b) is fit to the data. To aid the interpretability of z, we 
transform W after training such that its columns are orthonormal and 
it therefore acts as a rotation. As a result, angles and distances in z are 
preserved in Wz (neural space before softplus). Before learning F and 
W, we separately account for the decision-irrelevant, deterministic but 
time-varying baseline firing rate for each neuron (baseline in Fig. 2b) 
so that FINDR can focus on the choice formation process.

We first confirmed that, in synthetic data, the velocity vector 
fields (flow fields) inferred by FINDR can distinguish between exist-
ing attractor hypotheses (Extended Data Fig. 1f–h). Next, we turned 
to the recorded spiking data and confirmed that FINDR provides a 
good fit to the heterogeneous single-trial firing rates of individual 
neurons and to the complex dynamics in their peristimulus time his-
tograms (PSTHs) conditioned on the sign of the evidence (Extended 
Data Fig. 3a–d). We found that two latent dimensions suffice to capture 
our data well (Extended Data Fig. 3e–i). For models with more than two 
latent dimensions, the latent dynamics are still mostly confined to two 
dimensions, and this two-dimensional manifold is approximately an 
attractor (Extended Data Fig. 3h–k).

Figure 2c–h shows a representative recording session from the 
dmFC and the mPFC. We found that, generally, two-dimensional 
input-driven dynamics and autonomous dynamics inferred by FINDR 
were not described well by the existing hypotheses: in all three hypoth-
eses illustrated in Fig. 1d–h, there is a one-dimensional stable mani-
fold that either is or approximates a line attractor. By contrast, even 
though, over the first 330 ms, the average trajectories evolve along an 
approximately straight line (Fig. 2h), the line is not a one-dimensional 
attractor, and individual trials diverge from it. Furthermore, in all three 
hypotheses in Fig. 1d–h and in all other hypotheses we are aware of, 
autonomous dynamics play an important part throughout the entire 
decision-making process. For example, autonomous dynamics are 
what enforce the stability of the one-dimensional slow manifolds in 
Fig. 1d–h. By contrast, at least in the space of the latent variable z, 
FINDR-inferred dynamics suggest that, initially, motion in neural space 
is dominated and driven by inputs to decision-making regions (that is, 
by the input-dependent dynamics), not the autonomous dynamics, 
which are slow in both dimensions (Fig. 2c–h), not only one. Later in 
the decision-making process, the balance between autonomous versus 
input-driven dynamics inverts, and it is the autonomous dynamics that 
become dominant. Plots in Fig. 2g show the difference in magnitude 
between autonomous and input-driven dynamics (indicated with the 
colour scale) on the z plane. The initial dominance of the input-driven 
dynamics can be seen in the zone near the (0, 0) origin at the negative 
end of the colour scale. The later dominance of autonomous dynamics 
can be seen in the right and left edges of the sampled region, reached 
later in the decision-making process, at the opposite end of the colour 
scale. Moreover, the direction of instantaneous change driven by the 
inputs (slightly clockwise from horizontal in Fig. 2e) is not aligned 
with the direction of the strongest autonomous dynamics in the left 
and right edges of the sampled region (slightly anticlockwise from 
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vertical in Fig. 2c). The curved trial-averaged trajectories of z emerge 
from this non-alignment in the input direction and the autonomous 
direction later in the decision-making process. The change from an 
input-dominated to an autonomous-dominated dynamical regime and 
the sharp turn in the direction of the neural trajectories in Fig. 2c–h were 
observed consistently across rats and behavioural sessions (Fig. 3a–d). 
These observations were robust to several different initializations of 

the neural networks in FINDR, the order of minibatches during training 
and how datasets were split into training and test sets (Extended Data 
Fig. 4). They are therefore a consistent finding of the analysis.

To perform a head-to-head comparison with the three hypotheses 
in Fig. 1d–h, we constructed a variant of FINDR in which the network 
parametrizing F was replaced by a parametrization of the dynamics 
constrained to describe those three hypotheses (Fig. 3e,f and Extended 
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Fig. 2 | Unsupervised discovery shows transitions in dynamical regime and 
neural mode underlying the shift from evidence accumulation to decision 
commitment. a, Decision-relevant dynamics are inferred using FINDR20.  
b, FINDR learns the decision variable z that best captures neural spiking 
activity. Each neuronal spike count at a given time step is modelled as a Poisson 
random variable with the rate given by an affine transformation of z at that time 
step, followed by the softplus nonlinearity. The grey box indicates the decision 
variable z at an example time step, and the yellow box indicates the spike counts 
at that time step. A time-varying baseline is learnt for each neuron to capture 
the decision-irrelevant component of its activity. c–h, Vector field inferred 
from 96 simultaneously recorded choice-selective neurons in the dmFC and 
the mPFC from a representative session. Only the portion of the state space 
visited by at least 50 of 5,000 simulated 1-s trajectories (sample zone) is shown. 

c, Autonomous dynamics. d, Speed of autonomous dynamics. e, Input 
dynamics for left and right clicks. If u = [1;0] indicates a left click input,  
F(z, [1;0]) − F(z, 0) is the input dynamics given a left click. However, the average 
left input dynamics depend on the frequency of left clicks, given by p(u = [1;0]|z). 
Therefore, we compute the average left input dynamics F(z, left) − F(z, 0) as 
p(u = [1;0]|z)(F(z, [1;0]) − F(z, 0)). We compute the average right input dynamics 
similarly, with u = [0;1]. f, Speed of input dynamics. g, Difference in speed 
between autonomous and input dynamics. h, Initially, z is strongly driven by 
inputs, and its trajectories develop along the evidence accumulation axis 
aligned with the direction of input dynamics. At a later time, the trajectories 
become largely insensitive to the inputs and are instead driven by autonomous 
dynamics to evolve along the decision commitment axis aligned with the 
direction of autonomous dynamics.
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Data Fig. 5). If the data were described well by one of these hypotheses, 
we would expect this variant (which we refer to as cFINDR, for con-
strained FINDR) to fit the data well, particularly out of sample, because 
it has far fewer parameters than FINDR. However, unconstrained FINDR 
consistently fit the data better than cFINDR, confirming that previ-
ous hypotheses do not adequately capture the data. Although one of 
the hypotheses (Fig. 1h, suggesting non-normal dynamics with a line 
attractor) can generate curved trial-averaged trajectories apparently 
similar to those we see in the data (Fig. 3e,f and Extended Data Fig. 5g), 
there is a key difference, which is that, in this particular hypothesis, 
the turn from the initial flow direction induced by the inputs happens 
early, because the autonomous dynamics causing it are strong the 
moment the latent state departs from the line attractor. However, our 
data suggest that there is a more prolonged initial phase of flow along 

the input directions before the turn, with the stronger autonomous 
dynamics happening much later in the decision-making process. We 
believe that this underlies the much better fits to the data for FINDR 
than those for cFINDR.

A recent study33 described neural trajectories that were described well 
by non-normal dynamics34,35. Consistent with this, the two-dimensional 
FINDR-inferred autonomous dynamics around the origin are also 
non-normal (Extended Data Fig. 10b,c), although with a key differ-
ence with respect to refs. 33–35, which is that here the origin is unstable 
(Extended Data Fig. 10a,e).

Unsupervised inference of dynamics underlying decision-making, 
based only on spiking activity and sensory evidence inputs, thus sug-
gests that the process unfolds in two separate sequential regimes. In 
the initial regime, dynamics are largely determined by the inputs, with 
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Fig. 3 | FINDR shows transitions in dynamical regime and neural mode 
consistently across sessions and better captures the data than a constrained 
model based on previous hypotheses. a, To quantify how speed difference 
between autonomous and input dynamics evolves over a trial, we identify the 
time point when the latent trajectories curve (stars) and compute the speed 
difference in Fig. 2g before and after this point. The latent trajectories are 
trial-averaged, sorted by evidence strength. The trial-averaged trajectories and 
stars are coloured as in Fig. 2h. b, The peak is defined as the time of maximum 
curvature in the trial-averaged trajectories. Time periods are defined relative to 
this peak (before peak and after peak) and to trial start and end (early and late) 
for c,d. Black star symbol represents the peak of average trajectory curvature. 
c, We compute the normalized difference in speed between autonomous and 
input dynamics for five different time periods (start (time = 0 s), early, before 
peak, after peak and late) from vector fields inferred from sessions with more 
than 30 recorded neurons, over 400 trials during which the animal performed 
with more than 80% accuracy (n = 27 sessions). The dashed line indicates 

normalized difference of 0. CI, confidence interval. d, For sessions in which 
FINDR with the two-dimensional decision variable z fit significantly better than 
FINDR with one-dimensional z (n = 21 of 27; Extended Data Fig. 3), we measured 
the direction of motion of the trial-averaged trajectories and its angle with 
respect to the z1 axis for different time periods (curving of trial-averaged 
trajectories across 21 sessions). e, cFINDR captures previous hypotheses  
and replaces the neural network parametrizing F with a combination of line 
attractor dynamics (specified by QΛQ−1, with the diagonal matrix Λ having one 
zero and one negative eigenvalue) and bistable attractor dynamics (specified 
by a nonlinear function φ; Methods). f, Autonomous dynamics inferred by 
cFINDR and FINDR are shown for a representative session, with vector field 
outside the sample zone in grey. g, The coefficient of determination (R2) of the 
evidence–sign conditioned PSTH computed using fits of FINDR is significantly 
greater than those computed using fits of cFINDR (across 27 sessions, two-sided 
Wilcoxon signed-rank test).
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autonomous dynamics playing a minor role. The sensory evidence 
inputs (right and left clicks) drive the decision variable to evolve along 
an axis, parallel to the directions of the input dynamics, that we will 
term the evidence accumulation axis. In the second, later regime, these 
characteristics reverse; the trajectories representing the evolution of 
the decision variable become largely independent of the inputs and 
are instead mostly determined by autonomous dynamics. We will term 
the straight line along the direction of the autonomous dynamics in 
the later regime the decision commitment axis. Of note, the evidence 
accumulation axis and the decision commitment axis are not aligned 
with each other. During the regime transition, the trajectories in z veer 
from evolving along the evidence accumulation axis to developing 
along the decision commitment axis. In neural space, this will equate 
to a transition from evolving along one mode (that is, a direction in 
neural space), corresponding to evidence accumulation, to another 
mode that, as explained below, we believe may correspond to decision 
commitment.

Although derived entirely from unsupervised analysis of neural spik-
ing activity and auditory click times, these two regimes are reminiscent 
of the two regimes of the behavioural DDM: namely, an initial regime 
in which momentary sensory inputs drive changes in the state of a 
scalar decision variable z and a later regime, after z reaches a bound, in 
which the state becomes independent of sensory inputs (Extended Data 
Fig. 2e,f). The correspondence between the two regimes inferred from 
spiking activity and the behavioural DDM suggests that the transition 
between regimes may correspond to the moment of decision commit-
ment. It further suggests that a modified neural implementation of the 
DDM, focusing on key aspects of the two regimes, could be a simple 
model that captures many aspects of the neural data, although having 
far fewer parameters than FINDR and thus greater statistical power. We 
next develop this model and show that it can be used to precisely infer 
the regime transition time in each trial and test the proposal that this 
transition corresponds to decision commitment.

Simplified model of decision dynamics
FINDR-inferred vector fields show a rapid shift from strongly input- 
driven to autonomous-dominant dynamics, analogous to the tran-
sition from evidence accumulation to decision commitment in the 
behavioural DDM (Fig. 4a,b). The DDM captures behaviour in a wide 
range of decision-making tasks, including tasks in which the stimulus 
duration is determined by the environment24,25,28,36,37, as used here. 
This suggests that the FINDR-inferred dynamics may be approximated 
by a simplified model in which the decision variable evolves as in the 
behavioural DDM.

The regime transition coincides with rapid reorganization in the neu-
ronal population representation of the decision process. To quantify 
this reorganization, we treat the activity of each neuron as a dimension 
in neural space, with axes in this space as neural modes. Seen in this 
way, the shift from evidence accumulation to decision commitment 
is coordinated with a fast transition in the neural mode, analogous to 
the rapid change in neural modes from motor preparation to motor 
execution38. This motivates whether a simplified model based on a 
rapid, coordinated transition in both dynamical regime and neural 
mode can capture the key features of FINDR-inferred dynamics and 
broader experimental observations.

In what we will call the multimode or minimally modified DDM 
(MMDDM), a scalar decision variable z evolves just as in the behav-
ioural DDM, governed by three parameters (Fig. 4b, Extended Data 
Fig. 6a,b and the Methods). The key addition is that neurons encode z 
differently before and after the decision commitment bound is reached. 
Each neuron has two weights: wEA for the evidence accumulation phase 
and wDC for the decision commitment phase. When wEA and wDC are con-
strained to be the same, the MMDDM reduces to a standard DDM with a 
single neural mode. In the DDM line attractor hypothesis in Fig. 1g, if the 

autonomous dynamics towards the line attractor are strong relative to 
the noise, trajectories will be largely one dimensional, which are approx-
imated well by a single-mode DDM. Because neurons multiplex both 
decision-relevant and decision-irrelevant signals39,40, MMDDM includes 
terms for spike history and, similar to FINDR, decision-irrelevant base-
line changes (Extended Data Fig. 6c–f). All parameters are fit jointly 
for each session using both neural activity and behavioural choices.

MMDDM can account for a broader range of neuronal profiles 
(Fig. 4c–g) than the single-mode DDM, which captures only ramp-like 
neuronal temporal profiles (Extended Data Fig. 2e–l). In the vast major-
ity of recording sessions, the data are better fit by MMDDM than by the 
single-mode DDM (cross-validated; Fig. 4h,i). The model also accu-
rately captures the choice data (Fig. 4j and Extended Data Fig. 6g) and 
reproduces vector fields that closely resemble those inferred from real 
spike trains (Extended Data Fig. 6h). Additional validations are shown 
in Extended Data Fig. 6i–n. Finally, because the end of the stimulus was 
fixed across trials relative to fixation onset, stimulus offset was not 
included as an input in MMDDM, consistent with the lack of abrupt 
neural changes at stimulus offset (Extended Data Fig. 9).

nTc
In MMDDM, the transition from evidence accumulation to decision 
commitment and a consequent switch from wEA to wDC directly imple-
ment a change in neural mode between the two phases of the trial, which 
was previously suggested9,41. However, it remains unclear whether this 
neural mode change corresponds to the animal making up its mind, in 
part because no method has been developed previously to precisely 
estimate its timing in single trials. The behavioural DDM, without neu-
ral data, can provide a rough estimate of the moment of commitment 
(Fig. 5a, dashed grey line). But on the basis of the hypothesis that the 
time of the neural mode change corresponds to the time of commit-
ment and, using data from many simultaneously recorded neurons, 
MMDDM allows a far more precise estimate per trial (Fig. 5a, orange 
line). We refer to this moment as nTc. Surprisingly, nTc varied widely 
across trials. It was not time locked to stimulus onset (Fig. 5b), stimulus 
offset (Extended Data Fig. 7n) or the onset of the decision-reporting 
motor response (Fig. 5c). Instead, nTc seemed to be an internally timed 
event. nTcs also occurred well after the onset of perimovement kernels 
inferred from generalized linear models of single-neuron spike trains40 
(Extended Data Fig. 8), indicating that nTcs do not reflect the initiation 
of action plan encoding.

A core prediction of the hypothesis that nTc marks the time of internal 
decision commitment is that, after nTc, auditory click stimuli should 
stop influencing the behavioural choice, because the animal will have 
already made up its mind. The single-trial estimates of nTc that MMDDM 
provides can be used to test this prediction: we time align the sensory 
stimulus data of each trial to the neurally estimated nTc and then behav-
iourally measure the weight with which stimulus fluctuations at each 
time point affect choice (that is, the psychophysical kernel42; Methods). 
Remarkably, as predicted, we found that the psychophysical weight of 
stimulus fluctuations on the choice of the animal diminished abruptly 
to zero after nTc (Fig. 5d and Extended Data Fig. 7). Because these com-
mitment times varied widely across trials (Fig. 5b,c), the abrupt drop in 
psychophysical weight cannot be observed without the single-trial nTc 
estimates. If we instead align trials to the stimulus onset, we obtain a 
smooth psychophysical kernel (Extended Data Fig. 7e–h), as observed 
in previous studies lacking access to nTc24.

nTc showed further hallmarks of being a marker of commitment: 
First, for a given evidence strength, trials without commitment are 
predicted to be more likely to involve noise acting against the sen-
sory evidence, leading to lower accuracy. Consistent with this pre-
diction, accuracy was lower in trials when nTc could not be identified 
(Fig. 5e). Second, commitment should occur more often when evidence 
is stronger, and, accordingly, nTc was more frequently detected in 
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trials with stronger evidence (Fig. 5f). Additional hallmarks are shown 
in Extended Data Fig. 7i–q. Together, these results offer behavioural 
support for an internally timed commitment event, after which sen-
sory inputs are ignored, and the timing of which can be inferred from 
spiking data using nTc.

Abrupt and gradual shifts at commitment
Perceptual decision-making involves a diversity in the temporal pro-
files of choice-selective neurons, with some showing a ramp-to-bound 
profile, others exhibiting a step-like profile and some falling in between 
a ramp and a step3,4. We found that the continuum of ramping and step-
ping profiles can be captured by a rapid reorganization in population 

activity at the time of decision commitment, as described by MMDDM. 
We grouped neurons by whether they were estimated to be more, less 
or similarly engaged in evidence accumulation relative to decision 
commitment (|wEA| > |wDC|, |wEA| ≈ |wDC| and |wEA| < |wDC|, respectively, in 
MMDDM fits). We then computed the pericommitment neural response 
time histogram (PCTH) of each neuron (Methods and Fig. 6a,b). For 
neurons similarly engaged in accumulation and commitment, the PCTH 
had a ramp-to-bound profile, whereas, for neurons more engaged in 
commitment, the PCTH resembled a step. For neurons more engaged 
in accumulation, the PCTH had a ramp-and-decline profile. Even with-
out grouping neurons, we found that the first three principal compo-
nents (PCs) of the PCTHs correspond to the ramp-to-bound, step and 
ramp-and-decline profiles.
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Fig. 4 | A simplified model captures discovered dynamics and diverse 
neuronal profiles. a, The velocity vector field of both the discovered dynamics 
and the DDM line attractor can be partitioned into evidence accumulation (EA) 
and decision commitment (DC) regimes. b, The MMDDM, a simplified model of 
the discovered dynamics. As in the behavioural DDM, momentary evidence (u) 
and noise (η) accumulate over time in the decision variable (z) until z reaches 
either the left (−B) or right (+B) bound. At this moment, the animal commits  
to a decision: z becomes fixed and unresponsive to further input. Also at  
this moment, the encoding weight (w) of each neuron shifts from wEA to wDC, 
changing how z maps to the predicted Poisson firing rate y through softplus 
nonlinearity h and baseline b. c, MMDDM captures heterogeneous single- 
neuron profiles. A ramp PSTH arises when wEA and wDC are equal. d, A decay 

profile emerges when wDC is zero because, over time, more trials reach the bound 
where encoding of z vanishes. e, A delay profile results from setting wEA to zero 
because, early in the trial, it is unlikely to have reached the bound. f, ‘Flip’ is 
produced by setting wEA and wDC to have opposite signs. g, MMDDM captures 
heterogeneity in single-neuron temporal profiles. Shading represents 95% 
bootstrap CI of the mean; the solid line is the model prediction. h, MMDDM  
has a higher out-of-sample likelihood than a one-dimensional DDM without a 
neural mode switch. i, MMDDM achieves a higher goodness-of-fit R2 value of 
the choice-conditioned PSTHs. h,i, P values were computed using two-sided 
sign tests. j, Model prediction (pred.) and observed psychometric function for 
one example session. The shaded areas are the 95% bootstrap CI of the mean; 
the solid line is the model prediction.
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The abrupt changes at decision commitment seem inconsistent 
with smoothly curved trial-averaged trajectories in low-dimensional 
neural state space often observed in decision-making studies2,9. Similar 
phenomena are observed in our data: the trial-averaged trajectories for 
left and right choices do not separate from each other along a straight 
line but rather along curved arcs (Fig. 6c). These smoothly curving 
arcs may result from averaging over trajectories with an abrupt turn 
aligned to decision commitment, which occurs at different times across 
trials (Fig. 5b–d). Consistent with this account, the smooth curves 
in low-dimensional neural state space can be captured well by the 
out-of-sample predictions of MMDDM but not by a one-dimensional 
DDM without a neural mode switch (Fig. 6c). These results indicate that 

the MMDDM, a simplified model of the discovered dynamics, can cap-
ture the widespread observation well of smoothly curved trial-averaged 
trajectories.

Mode transitions across regions
Although we generally observed dynamics with a neural mode tran-
sition across several frontal cortical and striatal areas, quantitative 
differences could be observed across these regions. The choice selec-
tivity (a measure, ranging from −1 to 1, of the difference in firing rates 
for right-versus-left-choice trials; Extended Data Fig. 2m) averaged 
across neurons had different temporal profiles across brain regions 
(Fig. 6e). Although mPFC neurons were most choice selective near 
the beginning, FOF neurons were most choice selective towards the 
end. We found that the difference in latencies to peak choice selec-
tivity was linked to differences in relative neuron engagement in evi-
dence accumulation and decision commitment. Neurons that were 
more strongly engaged in evidence accumulation (wEA > wDC) tended 
to have a shorter latency to peak selectivity than neurons that were 
more strongly engaged in decision commitment (wDC > wEA). This result 
indicates that differences in choice-related encoding across frontal 
cortical and striatal regions can be understood in terms of relative 
participation in evidence accumulation versus decision commitment  
(Fig. 6f,g).

Discussion
How neural dynamics govern the formation of a perceptual choice 
has been long debated1,2,5. Here we suggest that, for decisions on the 
timescale of hundreds of milliseconds to seconds, an initial input- 
driven regime mediates evidence accumulation and a subsequent 
autonomous-dominant regime subserves decision commitment. This 
regime transition is coupled to a rapid change in the representation of 
the decision process by the neural population: the initial neural mode 
(that is, direction in neural space) representing evidence accumulation 
is largely orthogonal to the subsequent mode representing decision 
commitment. In this sense, it is reminiscent of other covert cognitive 
operations, such as attentional selection, that also involve a change 
in neural mode43.

If this coupled transition in dynamical regime and neural mode 
indeed corresponds to the time of decision commitment, sensory 
evidence presented after the transition would have minimal impact 
on the decision of the animal, because the animal would have already 
committed to a particular choice. Behavioural analysis confirmed this 
prediction in the experimental data (Fig. 5d), leading us to conclude 
that the transition is indeed a signal for covert decision commitment. 
We refer to the estimate of the presence and timing of such a transition 
in each trial, which is based on the sensory stimulus and firing rates of 
simultaneously recorded neurons, as nTc.

We wondered how decisions end. In reaction time paradigms of 
perceptual decision-making, animals are trained to respond as soon 
as they make a decision. The moment the animal initiates its response 
is then used to operationally define when it commits to a choice44,45.  
In these paradigms, decision commitment is overt, as it is closely linked 
to the onset of the movement animals make to report their choice45. 
Here, by contrast, using an experimenter-controlled duration para-
digm, we found a decision commitment signal (nTc) that is covert in the 
sense of occurring at a time highly variable with respect to the timing 
of the external motor action used to report the decision, which it can 
precede by as much a second or more (Fig. 5c). It is also highly vari-
able with respect to stimulus onset (Fig. 5b) or offset (Extended Data 
Fig. 7n). It is thus an internal signal, largely defined by coordination 
across neurons, not by its timing with respect to external events. The 
pericommitment neural responses observed here contrast sharply 
with the ramp-and-burst neural responses observed in animals trained 
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Fig. 5 | nTc marks the moment of internal decision commitment. a, Example 
trial. The inferred time of commitment is far more precise when neural activity 
is used (nTc, orange line) than when it is inferred solely from sensory stimulus 
timing and choice behaviour (dashed grey line). b, Distribution of estimated 
nTc values relative to stimulus onset. Among the 34.7% of trials in which 
commitment times could be detected, nTc varied widely relative to the onset of 
auditory click trains. The decline in nTc frequency over time reflects randomized 
stimulus durations (0.2–1.0 s). c, Distribution of nTc values relative to movement 
onset to report the decision of the animal (exiting centre fixation port). As in b, 
nTc timing also varies widely across trials. The leftmost bin includes trials in 
which the nTc occurred more than 1 s before movement. d, Supporting the 
interpretation of nTc as a decision commitment and, despite the highly variable 
timing of nTc, sensory evidence presented before nTc affects the decision of 
the animal but evidence presented after nTc does not (weight of clicks on choice 
inferred using logistic regression). Trials for which the estimated time of 
commitment occurred at least 0.2 s before stimulus offset and 0.2 s or more 
after stimulus onset were included for this analysis (9,397 of 55,057 trials across 
115 sessions with 12 rats). The green line is the prediction from the MMDDM 
model fit to the data. e, Behavioural accuracy was lower in trials in which nTc 
could not be identified. Predictions were made by fitting MMDDM to the data, 
simulating trials from the fitted models and applying the same nTc detection 
procedure as that used for real data. Dashed reference lines at abscissa = 0  
and ordinate = 0.5. f, nTc was more likely to be identified in trials with stronger 
evidence. For each evidence strength bin, the fraction of trials with an 
identified nTc was divided by the overall trial fraction across all bins, which  
was lower in the data than in the model predictions. Black circles and green 
lines indicate the mean across sessions. Black error bars and green shading 
indicate the 95% bootstrap confidence of the mean. Dashed reference lines 
at ordinate = 1.0.



1164  |  Nature  |  Vol 646  |  30 October 2025

Article

PC1 projections

P
C

2 
p

ro
je

ct
io

ns

Left choice
Right choice
t = 0 s
t = 0.33 s
t = 1 s

a

b
P

ro
je

ct
io

ns
 o

nt
o

P
C

s 
of

 Δ
sp

ik
es

p
er

 s
 (r

ig
ht

 −
 le

ft
)

Observed Shuf�ed 95% CI

Δs
p

ik
es

 p
er

 s
(p

re
fe

rr
ed

 –
 

no
np

re
fe

rr
ed

)

c

0

10

–0.2

0

0.2
PC2 (12%)

Neurons more 
engaged in

decision commitment
(n = 414 neurons)

MMDDM

0

7

–0.2

0

0.2

PC3 (2%)

Neurons more
engaged in

evidence accumulation
(n = 1,529 neurons)

Single-mode DDM

–0.3 0 0.3

Time from nTc (s)

–0.3 0 0.3

Time from nTc (s)

–0.3 0 0.3

Time from nTc (s)

–0.3 0 0.3

Time from nTc (s)

–0.3 0 0.3

Time from nTc (s)

–0.3 0 0.3

Time from nTc (s)

0

8

0.05

0.10

0.15

PC1 (86% of variance)

Neurons similarly 
engaged in commitment

and accumulation
(n = 1,116 neurons)

0

PC1 projections
0

PC1 projections
0

0

P
C

2 
p

ro
je

ct
io

ns

0

P
C

2 
p

ro
je

ct
io

ns

0

Observed

0 1
0

0.8

mPFC dmFC
vStr dStr
M1 FOF

C
ho

ic
e 

se
le

ct
iv

ity
av

er
ag

ed
 a

cr
os

s 
ne

ur
on

s

Time from stimulus onset (s)

Time from stimulus onset (s)

0

20

S
p

ik
es

 p
er

 s

0

15

EI  = –0.01

0

15

EI  = 0.90

00

EI = 1

EI =
|wEA| + |wDC|

|wEA| – |wDC|

EI = 0

EI = –1

accumulation only

equal participation

commitment only 1 1 0 1

EI = –0.72

d e

f

Δb
its

 p
er

(n
eu

ro
ns

 ×
 t

ria
ls

)

dm
FC

m
PFC dStr

vS
tr M

1
FO

F

0

0.2

Median
across

sessions

g

Fr
ac

tio
n 

of
 n

eu
ro

ns

–1 0 1
0

0.2

mPFC

EI

Fr
ac

tio
n 

of
 n

eu
ro

ns

–1 0 1
0

0.2

EI

Fr
ac

tio
n 

of
 n

eu
ro

ns

–1 0 1
0

0.2

EI

Fr
ac

tio
n 

of
 n

eu
ro

ns

–1 0 1
0

0.2

EI

Fr
ac

tio
n 

of
 n

eu
ro

ns

–1 0 1
0

0.2

EI

Fr
ac

tio
n 

of
 n

eu
ro

ns

–1 0 1
0

0.2

EI

dStr vStrM1 FOFdmFC

No. sessions 2929 86 74 75 7

Fig. 6 | Simplified model captures heterogeneous single-neuron temporal 
profiles, such as ramping and stepping, and shows functional distinctions 
between brain regions. a, PCTHs for neurons grouped by relative engagement 
(defined in f). Neurons similarly engaged in evidence accumulation and decision 
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e, The neuron-averaged choice selectivity has different temporal profiles across 
brain regions: mPFC neurons are most choice selective near the beginning, 
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dmFC versus FOF (exact P values are in the Supplementary Notes (section 2.1).
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to couple their decision commitment with response initiation45 in a 
reaction time task.

Although the timing of the nTc signal reported here makes it very 
distinct from motor execution, the signal is also distinct from action 
preparation or planning. The beginning of action planning carries no 
implication as to whether sensory evidence presented subsequently 
will or will not be ignored. Indeed, in perceptual decision-making tasks, 
preliminary action preparation, driven by choice biases induced by pre-
vious trials, is often observed to begin even before the sensory stimulus, 
as reported previously40 and found in our own data (Extended Data 
Fig. 8). By contrast, commitment to a decision suggests that evidence 
presented subsequently to the commitment will no longer affect the 
choice of the animal. Here we found that nTc corresponds to such a 
decision commitment moment. This was the case both at the neural 
level, in which it correlates with a substantial decrease in the effect of 
sensory inputs on neural responses in the regions we recorded (Fig. 2), 
and at the whole-organism behavioural level, in the sense that sensory 
evidence before nTc affects the choices of the animal but sensory evi-
dence after nTc does not (Fig. 5d).

Although the behavioural DDM is a widely used model of decision- 
making, other frameworks are also prevalent, such as the linear bal-
listic accumulator46 or urgency gating47. It is notable that the dynamics 
inferred by FINDR, obtained in a data-driven, unsupervised manner 
from spike times and auditory click times alone, resulted in regimes 
that match the characteristics of the behavioural DDM but not those 
of the alternatives. This match led us to explore a simplified model, 
the MMDDM, in which a scalar latent decision variable evolves as in 
the DDM but is represented in different neural modes before versus 
after decision commitment. The neural mode change indicates that a 
downstream decoder of the categorical choice can improve its accuracy 
by selectively reading out from neurons with post-commitment weights 
large in magnitude. A possible mechanism for the neural mode change 
is an input from ascending midbrain neurons, which is suggested by 
a recent finding in a working memory task that midbrain neurons, in 
response to an external auditory cue, trigger rapid reorganization of 
motor cortex activity to switch from planning-related activity to a 
motor command that initiates movement in mice48.

We found that the MMDDM provides a parsimonious explanation of a 
variety of experimental findings from several species: across primates 
and rodents, sensory inputs and choice are represented in separate 
neural dimensions2,9,40 across time, and neither sensory responses nor 
the neural dimensions for optimal decoding of the choice are fixed9. 
These phenomena, along with other observations including diversity 
in single-neuron dynamics39,40, curved average trajectories9, choice 
behaviour24 and some vigorously debated phenomena such as a variety 
of single-neuron ramping versus stepping temporal profiles3,4, are all 
captured by the MMDDM. However, we do not see MMDDM as a unique 
or a unified model of perceptual decision-making. Rather, we see it as 
a simple yet useful approximation, a minimally modified DDM, and a 
stepping stone towards a unified model of decision-making.

Single-trial trajectories, in sum, filled out the two-dimensional latent 
space inferred by FINDR. But when averaged over trials of a given evi-
dence strength (Fig. 2h), they evolved along a one-dimensional curved 
trajectory. Looking exclusively along this one-dimensional manifold, 
the dynamics resemble those of the bistable attractor hypothesis1 
(Fig. 1f) in the sense of a one-dimensional unstable point at the origin, 
with autonomous dynamics growing stronger the farther the system 
is from the origin. However, the bistable attractor hypothesis and the 
other two hypotheses in Fig. 1g,h posit a one-dimensional manifold 
of slow autonomous dynamics, along which evidence accumulation 
evolves and towards which other states are attracted1,23. By contrast, 
the FINDR-inferred dynamics (which are inferred from single trials, 
not averaged trials) suggest an initial two-dimensional manifold of 
slow autonomous dynamics. Sensory evidence inputs drive evidence 
accumulation along one of these slow dimensions. The other slow 

dimension corresponds to the decision commitment axis, along which 
autonomous dynamics will become dominant later in the process. We 
wondered why there would be slow autonomous dynamics along this 
second dimension. We speculate that, during initial evidence accumula-
tion, slow autonomous dynamics along the decision commitment axis 
provide a mechanism for inputs driven by non-sensory factors such as 
trial history49 to influence choice independent of the accumulating 
sensory evidence.

The authors of one recently proposed method to infer autonomous 
dynamics, applied to data from a task that did not require accumulat-
ing evidence over time, proposed that variety across the tuning curves 
of individual neurons could lead to curved one-dimensional decision 
manifolds14. However, the authors’ method cannot yet infer input 
dynamics, and thus data from tasks with evidence that arrives gradu-
ally over time cannot yet be analysed; such an extension would have to 
be realized before we can assess whether the curvature their approach 
could infer would correspond to the curvature we described here for 
accumulation of evidence. Importantly, inferring input dynamics in 
addition to autonomous dynamics was critical to our observation that 
a change in dynamical regime, from input dominated to autonomous 
dominated, seemed to coincide with the change in neural mode (Fig. 2). 
This observation was key for our hypothesis that this event (nTc) could 
correspond to decision commitment, for development of the MMDDM 
simplified model to estimate nTc and for experimental confirmation 
that nTc is indeed the moment when sensory evidence ceases to affect 
the decision of the animal (Fig. 5d).

Finally, our approach expands the classic repertoire of techniques 
used to study perceptual decision-making. We inferred decision dynam-
ics directly from neural data rather than assuming a specific hypoth-
esis, and we took steps to enhance the human interpretability of the 
discovered dynamics: the unsupervised method (FINDR) focuses on 
low-dimensional rather than high-dimensional decision dynamics, 
and the mapping from latent to neural space (before the activation 
function of each neuron) preserves angles and distances. On the basis 
of key features of the inferred latent dynamics, we developed a highly 
simplified, tractable model (MMDDM) that is directly relatable to the 
well-known DDM framework. We found that the MMDDM, despite its 
simplicity, could describe a broad variety of previously observed phe-
nomena and allowed us to infer the internal decision commitment times 
of the animal in each trial. Pairing deep-learning-based unsupervised 
discovery with simplified, parsimonious models may be a promising 
approach for studying not only perceptual decision-making but also 
other complex phenomena.
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Methods

Experiments
Animals. The animal procedures described in this study were app
roved by the Princeton University Institutional Animal Care and Use 
Committee and were carried out according to the standards of the 
National Institutes of Health (NIH). Animals consisted of 16 adult, 
6–24-month-old, male Long–Evans rats (Rattus norvegicus, Hilltop 
Lab Animals, Taconic) that were housed in Technoplast cages in 
pairs with a 12-h reversed light–dark cycle. All training and testing 
procedures were performed during the dark cycle. The rats had free 
access to food, but they had restricted access to water. The amount 
of water that the rats obtained daily was at least 3% of their body 
weight. Sample sizes were chosen on the basis of previous electro-
physiological studies in rats28,29. No blinding or randomization was  
performed.

Behavioural task. Rats performed the behavioural task in custom- 
made training enclosures (Island Motion) placed inside sound- and 
light-attenuated chambers (IAC Acoustics). Each enclosure con-
sisted of three straight walls and one curved wall in which three 
nose ports were embedded (one in the centre and one on each 
side). Each nose port also contained one light-emitting diode that 
was used to deliver visual stimuli, and the front of the nose port was 
equipped with an infra-red beam to detect the entrance of the nose 
of the rat into the port. A loudspeaker was mounted above each of 
the side ports and used to present auditory stimuli. Each of the side 
ports also contained a silicone tube that was used for water reward 
delivery, with the amount of water controlled by valve-opening  
time.

Rats performed an auditory discrimination task in which optimal 
performance required the gradual accumulation of auditory clicks24. 
At the start of each trial, rats inserted their nose in the central port 
and maintained this placement for 1.5 s (fixation period). After a vari-
able delay of 0.5−1.3 s, two trains of randomly timed auditory clicks 
were presented simultaneously: one from the left speaker and one 
from the right speaker. At the beginning of each click train, a click was 
played simultaneously from the left and right speakers (stereoclick). 
Regardless of onset time, the click trains ended at the end of the fixation 
period, resulting in stimuli ranging from 0.2 s to 1 s. The train of clicks 
from each speaker was generated by an underlying Poisson process, 
with different click rates for each side. The combined mean click rate 
was fixed at 40 Hz, and trial difficulty was manipulated by varying the 
ratio of the generative click rate between the two sides. The generative 
click rate ratio varied from 39:1 (easiest) to 26:14 (most difficult) clicks 
per s. At the end of the fixation period, the rats could orient towards 
the nose port on the side where more clicks were played and obtain a 
water reward.

Psychometric functions were calculated by grouping the trials into 
eight bins of similar size according to the difference in the total number 
of right and left clicks and, for each group, computing the fraction of 
trials ending in a right choice. The CI of the fraction of right responses 
was computed using the Clopper–Pearson method.

Electrophysiological recording. Neurons were recorded using 
chronically implanted Neuropixels 1.0 probes that are recoverable 
after the experiment50. In four animals, a probe was implanted at 
4.0 mm anterior to the bregma and 1.0 mm lateral, for a distance 
of 4.2 mm, and at an angle of 10° relative to the sagittal plane that 
intersects the insertion site (the probe tip was more medial than the 
probe base). In five other animals, a probe was implanted to target 
M1, the dStr and the ventral striatum at the site 1.0 mm anterior and 
2.4 mm lateral, for a distance of 8.4 mm, and at an angle of 15° rela-
tive to the coronal plane intersecting the insertion site (the probe tip 
was more anterior than the probe base). In a final set of three rats,  

a probe was implanted to target the FOF and anterior dStr at 1.9 mm 
anterior and 1.3 mm lateral, for a distance of 7.4 mm, and at an angle 
of −10° relative to the sagittal plane intersecting the insertion site (the 
probe tip was more lateral than the probe base). Spikes were sorted 
into clusters using Kilosort2 (ref. 51), and clusters were manually  
curated.

Muscimol inactivation. Infusion cannulas (Invivo1) were implanted 
bilaterally over the dmFC (4.0 mm AP, 1.2 mm ML) in three rats. After 
the animal recovered from surgery, the animal was anaesthetized, and, 
on alternate days, a 600-nl solution of either only saline or muscimol 
(up to 150 ng) was infused in each hemisphere. Half an hour after the 
animal woke up from anaesthesia, the animal was allowed to perform 
the behavioural task.

Retrograde tracing. To characterize anatomical inputs into the 
dStr, 50 nl of cholera toxin subunit B conjugate (Thermo Fisher Sci-
entific) was injected into the dStr at 1.9 mm AP, 2.4 ML and 3.5 mm 
below the cortical surface. The animal was perfused 7 days after  
surgery.

Histology. The rat was fully anaesthetized with 0.4 ml ketamine 
(100 mg ml−1) and 0.2 ml xylazine (100 mg ml−1) intraperitoneally, 
followed by transcardial perfusion of 100 ml saline (0.9% NaCl, 0.3× 
PBS, pH 7.0 and 0.05 ml heparin at 10,000 USP units per ml) and finally 
transcardial perfusion of 250 ml of 10% formalin neutral buffered solu-
tion (Sigma, HT501128). The brain was removed and postfixed in 10% 
formalin solution for a minimum of 7 days. Sections (100 µm) were pre-
pared on a Leica VT1200 S vibratome and mounted on Superfrost Plus 
glass slides (Fisher) with Fluoromount-G (SouthernBiotech) mounting 
solution and glass coverslips. Images were acquired on a Hamamatsu 
NanoZoomer under ×4 magnification.

Autonomous and input dynamics
The class of dynamical systems we study here is specified by

F˙ = ( , ) (2)z z u

for some generic function F, with z the latent decision variable and u 
the external input to the system from the auditory clicks in the behav-
ioural task. At each moment, there may be no click, a click from the left 
or a click from the right. When time is discretized to sufficiently short 
steps, u is one of three values:

=

[0; 0] = representing when there is no click,

[1; 0] representing when there is a left click or

[0; 1] representing when there is a right click.

(3)u
0







We define the autonomous dynamics of the system as

z z 0F˙ = ( , ) (4)autonomous

and the average input dynamics as

p F F˙ = ( | )( ( , ) − ( , )) (5)inputz u z z u z 0

and, specifically, the average left and right input dynamics as

z u z z z 0
z u z z z 0

p F F
p F F

˙ = ( = [1; 0]| )( ( , [1; 0]) − ( , )),
˙ = ( = [0; 1]| )( ( , [0; 1]) − ( , )).

(6)
left

right

The sum of autonomous dynamics and average input dynamics is  
equal to the expected value of ż computed over the distribution  
p(u|z):
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Figure  2c shows a plot of żautonomous, and Fig.  2e shows a plot  
of ˙leftz  and ˙rightz . F(z, left) is defined as p(u = [1; 0]|z)F(z, [1; 0]) +  
(1 − p(u = [1; 0]|z))F(z, 0), and F(z, right) is defined as p(u =  
[0; 1]|z)F(z, [0; 1]) + (1 − p(u = [0; 1]|z))(F(z, 0).

Because p(u|z) = p(z|u)p(u)/p(z) and p(z) in general do not have an 
analytical form, we estimate p(u|z) numerically. To do this, we train 
FINDR20 to learn F and generate click trains for 5,000 trials in a way that 
is similar to how clicks are generated for the task performed by our 
rats. Next, we simulate 5,000 latent trajectories from the learnt F and 
the generated click trains. We then bin the state space of z and ask, for 
a single bin, how many times the latent trajectories cross that bin in 
total and how many of the latent trajectories when crossing that  
bin had u = [1;0] (or u = [0;1]). That is, we estimate p(u = [1;0]|z) with 

u z
z

No. latent states with = [1; 0] in the bin that covers
No. latent states in the bin that covers

. For Fig. 2, because z is two  
dimensional, we use bins of eight-by-eight that cover the state space 
traversed by the 5,000 latent trajectories and weigh the flow arrows of 
the input dynamics with the estimated p(u|z). Similarly, for the back-
ground shading that quantifies the speed of input dynamics in Fig. 2, 
we use bins of 100-by-100 to estimate p(u|z) and apply a Gaussian filter 
with σ = 2 (in the units of the grid) to smooth the histogram. A similar 
procedure was performed for Extended Data Figs. 1 and 4 to estimate 
p(u|z) numerically.

Speed of autonomous and input dynamics. To compute the normal-
ized difference in the speed of autonomous and input dynamics in 
Fig. 3c, similar to previous sections, we first generated latent trajecto-
ries from the learnt F for 5,000 different trials with generative click rate 
ratios used in our experiments with rats. Next, we computed the mag-
nitude of the autonomous dynamics ∥ ∥˙autonomousz  and the magnitude 
of the average input dynamics ∥ ∥ ∥ ∥( ˙ + ˙ )/2left rightz z  for each time point 
for each of the 5,000 trajectories and then averaged across the trajec-
tories and across time periods defined in Fig. 3b to obtain Fig. 3c.

FINDR
Detailed descriptions are provided in ref. 20. Briefly, to infer velocity 
vector fields (or flow fields) from the neural population spike trains, 
we used a sequential variational autoencoder called FINDR.

FINDR minimizes a linear combination of two losses: one for neural 
activity reconstruction ( 1L ) and the other for vector field inference 
(L2). To reconstruct neural activity, FINDR uses a deep neural network 
G that takes the spike trains of N simultaneously recorded neurons y 
and the sensory click inputs u in a given trial to obtain the time deriva-
tive of the d-dimensional latent decision variable z:

z z z u y ηtG t= + Δ ( , , ) + , = 1, 2, 3, …. (8)t t t T T t+1 1: 1:

Here, T is the number of time steps in a given trial, ut is a two- 
dimensional vector representing the number of left and right clicks 
played in a time step (Δt = 0.01 s), yt is an N-dimensional vector of the 
spike counts in a time step and ηt is noise drawn from N(0, ΔtΣ) in each 
time step. Σ is a d-dimensional diagonal matrix in which the diagonal 
elements need not be equal to each other. For each time step, FINDR 
infers the firing rates of N simultaneously recorded neurons rt from  
zt with

r z bW= softplus( + ), (9)t t t

where softplus is a function approximating the firing rate–synaptic 
current relationship (f–I curve) of neurons, W is an N × d matrix rep-
resenting the encoding weights and bt is an N-dimensional vector 
representing the putatively decision-irrelevant baseline input. The 
baseline bt is learnt before fitting FINDR using the procedure described 
in Baseline and in detail in the Supplementary Methods, section 1.2. 
The reconstruction loss is given by

y r∑
T

= − log Poisson( ). (10)
t

t t1
=1

L ∣

For vector field inference, we parametrize the vector field F with a 
gated feedforward neural network20,32:

z
z z

z u
t

F˙ ≈
−
Δ

= ( , ). (11)t t t
t t t

−Δ
−Δ

F gives the discretized time derivative of z. We find the vector field 
F that captures the latent trajectories z inferred from G in equation (8) 
by minimizing

∑ F G F

G

= ( ( , ) − ( , , )) ∑ ( ( , )

− ( , , )).

(12)t

T

t t t T T t t

t T T

2
= 1

1: 1:
−1

1: 1:

⊤z u z u y z u

z u y

L

The total loss that is minimized by FINDR is

L L Lc= + , (13)1 2

where c = 0.1 is a fixed hyperparameter (c = 0.0125 in Extended Data 
Fig. 1g). FINDR minimizes L by using stochastic gradient descent to 
learn W, Σ, the parameters of the neural network representing F and 
the parameters of the neural network G. It can be shown that L is an 
approximate upper bound on the marginal log likelihood of the data 
and that training FINDR this way is equivalent to performing inference 
and learning with a sequential auto-encoding variational Bayes algo-
rithm that straightforwardly extends the standard auto-encoding 
variational Bayes algorithm52.

After training, we plot the vector field (that is, a grid of ż) using the 
learnt F and generate FINDR-predicted neural responses using equa-
tion (9) and

z z z u ηtF= + Δ ( , ) + . (14)t t t t t t t−Δ −Δ

Equation (14) is an Euler-discretized gated neural stochastic dif-
ferential equation20,32.

Parameters. The total number of free parameters P of the FINDR model 
is given by

P P P P P
P N d
P d
P d d d d d d
P N x P N x

P N x P

= + + + ,
= × ,

= ,
∈ {90 + (64 + ) , 150 + (104 + ) , 300 + (204 + ) },
∈ {15, 900 + 300 + 100 + , 61, 800 + 600 + 200

+ , 243, 600 + 1, 200 + 400 + }.

(15)

W Σ F G

W

Σ

F

G F

F F

PW is the number of parameters in the encoding weight matrix W, 
the dimensions of which are the number of neurons N and latent dimen-
sionality d. PΣ is the parameter count in the diagonal covariance Σ of 
the additive Gaussian noise of the latent z. The number of parameters 
in the neural networks parametrizing F(PF) and G(PG) are separate hyper-
parameters. Here, x =

P d d
d

− +
2 + 3

F
2

.



Hyperparameters. The hyperparameters that were optimized (PF, 
PG and α) include the number of parameters of the network F(PF), the 
number of parameters of the network G(PG) and the learning rate 
α ∈ {10−2, 10–1.625, 10−1.25, 10−0.875, 10−0.5}. We identify the optimal values 
for these hyperparameters in a 3 × 3 × 5 = 45 grid search. The grid search 
was performed separately for each set of training data for each of five 
crossvalidation folds. In each training set, three-quarters of the trials 
were used to the optimize the parameters under a given set of hyperpa-
rameters and the remaining one-quarter was held out to evaluate the 
model performance for that set of hyperparameters. Test data were 
never used in the grid search.

Latent space transformation. Because the encoding weight matrix W 
is not constrained to semi-orthogonality and can take only any real 
values, different combinations of W and zt can give rise to the same 
firing rate vector rt, even when baseline bt is fixed. To uniquely identify 
the latent trajectories (except for redundancy from rotations and  
reflections), after optimization, we linearly transformed the latent  
space z to ∼z:

z z∼ ⊤SV= , (16)t t

where S is a d × d diagonal matrix containing the singular values of W 
and V is a d × d matrix containing the right singular vectors

⊤W USV= . (17)

U is an N × d matrix containing the left singular vectors of W (where 
N is the number of neurons). In the space of ∼z, the encoding weight 
matrix is a linear transformation that preserves angles and distances 
because U is semi-orthogonal and can only give rise to an isometry such 
as rotation and reflection.

W USV
U

=
=

(18)∼
⊤z z

z

To obtain meaningful axes for the transformed latent space z∼, we 
generate 5,000 different trajectories of z∼ in generative mode (that is, 
using F and Σ in equation (14) but not G) and perform PC analysis on 
the trajectories. The PCs were used to define the axes of the decision 
variable ∼z. In the main text, the PC1 axis of z∼ was denoted as z1 and the 
PC2 axis of ∼z  was denoted as z2. In all our analyses, the latent trajecto-
ries and vector fields inferred by FINDR are shown in the transformed 
latent space of ∼z and scaled such that the latent trajectories along PC1 
lie between −1 and 1.

Sample zone. In Figs. 2 and 3, to focus on the portion of the inferred 
vector field that is used by the single-trial trajectories, we show only 
the well-sampled subregion of the state space, which is the portion 
occupied by at least 50 of 5,000 simulated single-trial latent trajec-
tories of 1 s. With this definition, the sample zone is the same across 
time points in Fig. 2h.

Model evaluation. The goodness of fit of the PSTH was quantified 
using the coefficient of determination (R2) of the evidence–sign condi-
tioned PSTH as defined in equation (34) using fivefold cross-validation. 
We used three-fifths of the trials in a session as the training dataset, 
one-fifth of the trials as the validation dataset to optimize the hyper-
parameters of FINDR and one-fifth of the trials as the test (that is, 
out-of-sample) dataset to evaluate performance of FINDR. Therefore, 
when we compute the goodness of fit, we also obtain five different 
vector fields inferred by FINDR for each fold, which we confirm are 
consistent across folds (Extended Data Fig. 4).

Curvature of trial-averaged trajectories. To compute the curvature 
of trial-averaged trajectories in Fig. 3b, as before, we first generate 

latent trajectories from FINDR for 5,000 different trials with gen-
erative click rate ratios used in our experiments with rats. Next, we 
separate the trials on the basis of whether the generative click ratio 
in a given trial favours a leftward choice or a rightward choice. We 
take the average of the latent trajectories over the left-favouring 
trials and then convolve the trial-averaged trajectory with a Gauss-
ian filter with σ = 3 (in units of the time step Δt = 0.01 s). We take this 
smoothed trajectory to numerically compute the planar curvature. 
We do the same for the right-favouring trials and take the average 
between the curvature obtained from left-favouring trials and the 
curvature obtained from right-favouring trials to generate the plot  
in Fig. 3b.

cFINDR. The cFINDR model replaces the neural network parametriz-
ing F in FINDR with a linear combination of affine dynamics, specified  
by M and N, and bistable attractor dynamics specified by φ. The dynam-
ics are furthermore constrained to be two dimensional.
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The matrix M implements a line attractor located at z2 = 0. The inputs 
ut are the same as those in FINDR and represent the auditory clicks. 
The two discrete attractors are constrained such that x2 = 0 and imple-
mented through the function φ. The shape of the basin of attraction 
corresponding to each point attractor is specified by the parameter ρ. 
The relative contribution of the discrete attractors and the line attrac-
tor to the overall dynamics is specified by the scalar s.

The DDM line attractor hypothesis can be implemented in cFINDR 
by setting θ = 0. Non-normal dynamics with a line attractor2 can be 
implemented by setting θ ≠ 0. The bistable attractor hypothesis can 
be implemented by increasing ρ.

As in FINDR, cFINDR learns W, Σ and parameters of G. Instead of the 
neural networks parametrizing F, cFINDR, learns s, θ, r, x, ρ and the 
2 × 2 matrix N to approximate F, which has nine parameters. The same 
objective function and optimization procedure were used in cFINDR. 
After optimization, as in FINDR, the latent space z is linearly trans-
formed to uniquely identify the dynamics (except for arbitrary rota-
tions or reflections). As in the analysis of results from FINDR, the latent 
trajectories and vector fields inferred by cFINDR are in the transformed 
latent space z∼.

When we fit cFINDR to the data, we experimented with the different 
constraints r > 0 and r > 3. The fits using r > 0 were superior to those 
using r > 3 and were therefore used in the comparison between cFINDR 
and FINDR for the data presented in Fig. 3e,f. We were motivated to try 
both r > 0 and r > 3 because we found that, in synthetic data, cFINDR 
under the constraint r > 0 could not recover the dynamics generated 
under the DDM line attractor hypothesis (r = 10). For this reason, 
Extended Data Fig. 5f shows results from synthetic data using r > 3. 
When fit to data, FINDR outperforms cFINDR using either r > 0 or r > 3.

FINDR models with more than two latent dimensions. For Extended 
Data Fig. 3j,k, we evaluated FINDR models with more than two latent 
dimensions to assess whether the two-dimensional manifold we found 
is approximately an attractor. To show that the sample zone was an 
approximate attractor manifold, we perturbed the latent states on the 
manifold along the third PC direction. When the latent states were 
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perturbed (but not so far that the latent states went outside the range 
along the PC3 axis covered by the sample zone), the latent states flowed 
towards the manifold. To obtain the flow directions along PC3, we first 
generated 5,000 latent trajectories (similar to Fig. 2 for computing the 
sample zone). We then divided the PC1 × PC2 space into an eight- 
by-eight grid (the grid used for the vector field arrows in Extended Data 
Fig. 3i). For each cell in the grid, we identified the latent states from the 
5,000 trajectories that were inside the cell and identified the highest 
(lowest) PC3 value z z( )3

up
3
dn . This was to ensure that the perturbation 

along the PC3 axis was not too large. Next, we computed the flow vec-
tor using a 100-by-100 grid on the PC1 × PC2 space, assuming that 

z zPC3 = ( )3
up

3
dn  and PC4 = 0. The space covered by each cell of the grid 

is coloured on the basis of the direction of the flow vector along PC3: 
if flowing upwards, green; if flowing downwards, pink. A Gaussian filter 
was applied to this heat map with σ = 2 (in units of the 100-by-100 grid), 
similar to the heat map for input dynamics in Fig. 2f. The resulting  
plot is shown on the left (right) panel. Results were similar without the 
Gaussian filter.

Choice decoding from FINDR. FINDR does not use the choice of the 
animal for reconstructing neural activity. However, after training, we 
can fit a logistic regression model that predicts the choice of the ani-
mal from the decision variable z at the final time step T. When we fit 
an ℓ2-regularized logistic regression model using zT from the trained 
network G and the choice of the animal in the representative session 
in Fig. 2c–h, we found that the logistic choice decoder achieves 89.7% 
accuracy in predicting choice in the out-of-sample dataset. We can 
generate choices from this decoder by generating latent trajectories 
using F and Σ in equation (14) as in previous sections and by supplying zT 
to the trained decoder. A total of 5,000 latent trajectories and choices 
generated from F and the choice decoder were used for the analysis in 
Extended Data Fig. 4l. We used a separate logistic regression model for 
predicting choice from the latent trajectories truncated at time = 0.33 s 
projected onto PC2. Optimization of the logistic regression models  
was carried out using L-BFGS53.

MMDDM
The MMDDM is a state-space model, comprising a dynamic model that 
governs the time evolution of the probability distributions of latent 
(that is, hidden) states and measurement models that define the con-
ditional distributions of observations (that is, emissions) given the 
latent state. Additional information is provided in the Supplementary 
Methods, section 1.3.

Dynamic model. The latent variable z is one dimensional (that is, a 
scalar), and its time evolution is governed by a piecewise linear function:

z t
z t u t η B z t B

B z t
( + 1) =

( ) + ( ) + , − < ( ) <

⋅ sign( ( )), otherwise.
(20)





When the absolute value of z is less than the bound height B (free 
parameter), its time evolution depends on momentary external input u 
and i.i.d. (independent and identically distributed) Gaussian noise η.

Nη t~ (0, Δ ), (21)

where Δt is the time step and set to 0.01 s. Here, ~ means ‘distributed 
as’. When z is either less than −B or greater than B, it becomes fixed at 
the bound. The initial probability distribution of z is given by

z t µ( = 1) ~ ( , 1), (22)0N

where the mean µ0 is a free parameter. In time step t, the input u(t) is 
the total difference in the per-click input v between the right and left 
clicks that occurred in the time interval (t − Δt, t):

∑ ∑u t v τ t v τ t( ) = ( ; ) − ( ; ), (23)
τ τ∈R ∈L

where L(R) is the set of the left (right) click times and v(τ; t) is the per- 
click input of a click occurring at time τ and time step t. Note that Rτ ∈  
indicates continuous time, whereas t ∈ N indexes a time step. The 
per-click input is given by

v τ t D τ t C τ ζ( ; ) = ( ; ) ⋅ ( ) ⋅ , (24)

where D(τ; t) indicates the integral over the interval [t − Δt, t) of the 
Dirac delta function δ delayed by τ:





∫D τ t δ x τ dx
τ t t t

( ; ) = ( − ) =
1, ∈ [ − Δ , )
0, otherwise,

(25)
t t

t ε

−Δ

−

where ε is the machine epsilon. To account for sensory adaptation, 
the per-click input is depressed by preceding clicks by a time-varying 
scaling factor given by the function C(τ), implemented according to 
previous work24 (Supplementary Methods, section 1.3.1). The per-click 
input is corrupted by i.i.d. multiplicative Gaussian noise ζ:

ζ σ~ (1, ). (26)s
2N

The free parameter σs
2 is the variance of the per-click noise. Variabil-

ity in the dynamic model is fit to the data through the per-click noise ζ 
rather than per-time step noise η on the basis of previous findings24; 
our results are similar if we set the variance of η rather than the variance 
of ζ as a free parameter.

The dynamic model has three free parameters: bound height B, 
variance σs

2 of the per-click noise and mean µ0 of the initial state. These 
parameters are learnt simultaneously with the parameters of the meas-
urement models.

Measurement model of behavioural choices. In each trial, the binary 
behavioural choice c (1, right; 0, left) is the sign of z in the last time step 
T of the trial (the earlier of 1 s after the onset of the clicks or immediately 
before the animal leaves the fixation port):

c z T z T( ) = sign( ( )). (27)∣

Measurement model of spike counts. In each time step t, given the 
value of z, the spike count y of neuron n is a Poisson random variable

y t z t λ t t( )| ( ) ~ Poisson( ( )Δ ). (28)n n( ) ( )

The firing rate λ is given by

λ t z t h w z t b t( )| ( ) = ( ⋅ ( ) + ( )), (29)n n( ) ( )

where h( ⋅ ) is the softplus function used to approximate the neuronal 
frequency–current curve of a neuron:

h x x( ) = log(1 + exp( )). (30)

The encoding weight w depends on z itself:







w
w B z B

w z B B
=

, − < <

, ∈ {− , }.
(31)n

n

n
( ) EA

( )

DC
( )

Each neuron has two scalar weights, wEA and wDC, that specify the 
encoding of the latent variable during the evidence accumulation 
regime and the decision commitment regime, respectively. When the 
latent variable has not yet reached the bound (−B or B), all simultane-
ously recorded neurons are in the evidence accumulation regime and 



encode the latent variable through their own private wEA. When the 
bound is reached, all neurons transition to the decision commitment 
regime and encode z through their own wDC.

The bias b accounts for factors that are putatively independent of 
the decision, including a component that varies only across trials and 
another component that varies both across and within trials:

b m t b m b m t( , ) = ( ) + ( , ). (32)n n n( )
cross
( )

within
( )

The cross-trial trial component b n
cross
( )  is a function of time m from the 

first trial of the session, whereas t indicates time in each trial relative 
to the stimulus onset of that trial. The within-trial component consists 
of time-varying influence from spike history, post-stimulus (stim) onset 
and pre-movement (move) onset.

∑
b m t τ k δ t τ k δ t

τ k δ t

( , ) = ( )( ) + ( )( )

+ ( )( ),
(33)

m m

i
m i

within stim
( )

stim move
( )

move

spike
( , )

spike

∗ ∗

∗

where the symbol ∗ indicates convolution, τx indicates translation 
τxk(t) = k(t − τx) by the time of event x and δ is the Dirac delta function. 
The functions b k k k, , ,n

cross
( )

stim move spike  are learnt, and each is para-
metrized as a linear combination of radial basis functions40,54 (Sup-
plementary Methods, section 1.5). The measurement model of each 
neuron of the spike train has 19 parameters that are learnt simultane-
ously with the parameters of the dynamic model (that is, the model of 
the latent variable).

Parameter learning. All parameters, including the three parameters 
of the latent variable and the 19 parameters private to each neuron, are 
learnt simultaneously by jointly fitting to all spike trains and choices 
using maximum a posteriori estimation. Gaussian priors were placed 
on the model parameters to ensure that the optimization reached a 
critical point and confirmed to not change the results in separate opti-
mizations using maximum likelihood estimation (that is, optimization 
without Gaussian priors). Out-of-sample predictions were computed 
using fivefold cross-validation.

nTc. The time step when decision commitment occurred is selected 
to be when the posterior probability of the latent variable at either the 
left bound or the right bound, given the click times, spike trains and 
behavioural choice, is greater than 0.8. Results were similar for other 
thresholds, and the threshold of 0.8 was chosen to balance between 
prediction accuracy and the number of trials for which commitment 
was predicted to have occurred. Using this definition, commitment 
occurred in 34.6% of trials.

Engagement index. The engagement index was computed for each 
neuron to quantify its involvement in evidence accumulation and  
decision commitment. The index was defined using wEA and wDC of the 
neuron: EI ≡ (|wEA| − |wDC|)/(|wEA| + |wDC|). It ranges from −1 to 1. A neuron 
with an engagement index of −1 encodes the latent variable only during 
decision commitment, an engagement index of 1 indicates involvement 
only during evidence accumulation, and an engagement index of 0 
represents a similar strength of encoding the latent variable during 
evidence accumulation and decision commitment.

Analyses
Neuronal selection. Only neurons that meet a preselected threshold 
for being reliably choice selective were included for analysis. For each 
neuron, reliable choice selectivity was measured using the area under 
the receiver operating characteristic curve (auROC) indexing how 
well an ideal observer can classify between a left-choice trial and a 
right-choice trial on the basis of neuronal spike counts. Spikes were 
counted in four non-overlapping time windows (0.01–0.21 s, 0.21–
0.4 s, 0.41–0.6 s and 0.61–0.9 s after stimulus onset), and an auROC was 

computed for each time window. A neuron with an auROC < 0.42 or an 
auROC > 0.58 for any of these windows was considered choice selective 
and included for other analyses. Moreover, neurons must have had 
an average firing rate of at least two spikes per s. Across sessions, the 
median fraction of neurons included under this criterion was 10.4%.

PSTH. Spike times were binned at 0.01 s and were included up to 1 s 
after the onset of the auditory stimulus (click trains) until 1 s after the 
stimulus onset or until the animal removed its nose from the central 
port, whichever came first. The time-varying firing rate of each neuron 
in each group of trials (that is, task condition) was estimated with a 
PSTH, which was computed by convolving the spike train on each trial 
with a causal Gaussian linear filter with a standard deviation of 0.1 s 
and a width of 0.3 s and averaging across trials. The CI of a PSTH was 
computed by bootstrapping across trials.

The goodness of fit of the model predictions of the PSTH was quan-
tified using the coefficient of determination (R2), computed using 
fivefold crossvalidation. R2 was computed by conditioning the PSTH 
on either the sign of the evidence (that is, whether the generative click 
ratio in a given trial favoured a leftward choice or a rightward choice) 
or the choice of the animal:
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where t is time in a trial that goes from 0 s to 1 s, with 0 s being the 
stimulus onset. The superscripts ‘R’ and ‘L’ indicate either the sign of 
the difference in the total number of right and left clicks or the choice of 
the animal. The subscripts ‘obs’ and ‘pred’ indicate whether the PSTH was 
computed using observed neural activity or model-predicted neural 
activity. SSres is the residual sum of squares, and SStot is the total sum 
of squares.

A normalized PSTH was computed by dividing the PSTH by the mean 
firing rate of the corresponding neuron across all time steps across all 
trials. When PSTHs were separated by ‘preferred’ and ‘null’, the preferred 
task condition was defined as the group of trials with the behavioural 
choice when the neuron responded more strongly and a null task condi-
tion was defined as the trials associated with the other choice.

Choice selectivity. In Fig. 6 and Extended Data Fig. 2m, for each neuron 
and for each time step t aligned to the onset of the auditory click trains, 
we computed choice selectivity c(t):

c t
r t l t

r t l t
( ) ≡

( ) − ( )
( ) − ( )

, (35)∗ ∗

where r and l are the PSTHs computed from trials ending in a right 
choice and a left choice, respectively. The time step t* is the time of 
the maximum absolute difference:

∗t r t l t≡ argmax | ( ) − ( )|. (36)t

In Extended Data Fig. 2m, neurons are sorted by the centre of mass 
of the absolute value of the choice selectivity of each neuron.

Baseline. In FINDR, cFINDR and MMDDM, the neuronal firing rate 
depends on a time-varying scalar baseline. In time step t of trial m, 
conditioned on the value of the latents in a given time step, the spike 
count y of each neuron is given by
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z w zy m t m t h m t b m t( , )| ( , ) ~ Poisson( { ( , ) + ( , )}), (37)⊤

where h is the softplus function and w is the encoding weight of the 
latent. The baseline b incorporates putatively decision-independent 
variables as input to the neural spike trains including slow drifts in firing 
rates across trials and faster changes in each trial that are aligned to 
either the time from stimulus onset or the time from the animal leav-
ing the fixation port. The baseline is learnt using a Poisson generalized 
linear model fit separately to the spike counts of each neuron. Details 
are provided in the Supplementary Methods, section 1.2.

PCTH. In trials for which a time of decision commitment (nTc) could 
be inferred, the spike trains were aligned to the predicted time of com-
mitment and then averaged across those trials. The trial average was 
then filtered with a causal Gaussian kernel with a standard deviation 
of 0.05 s. The PCTHs were averaged in each of three groups of neurons: 
(1) neurons that were similarly engaged in evidence accumulation and 
decision commitment; (2) neurons more strongly engaged in evidence 
accumulation; and (3) neurons more strongly engaged in decision 
commitment. Each neuron was assigned to one of these groups accord-
ing to its engagement index. Neurons with − ≤ EI <1

3
1
3  are considered 

to be similarly engaged in evidence accumulation and decision com-
mitment, neurons with EI ≥ 1

3  are considered to be more strongly  
engaged in evidence accumulation, and those with EI < − 1

3  are con
sidered to be more strongly engaged in decision commitment.

For this analysis, we focused on only the 65 of 115 sessions for which 
the MMDDM improved the R2 of the PSTHs and for which the inferred 
encoding weights were reliable across cross-validation folds (R2 > 0.9). 
From this subset of sessions, there were 1,116 neurons similarly engaged 
in evidence accumulation and decision commitment, 414 neurons that 
were more engaged in decision decision commitment and 1,529 neurons 
that were more engaged in evidence accumulation.

To compute the shuffled PCTH, the predicted times of commitment 
were shuffled among only the trials in which commitment was detected. 
If the randomly assigned commitment time extended beyond the length 
of the trial, then the time of commitment was assigned to be the last 
time step of that trial.

Trial-averaged trajectories in neural state space. To measure 
trial-averaged dynamics in neural state space, we analysed PCs in a data 
matrix made by concatenating the PSTHs. The data matrix X has dimen-
sions TC-by-N, where T is the number of time steps (T = 100), C is the 
number of task conditions (C = 2 for choice-conditioned PSTHs and 
C = 4 for PSTHs conditioned on both choice and evidence strength) 
and N is the number of neurons. The mean across rows is subtracted 
from X, and singular value decomposition is performed: ⊤USV X= . The 
principal axes correspond to the columns of the right singular matrix 
V, and the projections of the original data matrix X onto the principal 
axes correspond to the left singular matrix (U) multiplied by S, the 
rectangular diagonal matrix of singular values. The first two columns 
of the projections US are plotted as trajectories in neural state space.

Psychophysical kernel. Kernels were time locked to either nTc of 
each trial (Fig. 5d and Extended Data Fig. 7a–d) or the first click in each  
trial (Extended Data Fig. 7e–h). We extended the logistic regression 
model presented in ref. 55 to include a lapse parameter (Supplementary 
Methods, section 1.4), and we confirmed that results were similar using 
generic logistic regression. A shuffling procedure was used to randomly 
permute the inferred time of commitment across trials without chang-
ing the behavioural choice and the times of the auditory clicks on each 
trial. In this randomly permuted sample, we selected trials for which 
the auditory stimuli were playing at least 0.2 s before and at least 0.2 s 
after the inferred time of commitment to compute the psychophysical 
kernel in the shuffled condition. For Fig. 5d, the prediction was gener-
ated using the MMDDM parameters that were fit to the data and the 

same set of trials in the data. For Extended Data Fig. 7, temporal basis 
functions were used to parametrize the kernel, and the optimal number 
and type of basis function were selected used crossvalidated model  
comparison.

Statistical tests. Binomial CIs were computed using the Clopper–
Pearson method. All other CIs were computed with a bootstrapping 
procedure using the bias-corrected and accelerated percentile meth-
od56. Unless otherwise specified, P values comparing medians were 
computed using a two-sided Wilcoxon rank-sum test, which tests the 
null hypothesis that two independent samples are from continuous 
distributions with equal medians against the alternative hypothesis 
that they are not.

Estimating the low-dimensional vector field without specifying 
a dynamical model. For Extended Data Fig. 10d, we estimated the 
low-dimensional velocity vector field for each session using a method 
that does not specify a dynamical model (model-free approach). To 
obtain the model-free vector field, we first estimated single-trial fir-
ing rates of individual neurons by binning the spike trains into bins of 
Δt = 10 ms and convolving the spike trains with a Gaussian of σ = 100 ms 
centred at 0. Results were similar for other values of σ around 100 ms. 
Next, for each neuron, we took the average across all trials in the session 
and subtracted this average from single-trial firing rate trajectories. 
These baseline-subtracted firing rate trajectories were then projected 
to the low-dimensional subspace spanned by the FINDR latent axes. We 
projected the estimated firing rates to the same subspace as FINDR to 
allow direct comparisons between the FINDR-inferred vector field and 
the model-free vector field.

We treated this low-dimensional projection of the baseline-subtracted 
firing rates as the latent trajectories in this model-free approach. To 
obtain velocity vector fields from the latent trajectories, we first esti-
mated the instantaneous velocity ż at time point t by computing 

t˙ = ( − )/Δt t t t−Δz z z  for all t for all latent trajectories. We then divided 
the two-dimensional latent space into an eight-by-eight grid. For each 
cell (i, j) from this eight-by-eight grid, we identified all states zt from 
all trajectories that fell inside the cell (i, j). We took the corresponding 
˙tz  of the identified zt values and took the average to compute the velo
city for the cell (i, j). We computed velocity vectors for all 64 cells. To 
compare vector fields, we took the cosine similarity between the veloc-
ity vector for cell (i, j) from FINDR and the velocity vector for cell (i, j) 
from the model-free approach and took the mean of these cosine 
similarities, Sc(FINDR, model free). In computing Sc(FINDR, model 
free), only cells that had a number of states greater than 1% of the total 
number of states were included. When the number of states used to 
estimate the velocity vector was less than 1% of the total number of 
states, we considered that cell (i, j) to be outside the sample zone, 
analogous to the sample zone in Fig. 2.

To compare between a random vector field and the model-free vec-
tor field, we generated 1,000 random vector fields (with each of the 
64 arrows in the eight-by-eight grid going in random directions) for 
each session and computed Sc(random, model free) for each random 
vector field.

For Extended Data Fig. 10e, we estimated the autonomous dynamics 
vector field around the origin as a model-free way of confirming our 
findings in Extended Data Fig. 10a. Similar to the method for Extended 
Data Fig. 10d, we convolved the spike trains with a Gaussian and pro-
jected the baseline-subtracted firing rate trajectories to the low- 
dimensional subspace spanned by the FINDR latent axes. However,  
to separate autonomous dynamics from input dynamics, we used a 
Gaussian with a smaller σ (20 ms), with a window size ±3σ around 0, 
and then excluded any żt σ±3  with time t for which a click occurred from 
the estimation of the autonomous dynamics. When computing the 
average of (zt − zt − Δt)/Δt for one of the five pie slices, we required zt − Δt 
to be inside the pie slice. For all sessions, the circle had a radius of 0.2 



(in units of z). To further ensure that we estimated the autonomous 
dynamics, when computing the average, we only considered the tra-
jectories for which the number of left clicks was equal to the number 
of right clicks during the epoch when they were in the pie slice.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | FINDR can be used to distinguish between the 
dynamical systems hypotheses of perceptual decision-making. In these 
hypotheses, the decision process is represented by the state of a dynamical 
system, which we refer to as the “decision variable (z)” and is depicted as two-
dimensional here but may have fewer or more dimensions. An attractor is a set 
of states for which the dynamical system tends to move toward, from a variety 
of starting states. When z is in an attractor state, small perturbations away from 
the attractor tend to return the system toward the attractor. An attractor can 
implement the commitment to a choice and the maintenance of the choice in 
working memory. a, In all these hypotheses, the attractors are implemented by 
the autonomous dynamics, which corresponds to the deterministic dynamics F 
in the absence of inputs and depends only on z itself. In the bistable attractors 
hypothesis, there are two discrete attractors, each of which corresponds to a 
choice alternative. In the DDM line attractor hypothesis, the autonomous 
dynamics form not only two discrete attractors but also a line attractor in 
between. The intervening line attractor allows an analog memory of the 
accumulated evidence when noise is relatively small. In the line attractor 
hypothesis with non-normal dynamics, the autonomous dynamics form a line 
attractor, and a separate readout mechanism is necessary for the commitment 
to a discrete choice. b, The autonomous speed is the magnitude of the 
autonomous dynamics. A dark region corresponds to a steady state, which can 
be an attractor, repeller, or saddle point. In the bistable attractors hypothesis, 

the left and right steady states are each centered on an attractor, and the middle 
is a saddle point. In both the DDM line attractor hypothesis and the hypothesis 
that has non-normal dynamics with a line attractor, the steady states correspond 
to attractors. c-d, Input dynamics corresponding to a left and right auditory 
pulse, respectively. Here we show the “effective” input dynamics, which is 
multiplied by the frequency p(u | z) to account for the pulsatile nature and the 
statistics of the stimuli in our task (in contrast to Fig. 1e, in which the input 
dynamics were presented without the multiplication of the frequency, which is 
appropriate for stimuli that are continuous over time). Whereas in the bistable 
attractor and DDM line attractor, the inputs are aligned to the attractors, in the 
hypothesis that has non-normal dynamics with a line attractor, the inputs are 
not aligned. e, The input speed is the average of the magnitude of the average 
left input dynamics and the magnitude of the average right input dynamics.  
f, We simulated spikes that follow the bistable attractor dynamics in a-e to 
create a synthetic dataset with the number of trials, number of neurons, and 
firing rates that are typical of the values observed in our datasets. Then, we fit 
FINDR to this synthetic dataset from random initial parameters. The autonomous 
and input dynamics inferred by FINDR qualitatively match the bistable 
attractors hypothesis. g-h, FINDR-inferred dynamics qualitatively match the 
dynamics in Fig. 1f–h and a–e. In panel g, the sample zone covers the entirety of 
the plotted area.
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Extended Data Fig. 2 | Behavioral performance, histological slices, 
anatomical tracing, causal necessity of dmFC, and the temporal profiles of 
individual neurons not being not consistent with an one-dimensional 
neural encoding of the latent variable in the drift-diffusion model (DDM). 
a, Psychometric functions of each of the twelve rats recorded aggregated 
across recording sessions. b, Histological images of probe tracks. Each color 
indicates a probe chronically implanted in a rat. c, Dorsomedial frontal cortex 
(dmFC) provides a major input to the anterior dorsal striatum (dStr). d, dmFC  
is causally necessary for the auditory decision-making task studied here. 
N = 23,298 saline trials and 22,428 muscimol trials. Error bars indicate 95% 
binomial confidence intervals. e, In the DDM, noisy inputs are accumulated 
over time through a scalar latent variable (z) until the value of z reaches a fixed 
bound, which triggers the commitment to a choice. f, In simulations of the 
DDM, z ramps quickly when the evidence strength is strong and more slowly 

when the strength is weak. g, Responses averaged across both trials and neurons 
resemble the trajectories of z averaged across simulations. Only choice- 
selective neurons were included. Spikes after the animal began movement  
(i.e., removed its nose in the center port) were excluded. For this analysis only, 
error trials were excluded. N = 1324 (dmFC), 1076 (mPFC), 1289 (dStr), 714 (vStr), 
822 (M1), 163 (FOF). h, The responses of a simulated neuron encoding the  
DDM with a single neural mode show the ramping dynamics. Shading indicates 
the bootstrapped 95% confidence interval of the trial-mean of the filtered 
response. i, A neuron with a ramp profile. j, A neuron recorded from the session 
with choice selectivity that decays over time. k, A neuron exhibiting a substantial 
delay in its choice selectivity. l, A neuron whose choice selectivity flips in sign. 
m, The diversity of the temporal profile of the choice selectivity of individual 
neurons is not consistent with a one-dimensional encoding of the DDM.



Extended Data Fig. 3 | FINDR can well capture the neural responses and 
reveals 2-dimensional decision-making dynamics. a-b, FINDR captures  
the underlying firing rates of the single-trial responses of individual neurons 
from the representative session in Fig. 2. c, FINDR captures the complex trial- 
averaged dynamics of individual neurons from the representative session in 
Fig. 2 as can be seen in the peristimulus time histograms (PSTH). The goodness- 
of-fit is measured using the coefficient of determination (R2). Bold line indicates 
out-of-sample prediction by FINDR, and the shading indicates 95% confidence 
interval from the observed PSTH. d, FINDR captures the single-trial and trial- 
averaged responses of individual neurons pooled across 27 sessions. For the 
histogram showing single trials pooled across sessions, 34 trials that had R2 < 0 
are not shown. Results in a-d are 5-fold cross-validated. e, Across different 
FINDR models with latent dimensions (d) ranging from 1 to 4, we computed  
the median of the coefficient of determination (R2) of the evidence-sign 
conditioned peri-stimulus time histogram (PSTH) of neurons pooled across 
sessions (n = 2105). f, The median difference in the R2 between d = 2 and d = 1  
is significantly different from zero (p < 0.001; Wilcoxon signed-rank test). 
Although the median differences are also significant for the comparison 
between d = 3 and d = 2 and the comparison between d = 4 and d = 3, the 
magnitude of the difference is relatively small (0.0098 and 0.0075, respectively) 
compared to the median difference between d = 2 and d = 1 (0.0423). g, We 
repeated the analysis in f without pooling neurons across sessions. Instead,  

for each session, we computed the median PSTH R2 across neurons recorded 
within that session. Each circle corresponds to a session, and a filled circle 
indicates a significant difference in the PSTH R2 between FINDR models of 
different dimensionalities (p < 0.001; two-sided Wilcoxon signed-rank test; 
Supplementary Information 2.2). h, For FINDR models with either 3 or 4 latent 
dimensions, more than 97% of the variance is captured by the first two principal 
components (PC’s). PCA was done separately for each session, and the error 
bars indicate the 95% confidence interval of the median across sessions (n = 27). 
i, For models with 2 or more dimensions, the vector fields and trajectories 
projected onto the first two dimensions are qualitatively similar. The vector 
fields and trajectories were shown for the representative session in Fig. 2. The 
dashed lines demarcate the well-sampled subregion of the state space (i.e., the 
sample zone). j, We evaluated FINDR models with latent dimensions higher 
than two to see whether the two-dimensional manifold relevant to decision- 
making dynamics is an approximate attractor manifold. The variance explained 
by the third PC in the FINDR model with three-dimensional latent dynamics  
was less than 0.5% (as shown in h-i), so we turned to the FINDR model with 
four-dimensional dynamics. In this model, the variance explained by the third 
PC was around 1.3%. We perturbed the latent states on the manifold along the 
PC 3 direction. k, When the latent states are perturbed (but not too far that the 
latent states go outside the range along the PC 3 axis covered by the sample 
zone; see Methods for details), the latent states flow toward the manifold.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Consistency in FINDR-inferred dynamics. a, FINDR-
inferred input and autonomous dynamics are consistent across 5 different 
cross-validation folds as shown for the same session in Fig. 2. b, Normalized 
difference in the speed between autonomous and input dynamics for five 
different time periods (“start (time=0 s)” “early”, “pre-peak”, “post-peak”, and 
“late”) is consistent across folds (n = 27; see Fig. 3c). c, The direction of motion 
of the trial-averaged trajectories and its angle with respect to the z1-axis for 
different time periods is consistent across folds (n = 21 out of 27 sessions; see 
Fig. 3d). d, Variability in the dynamics across sessions depends in part on the 
variability in the behavioral performance. For each each session, behavioral 
sensitivity was estimated as the parameter β in a probit model p(y | x) = Φ(β*x + c), 
where y is the rat’s left vs. right choice on each trial, x the log-ratio of the right 
vs. left click rate on that trial, Φ the normal cumulative distribution function,  
c the constant term in the probit model. The two-sided p-value of the Pearson’s 
correlation was computed using a Student’s t-distribution for a transformation 
of the correlation. Pink marker indicates the example session. e, The linear 
correlation between the difference in autonomous vs. input dynamics and 
behavioral sensitivity was negative for all epochs, but reliable only for the pre-
peak epoch. The 95% confidence intervals were computed by bootstrapping 
across sessions (n = 27). f, FINDR reliably recovers the FINDR-inferred dynamics. 
After fitting FINDR to a dataset, the model parameters were used to simulate a 
synthetic dataset using the exact same set of sensory stimuli in the real dataset 
and containing the same number of neurons and trials. From new initial 

parameter values, FINDR was fit to the simulated data to infer the “FINDR-
generated” vector fields. g, FINDR is fit to both choice-selective and non-
selective neurons. We find similar dynamics to when FINDR is fit to only choice-
selective neurons. h, We find vector fields that are consistent across multiple 
different random seeds that change the initialization in the deep neural 
networks of FINDR and the order in which the mini-batches of the training data 
are supplied to FINDR during training. i, Curved trial-averaged latent trajectories 
predicted by FINDR depend on the click inputs. When FINDR was fit to data in 
which the click inputs were randomly shuffled across trials, the trial-averaged 
latent trajectories remain near the origin. j, The dynamics are two-dimensional 
even in the beginning of the decision period. An early-epoch sample zone 
indicated by the dotted line was computed using trajectories that were truncated 
at time=0.33 s. The early-epoch sample zone delimits the portion of the state 
occupied by at least 50 of 5000 simulated single-trial trajectories. k, When we 
compute the PCs for the trajectories truncated at time=0.33 s and project the 
trajectories onto PC 2, the standard deviation along this direction is 20.4% of 
the standard deviation along PC 1. l, We can decode behavioral choice from 
logistic regression significantly better than chance (dashed line) from the 
projections of the truncated trajectories onto PC 2. Bold line indicates the 
mean, and the shading indicates 95% confidence interval. m, Single-trial latent 
trajectories extending to time=1.0 s, simulated using stimuli of different 
evidence strength, which is quantified by the ratio of right and left inputs.
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Extended Data Fig. 5 | The data are better captured by FINDR than by a 
variant of FINDR constrained to parametrize the dynamics described by 
previously proposed hypotheses. a, The constrained FINDR (cFINDR) model 
replaces the neural networks parametrizing F in FINDR with a linear combination 
of affine dynamics, specified by M and N, and bistable attractor dynamics 
specified by φ. The dynamics are furthermore constrained to be two- 
dimensional. b-g, cFINDR model can generate and infer dynamics described by 
previous hypotheses. b, Example bistable attractor dynamics generated from 

cFINDR. c, Example DDM line attractor dynamics generated from cFINDR.  
d, Example non-normal dynamics with a line attractor generated from cFINDR. 
e, cFINDR-inferred dynamics from a synthetic dataset generated using the 
bistable attractor dynamics in b. f, cFINDR-inferred dynamics from a synthetic 
dataset generated using the DDM line attractor dynamics generated in c.  
g, cFINDR-inferred dynamics from a synthetic generated using the non-normal 
dynamics with a line attractor in d.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Multi-mode drift-diffusion model (MMDDM).  
a, Directed graph of the MMDDM for a trial with T time steps and N simultaneously 
recorded neurons. At each time step, the decision variable z depends on 
external click input (u) and its value in the previous time step. The spike train 
depends on z and also a time-varying baseline input. The behavioral choice (c) 
is the sign of the decision variable at the last time step. In this example trial,  
z reaches the bound, and the encoding weight of z of each neuron changes from 
wEA to wDC. b, The MMDDM is an instance of a state-space model, which consists 
of a dynamic model governing the probability distributions of the latent states 
(here, scalar decision variable z) and measurement models specifying the 
conditional distributions of the emission (here, spike counts y and the rat’s 
choice c) given the value of the latent states. In the dynamic model, z’s time 
derivative (ż) is a piecewise linear function. When the absolute value of z is less 
than the bound height B, the velocity depends on external click input (u) and 
i.i.d. Gaussian noise (η). When z reaches either -B or B, the time derivative is 
zero. The input of each click emitted at time τ on z is scaled by the depressive 
adaptation from previous clicks, parametrized by C(τ), and it is corrupted by 
i.i.d. multiplicative Gaussian noise ζ with variance σs

2. The parameter σs
2 is  

one of the three parameters learned during fitting and represents the signal-to-
noise of the system. The behavioral choice (c) is the sign of the decision variable 
at the last time step. The mapping from z to spike train response (y) passes 
through the softplus nonlinearity h and depends on baseline b and encoding 
weight w. The encoding weight is either wEA and wDC depending on z. The three 
parameters that are fit in MMDDM consist of the bound height B, the mean μ0 of 
starting distribution, and the signal-to-noise of each momentary input. c, The 
baseline input consists of a cross-trial component, parametrized by smooth 
temporal basis functions, as shown for an example neuron. d, The spike history 
filter of the same neuron. e, The post-stimulus filter of the neuron. This filter 
does not depend on the content of the click train and only depends on the 
timing of the first click, which is always a simultaneous left and right click.  
f, The kernel of the same neuron to account for movement anticipation. The 
kernel does not depend on the actual choice of the animal. g, The psychometric 

function is well captured across sessions. h, The vector field inferred from real 
spike trains is confirmed to be similar to that inferred from MMDDM-simulated 
spike trains for the session “T176_2018_05_03”. i, After fitting the model to  
each recording session, the learned parameters are used to simulate a data  
set, using the same number of trials and the same auditory click trains. The 
simulations are used to fit a new model, the recovery model, starting from 
randomized parameter values. The encoding weights of the accumulated 
evidence of the recovery model are compared against the weights used for the 
simulation (which were learned by fitting to the data) using the coefficient-of-
determination metric. j, Consistency in the encoding weights between the 
training models during five-fold cross-validation. For each session, a coefficient- 
of-determination was computed for each pair of training models (10 pairs), and 
the median is included in the histogram. k, Whereas the Poisson distribution 
requires the mean to be the same as the variance, the negative binomial 
distribution is a count response model that allows the variance to be larger  
than the mean μ, with an additional parameter α, the overdispersion parameter, 
that specifies the variance to be equal to μ + αμ2. When the overdispersion 
parameter is zero, the distribution is equivalent to a Poisson. Fitting the data to 
varying values of the overdispersion parameter shows that log-likelihood is 
maximized with a Poisson distribution for the conditional spike count response. 
Similarly, when the overdispersion parameter was learned from the data, the 
best-fit values were all close to zero. l, The magnitude of the input after sensory 
adaptation of each click in a simulated Poisson auditory click train. Based on 
previous findings24, the adaptation strength (φ) is fixed to 0.001, and the post-
adaptation recovery rate (k) to 100. The generative click rate is 40 Hz, as in the 
behavioral task. m, Sensory adaptation is not critical to the improvement in fit 
by the MMDDM compared to the single mode DDM. Even without modeling 
sensory adaptation–by setting φ = 1 and k = 0, such that every click has the same 
input magnitude–the out-of-sample log-likelihood is reliably improved by the 
MMDDM compared to the single mode DDM. n, The out-of-sample goodness-
of-fit of the PSTH’s is also reliably improved even in the absence of sensory 
adaptation. m-n, P-values were computed using two-sided sign tests.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | nTc and psychophysical kernels. a, For the inferred 
weights of the stimulus fluctuations to be interpretable, the click input 
fluctuations must not be strongly correlated across time steps. On each time 
step on each trial, the fluctuation in auditory click input was computed by 
counting the observed difference in right and left clicks at that time step, and 
then subtracting from it the expected difference given the random processes 
used to generate the stimulus. The input fluctuations at time step of t = 0 s were 
excluded because they are strongly correlated with the input fluctuations 
before decision commitment and strongly anti-correlated with input 
fluctuations after commitment. b, To determine the time resolution of the 
kernel that best captures the weight of the input fluctuations, 10-fold cross-
validation was performed to compare kernels quantified by different numbers 
of parameters and types of basis functions. The kernel with the lowest 
temporal resolution is a constant, represented by a single parameter, implying 
that fluctuations across time have the same weight. At the highest time 
resolution, the kernel can be parametrized by a separate weight for each time 
step. At intermediate time resolution, the kernel is parametrized by basis 
functions that span the temporal window. The basis functions can be evenly 
spaced across the temporal window, or stretched such that time near t = 0 s  
is represented with higher resolution and time far from t = 0 s with lower 
resolution. The most likely model had six moderately stretched (η = 1) basis 
functions. c, The optimal model’s set of six moderately stretched (η = 1) basis 
functions. d, Even when using basis functions, the psychophysical kernel is 
consistent with the core prediction of MMDDM: The psychophysical weight of 
the stimulus fluctuations on the behavioral choice ceases after the time of 
decision commitment. Note that no basis function was used in the analysis in 
Fig. 5d. e, In contrast to the commitment-aligned kernel, the kernel aligned to 
the onset of the auditory click trains is smooth. Mean stimulus onset-aligned 
psychophysical kernel across sessions, estimated using a model with five 
temporal basis functions. For each session, 10-fold cross-validation was 
performed on fitting the kernel model to the data, and ten estimated kernels 
were averaged. Then, the kernels were averaged across sessions. f, The onset-
aligned psychophysical kernel is parametrized by five evenly spaced radial 
basis functions. g, Cross-validated model comparison shows that a temporally 
flat psychophysical kernel is most likely given the observed data. h, Similarly, 
given the simulated choices generated by the MMDDM, the out-of-sample log-
likelihood is maximized by assuming a flat kernel. g-h, N = 115 sessions. i, The 
approximately flat psychophysical kernel inferred from MMDDM-simulated 
choices is consistent with the MMDDM’s prediction of the probability of 

decision commitment given the stimulus: throughout the trial, the probability 
of decision commitment is relatively low, and at no point in the trial is decision 
commitment an absolute certainty. j, At t = 0.75 s, the window used to compute 
the psychophysical kernel, the median probability of decision commitment 
across sessions is 0.57. k, A small but statistically significant effect of whether 
decision commitment was reached on the “movement onset time”, i.e., the time 
when the rat withdraws its nose from the fixation port minus the earliest time 
when the rat is allowed to do so. The effect is not simply due to trial difficulty 
because it remains when we consider only easy trials (right: left click rate either 
greater than 38:1 or less than 1:38). k-m, N = 35962 trials (without nTc), 19095 
(with nTc), 10261 (without nTc among easy trials), 7962 (with nTc among easy 
trials). l, Similar effect of whether commitment was reached on the rat’s 
“movement execution time”, i.e., the time when the rat reaches either the left or 
right port minus the time when it withdrew its nose from the fixation port.  
m, Relative timing of decision commitments between pairs of simultaneously 
recorded brain regions. For each pair of regions, the comparison was made on 
only the trials on which the threshold for commitment was crossed for both 
regions. N = 3936 trials (dmFC vs. mPFC), 7024 (M1 vs. dStr), 6251 (M1 vs. vStr), 
8463 (dStr vs. vStr), 529 (dStr vs. FOF), 487 (vStr vs. FOF). n, Inferred times of 
commitment, relative to stimulus offset. m-n, P-values were computed using 
two-sided sign tests. o, As expected from the model, nTc’s occur more often in 
easier trials, i.e., trials with larger generative (experimentally controlled) 
difference between the left and right click rate. p, As expected from the model, 
the mean value of the latent variable (the expectation under the posterior 
probability given the spikes and choice) reaches values of larger magnitude on 
trials on which nTc could be inferred compared to trials on which an nTc could 
not be inferred. Shading indicates 95% bootstrapped confidence intervals 
across sessions. q, Consistent with the model, even when considering only the 
period while the clicks were still playing, the mean of the latent variable 
abruptly plateaus after the nTc. r, The trials on which nTc could be estimated 
were separated into three groups using the terciles of the distribution of nTc 
relative to stimulus onset. s, Psychometric function of each group, showing the 
fraction of a right choice against the generative (i.e., experimentally specified) 
difference between the right and left click rates. t, Behavioral sensitivity is 
higher for trials with longer nTc. A logistic model with two terms (bias and 
slope) was fit to regress the choice on each trial against the generative 
difference in click rate. Data are presented as the best-fit slope parameters and 
their 95% confidence intervals, computed by bootstrapping across trials. 
N = 6120 trials (first tercile), 6545 (second tercile), 6336 (last tercile).



Extended Data Fig. 8 | The distribution of commitment times inferred from 
MMDDM does not match the distribution of start time of peri-movement 
kernels. a, Separately for each choice-selective neuron (N = 4605), peri- 
movement kernels are estimated using Poisson generalized linear models 
(GLM)40,58. The inputs (i.e., regressors) to the model depend on two events that 
occur on each trial: onset of fixation (i.e., when the rat inserts its nose into the 
center port), and the time when the rat leaves the center port and begins to 
move toward the side port. An impulse (i.e., delta function) at the time of each 
event is convolved with a linear filter, or kernel, to parametrize the time-varying 
input related to that event. At each time step, the sum of the inputs is fed through 
a rectifying nonlinearity (softplus) to specify the neuron’s Poisson firing rate at 
that time. Three kernels, related to fixation, leftward movement, and rightward 
movement, are learned by maximizing the marginal likelihood40. b, Example 
neuron. Two GLM variants were fitted to the same neuron, and for each GLM 
variant, the observed peri-event time histogram (PETH) is overlaid the cross- 
validated, model-predicted PETH. The choice-dependence of the PETH of this 

neuron is well captured by the model variant whose peri-movement kernels 
start −3.0 s before and 0.5 s after movement onset (left), but less well captured 
by another variant whose peri-movement kernels time base are limited to −0.5 
to 0.5 s (right). c, To identify the optimal start of the movement kernel for each 
neuron, cross-validated (5-fold) model comparison was performed on seven 
model variants that vary in the start time of the movement kernels and the 
number of radial basis functions used to parametrize the kernels. The end time 
of the movement kernel (0.5 s), and the parametrization of the fixation-related 
kernel (−1.5 s to 2.0 s and 4 basis functions) are identical for all variants. d, The 
out-of-sample log-likelihood is highest for the model variant whose peri- 
movement kernels start at −3.0 s. e, For each neuron, the GLM variant with the 
highest out-of-sample log-likelihood determines the optimal start of the 
peri-movement kernels. The mode of the distribution is at −3.0 s. f, The start  
of peri-movement kernels for most neurons precede the time of the first click. 
g, The start of peri-movement kernels for most neurons precede the earliest 
commitment time inferred from MMDDM.
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Extended Data Fig. 9 | Changes in neural responses after stimulus offset are 
more closely aligned to movement onset than stimulus offset. a, Relative 
timing of task events. The offset of the auditory click train stimulus always 
occurred at the end of the 1.5 s minimum fixation period on every trial. b, The 
median time of movement onset relative to stimulus offset across trials without 
a neurally inferred time of commitment (nTc) is 0.192 s. The rightmost bin 
contains trials for which the movement onset is 0.8 s or more after stimulus 
offset. c, Principal component analysis (PCA) was performed on peri-event 
time histograms (PETH’s) aligned to stimulus offset (circles) and averaged 
across trials without a neurally inferred time of commitment (nTc). Spikes were 

counted in 10 ms bins, and the PETH was not additionally filtered. Spikes after 
the animal moved away from the fixation port (i.e., movement onset) were 
included. For each neuron and each trial condition, the PETH is a 100-element 
vector. Concatenating across 4605 choice-selective neurons and 4 trial 
conditions gave a 4605-by-400 matrix. The mean of each row (i.e., the average 
response of each neuron) was subtracted from the matrix, and PCA was 
performed on the resulting matrix. Triangles indicate the median time of 
movement onset. Projections are scaled by the standard deviation explained 
by each PC. d, PCA performed PETH’s aligned to movement onset offset and 
averaged across trials without nTc.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Further analyses and validation of the dynamics 
discovered by FINDR. a, When we computed the eigenvalues of the numerical 
Jacobian J obtained from the detected slow point around the origin, the real 
components of both eigenvalues were greater than zero for all sessions (n = 27), 
indicating that the origin is not a stable point. Units of λ are sec−1. b, To quantify 
how non-normal the dynamics are around the origin, we computed the angle 
between the two eigenvectors of J. 90° indicates that the dynamics are normal, 
and angle less than 90° indicates that the dynamics are non-normal. c, We 
further evaluated the non-normality of the discovered dynamics around the 
origin by taking the Schur decomposition J = QTQ* and computing the ratio 
between the non-normal part and the normal part of the dynamics, ρ = ||T1,2||/ 
||[T1,1; T2,2]||. ρ > 0 indicates that the dynamics are non-normal, with higher 
values of ρ indicating stronger non-normality. d, Here we estimated the low-
dimensional vector field for each session using a method that does not specify 
a dynamical model (“model-free” approach). We compared the vector fields 
estimated using this approach to the FINDR-inferred vector fields. To obtain 
the model-free vector field, we first estimated single-trial firing rates of 
individual neurons by binning the spike trains in Δt = 10 ms bins and convolving 
the spike trains with a Gaussian of σ = 100 ms. Then, we projected the estimated 
single-trial population firing rate trajectories onto the subspace spanned by 
the FINDR latent axes. This allows direct comparisons between vector fields. 
For each evaluation point (i, j) on a 8-by-8 grid of the latent state space z, we 
estimated the velocity arrow by taking the average of ż ≈ (zt − zt-Δt)/Δt for all  
t across all trajectories that fall inside the cell corresponding to the point (i, j). 
To compare vector fields, we measured Sc, the mean of the cosine similarities 

between the vector arrows of the model-free approach and the vector arrows 
from FINDR inside the sample zone. The median of the Sc’s across all sessions 
was 0.73. Three example sessions from across the distribution are shown, with 
session 2 around the median Sc of the histogram. For both FINDR and the 
model-free approach, the colored trajectories were obtained by trial-averaging 
based on the evidence strength. To compare between a random vector field 
and the model-free vector field, for each session, we generated 1,000 random 
vector fields by randomizing the direction of each arrow in the 8-by-8 grid.  
e, We assessed the dynamical stability around the origin using a model-free 
approach similar to d. We estimated the autonomous velocity around the  
initial starting point (indicated as the center of the circle) of the model-free 
latent trajectories by taking the average of ż ≈ (zt − zt-Δt)/Δt for all t across all 
trajectories that fall inside each of the 5 pie slices. Here we excluded time  
points where clicks affect the dynamics (zt − zt-Δt)/Δt, and only considered the 
trajectories with #L clicks = #R clicks during the epoch when they are in the pie 
slice, when computing the estimate of the autonomous dynamics arrow. When 
computing the average of (zt − zt-Δt)/Δt for one of the pie slices, we required zt−1  
to be inside the pie slice. The circles have a radius of 0.2 (in the units of z).  
We found that all five arrows were pointing outwards (p < 0.55 = 0.03125) for  
20 out of 27 sessions, consistent overall with the stability analysis in a. f, FINDR-
inferred vector fields for all recording sessions (n = 27) with more than 30 
neurons and 400 trials, and sessions where the animal performed with greater 
than 80% accuracy. These fits were used for the summary plots in Fig. 3. The 
vector field represents the autonomous dynamics and the trajectories are trial 
averages sorted by the evidence strength of each trial.
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