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Learning the natural history of human 
disease with generative transformers

Artem Shmatko1,2,3,13, Alexander Wolfgang Jung2,4,5,6,13, Kumar Gaurav2,13, Søren Brunak4,7, 
Laust Hvas Mortensen5,7,8, Ewan Birney2 ✉, Tom Fitzgerald2 ✉ & Moritz Gerstung1,2,9,10,11,12 ✉

Decision-making in healthcare relies on understanding patients’ past and current 
health states to predict and, ultimately, change their future course1–3. Artificial 
intelligence (AI) methods promise to aid this task by learning patterns of disease 
progression from large corpora of health records4,5. However, their potential has  
not been fully investigated at scale. Here we modify the GPT6 (generative pretrained 
transformer) architecture to model the progression and competing nature of human 
diseases. We train this model, Delphi-2M, on data from 0.4 million UK Biobank 
participants and validate it using external data from 1.9 million Danish individuals with 
no change in parameters. Delphi-2M predicts the rates of more than 1,000 diseases, 
conditional on each individual’s past disease history, with accuracy comparable to that 
of existing single-disease models. Delphi-2M’s generative nature also enables sampling 
of synthetic future health trajectories, providing meaningful estimates of potential 
disease burden for up to 20 years, and enabling the training of AI models that have 
never seen actual data. Explainable AI methods7 provide insights into Delphi-2M’s 
predictions, revealing clusters of co-morbidities within and across disease chapters 
and their time-dependent consequences on future health, but also highlight biases 
learnt from training data. In summary, transformer-based models appear to be  
well suited for predictive and generative health-related tasks, are applicable to 
population-scale datasets and provide insights into temporal dependencies between 
disease events, potentially improving the understanding of personalized health risks 
and informing precision medicine approaches.

The progression of human disease across age is characterized by peri-
ods of health, episodes of acute illness and also chronic debilitation, 
often manifesting as clusters of co-morbidity. Patterns of multimor-
bidity affect individuals unevenly and have been associated with life-
style, heritable traits and socioeconomic status1–3. Understanding each 
individual’s multi-morbidity risks is important to tailor healthcare 
decisions, motivate lifestyle changes or direct entrance into screening 
programs, as is the case for cancer8,9. Critically, health cannot only be 
understood by the presentation of individual diagnoses but, rather, in 
the context of an individual’s co-morbidities and their evolution over 
time. While a wide range of prediction algorithms exist for specific 
diseases, from cardiovascular disease to cancer10–12, few algorithms 
are capable of predicting the full spectrum of human disease, which 
recognizes more than 1,000 diagnoses at the top level of the Interna-
tional Classification of Diseases, Tenth Revision (ICD-10) coding system.

Learning and predicting patterns of disease progression is also 
important in populations that are ageing and that exhibit shifts in 
their underlying demographic’s morbidities. For example, it has been 

predicted that, globally, the number of cancer diagnoses will increase 
77% by 2050 (ref. 13) or that, in the UK, the number of working-age 
individuals with major illnesses, including depression, asthma, dia-
betes, cardiovascular disease, cancer or dementia, will increase from 
3 to 3.7 million by 2040 (ref. 14). Modelling the expected burden of 
disease is therefore critical for healthcare and economic planning and, 
moreover, the continual tracking of disease occurrence along with its 
likely future prevalence within population groups promotes a more 
informed healthcare system.

Recent developments in AI may help to address some methodologi-
cal limitations of multi-morbidity modelling, which have so far proved 
difficult to overcome15. Aside from the great number of diagnoses, 
these include challenges in modelling temporal dependencies among 
previous events, the integration of potentially diverse prognostically 
relevant data and the statistical calibration of predictions. Large lan-
guage models (LLMs)16–19—a subfield of AI that enables chatbots such as 
ChatGPT20,21—model language as a sequence of word fragments (tokens). 
Generated token by token, the new text is based on all preceding text 
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and, with enough training, the statistical dependencies among these 
tokens prove sufficient to produce context-aware and even conver-
sational text, which is often indistinguishable from that of a human 
counterpart.

The analogy between LLMs and disease progression modelling, 
which also entails recognizing past events and exploiting their mutual 
dependencies to predict the future sequence of morbidity, has recently 
inspired a series of new AI models. For example, BERT-based models22–25 
have been developed for specific prediction tasks. Transformer models 
trained on electronic health records have been used for predicting 
diagnoses such as pancreatic cancer26, self-harm25 and stroke24, as well 
as non-clinical parameters such as self-esteem27. However, despite 
promising proofs of concept4,28,29, the potential for comprehensive and 
generative multi-morbidity modelling has not yet been fully assessed.

Here we demonstrate that attention-based transformer models, 
similar to LLMs, can be extended to learn lifetime health trajectories 
and accurately predict future disease rates for more than 1,000 diseases 
simultaneously on the basis of previous health diagnoses, lifestyle 
factors and further informative data. Our extended model, termed 
Delphi-2M, was trained on data from the UK Biobank, a population-scale 
research cohort, and validated on Danish population registries. The 
vocabulary of the model includes ICD-10 top-level diagnostic codes, 
as well as sex, body mass, smoking, alcohol consumption and death. 
Delphi provides individual-level predictions of multi-disease incidences 
and models future health trajectories at any point throughout an 
individual’s life course. Moreover, the internal model of Delphi offers 
insights into how past data influence the rates of subsequent diseases. 
We further assess biases and fairness across demographic subgroups 
and discuss Delphi’s potential as a framework for healthcare modelling.

A transformer model for health records
A person’s health trajectory can be represented by a sequence of diag-
noses using top-level ICD-10 codes recorded at the age of first diagnosis 
as well as death. Furthermore, ‘no event’ padding tokens were randomly 
added at an average rate of 1 per 5 years to eliminate long intervals 
without other inputs, which are especially frequent for younger ages 
and during which the baseline disease risk can change substantially 
(Extended Data Fig. 1). Together, these data comprise 1,258 distinct 
states—tokens in LLM terminology. Additional information includes 
sex, body mass index (BMI) and indicators of smoking and alcohol 
consumption, which are used as input information but not predicted 
by the model (Fig. 1a).

Training data comprised 402,799 (80%) participants of the UK 
Biobank recorded before the 1 July 2020. Data for the remaining 100,639 
(20%) participants were used for validation and hyperparameter opti-
mization, while all records for 471,057 (94%) participants still alive on 1 
July 2020 were used for longitudinal testing up until 1 July 2022 (Fig. 1b). 
Additional external testing was conducted on the Danish disease reg-
istry data, which covered 1.93 million Danish nationals and spanned 
the period from 1978 to 2018.

To model disease history data, which, in contrast to text, occurs on 
a continuous time axis, we extended the GPT-2 architecture6 (Fig. 1c). 
Transformer models map their inputs into an embedding space, where 
information is successively aggregated to enable autoregressive predic-
tions. The first change therefore replaces GPT’s positional encoding, 
a mapping that identifies each text token’s discrete position, with an 
encoding of continuous age using sine and cosine basis functions16. 
Standard GPT models only predict the next token using a multinomial 
probability model. Thus, the second extension is the addition of another 
output head to also predict the time to the next token using an expo-
nential waiting time model (Methods). Third, GPT’s causal attention 
masks, which ensure that the model accesses only information from 
past events, are amended to additionally mask tokens recorded at the 
same time. Padding, lifestyle and sex tokens use a similar encoding but 

do not enter the likelihoods, as the model is deliberately not trained 
to predict them.

We term this model Delphi (Delphi large predictive health inference). 
This architecture enables one to provide the model with a partial health 
trajectory (prompt in LLM terminology) to calculate the subsequent 
rate (per day) for each of the 1,256 disease tokens plus death. Further-
more, the next token and the time to this event can be sampled on the 
basis of these rates. Iteratively, this procedure samples entire health 
trajectories (Fig. 1d).

A systematic screen of architecture hyperparameters (embedding 
dimensionality, number of layers, heads) confirms the reported empiri-
cal scaling laws30, which state that model performance increases with 
the number of datapoints and, up to a limit defined by the available 
data, as the number of parameters increases (Fig. 1e). The screen indi-
cates that, for the UK Biobank dataset, optimal Delphi models have 
around 2 million parameters. One of the models within the optimal 
range has an internal embedding dimensionality of 120, 12 layers and 12 
heads, amounting to a total of 2.2 million parameters. Results based on 
this model parameterization are discussed throughout the rest of the 
paper. We note that qualitatively similar results are obtained from other 
parameter choices (Extended Data Fig. 2 and Supplementary Fig. 1).

An ablation analysis shows how Delphi-2M architectural modifi-
cations contribute to a better age- and sex-stratified cross-entropy 
compared with a standard GPT model (Fig. 1f, Supplementary Table 1 
and Supplementary Fig. 2). A good, albeit slightly inferior, classifica-
tion performance at different ages may already be achieved by adding 
regular ‘no event’ padding tokens to the input data with GPT models 
alone. However, a key distinguishing feature of Delphi compared with 
basic GPT models is its ability to calculate the absolute rates of tokens, 
which provide consistent estimates of inter-event times (Fig. 1g). This 
property also implies that the rates may be interpreted as the incidences 
of tokens.

Modelling multi-disease incidences
Delphi-2M’s accuracy in predicting diverse disease outcomes in the 
validation cohort is compared to the sex and age-stratified incidence as 
an epidemiological baseline. As can be seen in the ten examples shown 
in Fig. 2a, the incidence curves are very varied, with some diseases, 
such as chickenpox, peaking in infancy, while others, such as asthma 
or depression, are relatively flat and with most rising exponentially in 
old age. Moreover, there are noticeable differences between the sexes, 
which are obvious for breast cancer but also pronounced for diabetes, 
depression, acute myocardial infarction and death. Delphi-2M’s predic-
tions are updated for each individual when new inputs are recorded. The 
predictions largely follow the sex- and age-stratified incidence curves 
but also indicate events or periods when the individual risk remains 
below or rises above the population average. For some diseases, such 
as asthma or arthrosis, the spread is narrow, indicating a limited abil-
ity to predict beyond the sex- and age-incidence trend. Yet for other 
diseases, including septicaemia, and also death, the spread is wide, 
indicating predictable inter-individual differences in disease rates.

Delphi’s ability to predict the next diagnosis token across the spec-
trum of human disease is confirmed by the average age-stratified 
area under the receiver operating characteristic curve (AUC), which 
averages at values of approximately 0.76 in the internal validation 
data (Fig. 2b and Supplementary Table 2). For 97% of diagnoses, the 
AUC was greater than 0.5, indicating that the vast majority followed 
patterns with at least partial predictability. These patterns were 
found to be true across the different chapters of the ICD-10 spec-
trum, which define broad groups of disease for both sexes (Fig. 2c,d). 
Among the most confidently predicted next events is death, with 
an age-stratified AUC of 0.97 in both sexes. Importantly, calibration 
analyses in 5-year age brackets show that the predicted rates closely 
match the observed number of cases, showing that the models’ 
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rates of the next tokens are consistently estimated (Extended Data  
Fig. 3).

Next-event predictions are often the consequence of acute illness or 
diagnostic refinements that accrue over the course of a few weeks or 
months, which may be undesirable for prognostication. Delphi-2M’s 
average AUC values decrease from an average of 0.76 to 0.70 after  
10 years, indicating that its predictions are also relevant for long- 
term prognostication (Fig. 2e and Supplementary Fig. 3). Similar results 
were observed in longitudinal test data, which also show no substan-
tial shift in diagnostic patterns throughout the Biobank’s follow-up  
(Supplementary Fig. 4).

The performance of Delphi was similar to routinely used clinical 
risk scores for cardiovascular disease and dementia, and better than 
those used for death. For diabetes, the performance of Delphi was 
worse compared with the use of a single marker, HbA1c, which is 
used clinically for risk prediction and diagnosis of diabetes (Fig. 2f, 
Supplementary Fig. 4c and Supplementary Table 3). This was the 
case for next-event predictions, as well as prediction horizons up to 

24 months. Delphi-2M’s AUC values were also generally higher than 
those of a recent machine learning algorithm that calculates the risks 
of a similarly broad spectrum of ICD-10 diagnoses using 67 differ-
ent biomarkers available through the UK Biobank31, even though for 
many diagnoses, such as diabetes, biomarkers remain indispensa-
ble (Fig. 2e and Extended Data Fig. 4), marking potential for future 
modifications of Delphi that additionally use data beyond health 
records (Extended Data Fig. 5). For most cases, Delphi-2M’s multi-
disease predictions match or exceed current risk models for indi-
vidual disease outcomes and offer the great advantage of enabling 
the simultaneous assessment of more than 1,000 diseases and their 
timing at any given time, while also surpassing multi-disease models in  
quality.

Sampling future disease trajectories
One of the most promising features of generative models is the ability 
to sample disease trajectories, conditional on data recorded up to a 
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Fig. 1 | Delphi, a modified GPT architecture, models health trajectories.  
a, Schematic of health trajectories based on ICD-10 diagnoses, lifestyle and 
healthy padding tokens, each recorded at a distinct age. b, Training, validation 
and testing data derived from the UK Biobank (left) and Danish disease 
registries (right). c, The Delphi model architecture. The red elements indicate 
changes compared with the underlying GPT-2 model. ‘N ×’ denotes applying the 
transformer block sequentially N times. d, Example model input (prompt) and 

output (samples) comprising (age:token) pairs. e, Scaling laws of Delphi, showing 
the optimal validation loss as a function of model parameters for different 
training data sizes. f, Ablation results measured by the cross-entropy differences 
relative to an age- and sex-based baseline (y axis) for different ages (x axis). g, The 
accuracy of predicted time to event. The observed ( y axis) and expected (x axis) 
time to events are shown for each next token prediction (grey dots). The blue 
line shows the average across consecutive bins of the x axis.
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certain point. This is a property that few conventional epidemiologi-
cal models possess.

To systematically assess the influence of medical histories on future 
health, we sampled health trajectories for each participant from the UK 
Biobank validation cohort on the basis of data available until the age 

of 60 years (Fig. 3a). This provides the opportunity to compare 63,662 
sampled and observed trajectories. When evaluated at the population 
level, the disease incidences at ages 70–75 years are well recapitulated, 
showing that the overall distributions are well preserved by iterative 
sampling (Fig. 3b). This is further confirmed by the cross-entropy loss 
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Fig. 2 | Delphi-2M accurately models the rates of a wide range of diseases.  
a, The predicted rates for nine exemplary diagnoses and death ( y axis) as a 
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immediately before the diagnosis in question. The purple and turquoise lines 
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black line connects consecutive predictions for one randomly selected case 
throughout age. b, Average age–sex-stratified AUC values ( y axis) as a function 
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of sampled trajectories, which is, on average, indistinguishable from 
the observed data but drops when the preceding disease histories are 
shuffled between participants (Supplementary Fig. 5b).

In the first year of sampling, there are on average 17% disease tokens 
that are correctly predicted, and this drops to less than 14% 20 years 
later. These figures compare to values of 12–13% of correctly predicted 
disease tokens using sex and age alone, confirming that the conditional 
generation helps to make more accurate predictions of future events 
(Fig. 3c and Supplementary Fig. 5c,d).

Delphi-2M’s ability to simulate differential health outcomes over a 
decade or more, on the basis of each individual’s health history, mani-
fests in a multitude of ways. For example, the changes in disease burden 
in different population subsets defined by smoking, alcohol consump-
tion or BMI are well predicted (Fig. 3d and Extended Data Fig. 6a). 
Similar findings are observed when the population is stratified by the 
presence of previous diseases or by estimated disease risks (Extended 
Data Fig. 6b,c). Together, these analyses show that Delphi-2M’s condi-
tional samples provide meaningful extrapolations for future health 
courses, which reflect the influence of past health events.

The use of synthetic data has been proposed to help overcome 
issues with privacy in biomedical modelling if such datasets do not 
reveal characteristics specific to any one person. Fully synthetic data, 
which are sampled from birth with randomly assigned sex, reproduce 
the observed age and sex-specific incidence patterns throughout life 
(Fig. 3e). Further assessment shows that the generated trajectories do 
not exhibit any greater similarity to the training data than those from 
the validation cohort (Supplementary Fig. 6). While partially overlap-
ping disease trajectories may be found in terms of absolute disease 
tokens, the extent of overlap appears as expected on the basis of the 
observed incidences and co-morbidity patterns.

To illustrate the use of synthetic data, we trained a version of 
Delphi-2M exclusively on synthetic data. Notably, when evaluated on the 
observed validation data, the fully synthetically trained model achieves 
an age–sex-stratified average AUC of 0.74, which is only three percent-
age points lower than that of the original Delphi-2M model (Fig. 3f). This 
confirms that synthetic data preserve much of the information relevant 
to training Delphi models and may serve as a less privacy-sensitive 
alternative to personal data.

Explaining Delphi-2M predictions
Insights into how Delphi-2M uses past information to predict future 
disease rates can be obtained by assessing the structure of the disease 
embeddings. GPT models linearly map inputs into a lower-dimensional 
embedding space, in which the temporal sequence of events is itera-
tively aggregated to produce a state from which predictions of each next 
token are derived (Fig. 1c). Delphi-2M’s specific implementation uses 
weight tying, which uses the same mapping to project the final embed-
ding state to the token risks, guiding interpretation as the embedding 
matrix reflects the observed structure of co-morbidity risks.

As shown by the uniform manifold approximation and projection 
(UMAP) representation of Delphi-2M’s embedding matrix in Fig. 4a, 
disease codes cluster closely by the underlying chapter, a property 
that the model has no direct knowledge of, and that purely reflects 
co-occurrence patterns in the data. Yet there are also noticeable excep-
tions, for example, cancers and precancers of the female reproductive 
tract. Another noteworthy cluster involves the two types of diabetes, 
retinal disorders and the neuropathies caused by them. Diseases with 
high acute mortality, such as myocardial infarction or septicaemia, 
are clustering with death.
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To gain further insights into how individual tokens influence future 
risks, shapley additive explanations (SHAP) values measure the influ-
ence of each token from the input trajectory on model predictions by a 
systematic assessment of subsampled data for individual prediction. As 
illustrated with the example of the proband’s partial trajectory shown 
in Fig. 4b, this analysis reveals that a series of disease diagnoses of the 
digestive tract (ICD-10 chapter XI) elevated their pancreatic cancer risk 
19-fold. The subsequent pancreatic cancer diagnosis in turn increased 
the rate of mortality almost ten thousandfold.

SHAP analysis of data from 100,639 individuals of the validation 
cohort reveals the mutual dependencies by which each disease, sex 
and lifestyle token influences the rate of subsequent disease tokens, 
similar to hazard ratios in conventional statistical models (Fig. 4c (left) 

and Extended Data Fig. 7). Effects mostly increase the rates of other 
diseases and are usually found among diseases of the same ICD-10 
chapters, underscoring that the recorded patterns of co-morbidities 
often cluster within specific ICD-10 disease chapters. Particular clus-
ters spanning entire disease chapters are visible for ICD-10 chapters V 
(mental disorders) and XV (pregnancy and childbirth). Notably, such 
patterns often appeared symmetrical, indicating similar predicted 
effect sizes of one disease token influencing another and vice versa 
(Supplementary Fig. 7). This behaviour can be attributed to the struc-
ture of the embedding space, which places temporarily co-occurring 
diagnoses in local proximity (Extended Data Fig. 8).

The patterns of modelled influences after 10 years are similar to 
short-term effects, even though the strength of associations is greatly 
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attenuated (Fig. 4c (right)). The cluster relating to diseases of ICD-10 
chapter XV (pregnancy and childbirth) within 5 years is entirely absent 
after 10 years, which is expected given that pregnancy-associated 
diseases occur within a finite period. However, dependencies among 
mental disorders remain apparent, similar to the effects of neoplasms 
on mortality. These observations are noteworthy as the quantification 
of temporal dependencies on past events poses a particular challenge 
for conventional epidemiological models, whereas Delphi-2M’s GPT 
model uses attention-based weights, which are updated with every 
new input, including the ‘no event’ paddings.

To further illustrate Delphi-2M’s capabilities of modelling temporal 
dependencies, we note that, for some diseases, such as cancers, the 
influence on mortality decays with a half-life of several years, reflect-
ing the sustained risks of recurrence or impacts of treatment (Fig. 4d). 
However, for septicaemia, the influence on mortality is much more 
short-lived and drops sharply, effectively recovering to values close 
to the population average. This inference agrees with traditional  
Nelson–Aalen analyses of the hazard rates (Supplementary Fig. 8f). 
This behaviour is also reflected by Delphi-2M’s attention maps, which 

show that cancer tokens are attended to for long periods, while those 
of septicaemia, myocardial infarction and many other diseases tend 
to be short lived (Supplementary Fig. 8).

External validation and bias assessment
To assess whether Delphi-2M’s inference generalizes to unseen cohorts, 
we performed external testing using Danish population registry data. 
For this purpose, we transferred Delphi-2M with the weights learned 
from the UK Biobank training and evaluated predictions on the  
Danish data; no retraining or adjustments have been made. The aver-
age AUC when Delphi-2M is applied to Danish data was 0.67 (s.d. 
0.09), which is lower than for longitudinal testing on UKB data (0.69, 
s.d. 0.09). Predictions for different diseases were highly correlated 
across the datasets (Pearson correlation coefficient 0.76, 95% con-
fidence interval (CI): 0.72–0.80) (Fig. 5a and Supplementary Fig. 9). 
The fact that Delphi-2M can be applied to Danish population data with 
slightly reduced accuracy indicates that many patterns learned by 
the model accurately reflect the true evolution of multi-morbidity, 
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while also highlighting the existence of differences within each  
cohort.

A further question is to what extent a model trained on the UK Bio
bank, which is an epidemiological cohort, generalizes to the general 
population. The UK Biobank comprises more white British citizens than 
the general population, and the participants tend to be on average more 
affluent and educated32. Lower rates of diseases are reported among 
participants of white ethnicity, and the rate of diagnoses increases 
with deprivation—trends that are reproduced by Delphi-2M (Extended 
Data Fig. 9). Further assessments of Delphi-2M’s performance in demo-
graphic subgroups are provided in the Supplementary Discussion, 
Supplementary Figs. 10 and 11 and Supplementary Table 4.

In the UK Biobank, most individuals have been recruited between 
the ages of 40 and 70. This creates a selection bias, as no deaths are 
recorded before recruitment, which has direct implications for the 
estimated mortality (Fig. 5b). This immortality bias also indirectly 
affects the incidence of diseases associated with high mortality, such 
as cancers, as only survivors are included in the UK Biobank. For 
time-dependent analyses, the jump of mortality to non-zero values at 
recruitment can also lead to false attribution of the apparent increase 
to unrelated variables recorded at the time of recruitment. Further-
more, limited follow-up data are currently available for individuals  
80 years of age and older. This period is therefore not reliably modelled 
by Delphi-2M.

UK Biobank’s disease data have been collated from self-reports, pri-
mary care, hospital admissions, cancer and death registries, each of 
which contributes characteristic disease tokens: self-reporting and 
GP records contain mostly common diseases, while data from hospital 
records include more-aggressive disease tokens, such as myocardial 
infarction or septicaemia (Fig. 5d). However, the underlying sources 
were not always available for each participant and time period (Fig. 5c 
and Supplementary Fig. 12). Missingness of a particular data source 
therefore causes the absence of multiple diagnoses. Such patterns, 
which reflect only the data-collection process, are also learned by 
Delphi-2M. The predicted rates of diseases exclusive to hospital records 
are, on average, ten times higher in individuals with a disease history 
that includes other hospital records (Fig. 5e,f). Septicaemia, for exam-
ple, is diagnosed in 93% of cases in a hospital setting and is predicted 
to occur at 8× greater rates in individuals with any other hospital data. 
These source effects also explain some of the substructures visible in 
the UMAP representation of disease embeddings (Fig. 4a and Extended 
Data Fig. 10a–d) and also in the matrix of SHAP effects (Figs. 4c and 5g 
and Extended Data Fig. 10). While some of these associations may reflect 
true diagnostic pathways or disease clusters diagnosed in a distinct 
care setting, it nevertheless appears that some of these associations 
are artefacts stemming from the incomplete aggregated nature of the 
UK Biobank’s data.

Discussion
Here we present Delphi-2M—a GPT-based model of multi-disease pro-
gression. Delphi-2M extends the GPT large language model to account 
for the temporal nature of health trajectories. Analogous to LLMs, which 
learn the grammar and contextual logic of language from large bodies 
of text, Delphi-2M inferred the patterns of multi-disease progression 
when trained on data for more than 1,000 diseases and baseline health 
information recorded in 402,799 UK Biobank participants.

A detailed assessment of Delphi-2M’s predictions showed that they 
consistently recapitulate the patterns of disease occurrence at the 
population scale as recorded in the UK Biobank. For the majority of 
diseases, Delphi-2M’s multi-disease, continuous-time model pre-
dicted future rates at comparable or better accuracy than established 
single-disease risk models, alternative machine learning frameworks 
and blood-biomarker-based models. Only a small performance drop 
was observed when applied to data from Danish disease registries, 

demonstrating that models are—even without additional finetuning—
largely applicable across national healthcare systems.

Delphi-2M is uniquely capable of sampling future disease trajecto-
ries, which enables the estimation of cumulative disease burdens over 
periods of up to 20 years, conditional on previous health informa-
tion. Note that Delphi’s predictions are generally strongly influenced 
by statistical chance and compatible with a range of outcomes for a 
given individual. The ability to generate synthetic data may also help 
create datasets that preserve the statistical co-occurrence patterns 
without revealing any specific data, which could facilitate the develop-
ment of further AI models with a decreased risk of revealing personal 
information.

Delphi-2M offers insights into the modes of disease progression. 
The ability to cluster disease risks may be useful for genomic asso-
ciation studies that focus on comorbidities or are stratified by the 
risks derived from health trajectories. Delphi-2M’s ability to quan-
tify the temporal influence of previous health data revealed that can-
cers increase mortality in a sustained manner, while the effects of 
myocardial infarction or septicaemia regress within 5 years. Similar 
analyses also revealed clusters of persisting comorbidities, such as 
mental health conditions. Although Delphi-2M appears to be capable 
of modelling temporally directed dependencies, we caution against 
interpreting these as causal relationships that could be exploited to 
modify future health courses.

There are also several limitations that need to be considered. A 
detailed analysis of UK Biobank’s first occurrence data revealed 
several biases, reflected by Delphi-2M. In addition to a healthy vol-
unteer bias and participant selection bias before recruitment, the 
diverse nature of health data sources impacted Delphi’s prediction, 
as UK-Biobank-specific patterns of missingness were exploited to infer 
disease rates. Furthermore, Delphi-2M predicts different disease rates 
in subgroups based on ancestry background and deprivation indices, 
but no observable trend between lifestyle measures and birth year. 
These findings underscore the need for caution when using AI models 
for inference and prediction in heterogeneous healthcare datasets, 
potentially marking them as useful additions to currently used diag-
nostic pipelines, rather than replacements.

A promising feature of Delphi-2M’s implementation is the relative 
simplicity of incorporating additional data layers, rendered possible 
by the transformer-based architecture. Immediate refinements of 
Delphi-2M may incorporate additional lifestyle data, self-reported 
health status, prescription records and blood tests, all of which are 
usually available in a general healthcare setting. Further multimodal 
extensions could include genomic data, richer metabolomic informa-
tion, diagnostic imaging data or data from wearables that can be added 
to Delphi-2M’s embedding layer, similar to how lifestyle tokens are cur-
rently incorporated (Extended Data Fig. 9). Furthermore, while ICD-10 
provides a predefined tokenization of diseases, LLMs have been shown 
to also conceptualize natural language, making it plausible to expect 
that future models may derive similar meaning directly from free text 
records, enabling the application of Delphi-like models to unstruc-
tured data. Lastly, Delphi-2M itself could serve as an extension to LLMs. 
Similarly to systems that provide LLMs with query-relevant web search 
results to reduce hallucinations33, a future healthcare-oriented LLM 
could invoke a Delphi-based model to improve the numerical accuracy 
of the generated replies34.

An evident application of Delphi-type models is to support medical 
decision-making by rationally integrating information from various 
data modalities, which can be a challenge for healthcare professionals. 
Potential use cases could include identifying individuals who would 
benefit most from diagnostic tests or finding individuals with disease 
risk high enough to include them in screening programs, even if they 
have not yet met conventional age-based criteria. However, deploying 
clinical decision support systems requires a regulatory framework, 
which is still in its infancy for AI in healthcare.
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An alternative use of Delphi models would be to inform healthcare 
providers, insurers and policymakers. Such applications, which inform 
the provision of healthcare rather than treatment decisions, require less 
regulation. Delphi’s modelling has a resolution of an individual; when 
such predictions are aggregated, Delphi-type models may provide 
substantial system-wide modelling benefits, particularly in projecting 
the expected disease burden at local, regional and national levels, or 
for specific demographic groups of interest. This could reveal com-
munities with unmet future healthcare needs over the next 1–2 decades 
and provide an opportunity to adjust the provision of healthcare. Such 
capabilities appear especially valuable in ageing populations in which 
healthcare needs are becoming increasingly complex and resource 
intensive.

These considerations illustrate the wide range of applications of 
generative models for biomedical research and, ultimately, also for 
healthcare. With appropriate training and evaluation, future multi-
modal model extensions may be used for preventive medicine, clinical 
decision support and healthcare planning. Our model and analyses 
present a further step towards unlocking the considerable healthcare 
benefits of the era of AI.
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Methods

Data
UK Biobank. Cohort. The UK Biobank is a cohort-based prospective 
study comprising approximately 500,000 individuals from various 
demographic backgrounds recruited across the UK between 2006 
and 2010. At the time of recruitment, individuals were between 37 
and 73 years of age35.
Disease first occurrence data. The main data source for health-related 
outcomes is built on the first occurrence data assembled in category 
1712 from the UK Biobank. These data include ICD-10 level 3 codes 
(for example, E11: type 2 diabetes mellitus) for diseases in chapters 
I–XVII, excluding chapter II (neoplasms), plus death. The data are 
pre-assembled by UK Biobank and include the first reported occurrence 
of a disease in the linked primary care data (cat. 3000), inpatient hos-
pital admissions (cat. 2000), death registry (fields 40001 and 40002) 
or self-reported data through questionnaires (field 20002).

Information on neoplasms was not included in category 1712 by the 
UK Biobank, and we therefore included the data ourselves through the 
addition of the linked cancer registry data in fields 40005 and 40006 
(subset to the first occurrence and mapped to ICD-10 level 3 codes), 
which, combined with first occurrence data, gives in total 1,256 distinct 
diagnoses. A list of all codes used is provided in Supplementary Table 5.
Lifestyle and demographics. We extract information on the self- 
reported sex of participants as recorded in field 31 (indicators for female 
and male), a physical assessment of body mass index at recruitment from 
field 21001, which we split into three indicators encoding BMI < 22 kg m−2, 
BMI > 28 kg m−2 and otherwise, as well as smoking behaviour from field 
1239 with indicators for smoker (UKB coding: 1), occasionally smok-
ing (2) and never smoker (0) and alcohol intake frequency from field  
1558 with indicators for daily (1), moderately (2, 3) and limited (4, 5, 6).

Furthermore, information that we extracted and used for stratifica-
tion to assess model performance in subgroups but were not part of the 
data for model training include self-reported ethnic background (field 
21000), with participants grouped into five level groups (white, mixed, 
Asian or Asian British, Black or Black British, and Chinese) and an index 
of multiple deprivation as available in field 26410. The index combines 
information across seven domains, including income, employment 
derivation, health and disability, education skills and training, barriers 
to housing and services, living environment and crime.

Moreover, we extract information required for some of the algo-
rithms we compare against. A list of the variables and their codes can 
be found in Supplementary Table 5.

Danish registries. Cohort. Exploring comorbidities and health-related 
factors is uniquely facilitated by Denmark’s comprehensive registries, 
which gather up to 40 years of interconnected data from across the 
entire population. All used registries are linkable through a unique 
personal identification number provided in the Central Person Registry 
along with information on sex and date of birth. Furthermore, we used 
the Danish National Patient Registry36 (LPR), a nationwide longitudinal 
register with data on hospital admissions across all of Denmark since 
1977, along with the Danish Register of Causes of Death37 since 1970 to 
extract information on an individual’s acquired diagnoses throughout 
their lifetime. Our current data extract covers information up until 
around 2019 when reporting to the LPR was updated to LPR3. Fur-
thermore, we restrict our cohort to individuals 50–80 years of age on  
1 January 2016, to obtain a similar age range as in the UK Biobank. The  
1 January 2016 was chosen as the cut-off point as it is the latest time-
point for which we can guarantee reliable coverage across the entire 
population over the entire prediction horizon.
Feature adjustments. To obtain a dataset that resembles the UK 
Biobank data, we retain only the first occurrence of an individual’s 
diagnosis and transform all codes to ICD-10 level 3 codes. Diagnoses 
before 1995 are reported in ICD-8 and have been converted to ICD-10 

codes using published mappings38. Codes that may be present in the 
Danish register but were not in the UK Biobank are removed. Informa-
tion on lifestyle is not available, and indicators for BMI, smoking and 
alcohol intake have therefore been treated as absent.

Data splits. UK Biobank. The models were trained on UK Biobank data 
for 402,799 (80%) individuals using data from birth until 30 June 2020. 
For validation, data contain the remaining 100,639 (20%) individuals 
for the same period. Internal longitudinal testing was carried out using 
data for all individuals still alive by the cut-off date (471,057) and evalu-
ated on incidence from 1 July 2021 to 1 July 2022, therefore enforcing a 
1 year data gap between predictions and evaluation. Validation assesses 
how well the model generalized to different individuals from the same 
cohort. Longitudinal testing investigates whether the model’s perfor-
mance changes over time and if it can be used for prognostic purposes.
Denmark. External longitudinal testing was conducted on the Danish 
registries. All individuals residing in Denmark 50–80 years of age on 
the 1 January 2016 were included. Predictions are based on the avail-
able data up to this point and were subsequently evaluated on inci-
dence from 1 January 2017 to 1 of January 2018, similar to the internal 
longitudinal testing. Data were collected for 1.93 million individuals 
(51% female and 49% male), with 11.51 million disease tokens recorded 
between 1978 and 2016. Predictions were evaluated on 0.96 million 
disease tokens across 796 ICD-10 codes (each with at least 25 cases).

Model architecture
GPT model. Delphi’s architecture is based on GPT-2 (ref. 6), as imple-
mented in https://github.com/karpathy/nanoGPT. The basic GPT model 
uses standard transformer blocks with causal self-attention. A standard 
lookup table embedding layer with positional encoding was used to 
obtain the embeddings. The embedding and casual self-attention layers 
are followed by layer normalization and a fully connected feedforward 
network. Transformer layers, consisting of causal self-attention and 
feedforward blocks, are repeated multiple times before the final linear 
projection that yields the logits of the token predictions. The residual 
connections within a transformer layer are identical to those in the 
original GPT implementation. Here we also use weight tying of the 
token embeddings and final layer weights, which has the advantage 
of reducing the number of parameters and allowing input and output 
embeddings to be similarly interpreted.

Data representation and padding tokens. Each datapoint consists 
of pairs (token, age) recording the token value and the proband’s age, 
measured in days from birth, at which the token was recorded. The 
token vocabulary consists of n = 1,257 different ICD-10 level 3 disease 
tokens, plus n = 9 tokens for alcohol, smoking and BMI, each repre-
sented by three different levels, as well as n = 2 tokens for sex and n = 1 
no-event padding token as well as n = 1 additional, non-informative 
padding token at the beginning or end of the input sequences.

No-event padding tokens were added to the data with a constant 
rate of 1 per 5 years by uniformly sampling 20 tokens from the range of 
(0, 36525) and interleaving those with the data tokens after intersect-
ing with the data range for each person. No-event tokens eliminate 
long time intervals without tokens, which are typical for younger ages, 
when people generally have fewer diseases and therefore less medical 
records. Transformers predict the text token probability distribution 
only at the time of currently observed tokens; thus, no-event tokens 
can also be inserted during inference to obtain the predicted disease 
risk at any given time of interest.

Sex tokens were presented at birth. Smoking, alcohol and lifestyle 
were recorded at the enrolment into the UK Biobank. As this specific 
time also coincided with the end of immortal time bias (probands had 
to be alive when they were recruited), smoking, alcohol and BMI tokens 
times were randomized by −20 to +40 years from this point in time to 
break an otherwise confounding correlation leading to a sudden jump 

https://github.com/karpathy/nanoGPT


in mortality rates (and possibly other diseases with high mortality, 
such as cancers) associated with the recording of these tokens. This 
probably also diminishes the true effect of these tokens.

Age encoding. Delphi replaces GPT’s positional encoding with an 
encoding based on the age values. Following the logic frequently used 
for positional encodings, age is represented by sine and cosine func-
tions of different frequencies, where the lowest frequency is given by 
1/365. These functions are subsequently linearly combined by a train-
able linear transformation, which enables the model to share the same 
basis function across multiple encoding dimensions. Another advan
tage of using age encoding is that Delphi can handle token inputs of  
arbitrary length, as no parameters are associated with token positions.

Causal self-attention. Standard causal self-attention enables the 
GPT model to attend to all preceding tokens. For sequential data, 
these are found to the left of the token sequence. Yet in the case of 
time-dependent data, tokens can be recorded at the same time with no 
specified order. Thus, attention masks were amended to mask positions 
that occurred at the same time as the predicted token. Non-informative 
padding tokens were masked for predictions of other tokens.

Exponential waiting time model. The input data to Delphi are bivariate 
pairs (j, t) of the next token class and the time to the next token. Delphi is 
motivated by the theory of competing exponentials. Let Ti be the wait-
ing times from the current event to one of i = 1, …, n competing events, 
where n is the number of predictable tokens. Assuming the Ti are each 
exponentially distributed waiting times with rates λi = exp(logitsi), the 
next event being j is equivalent to Tj being the first of the competing 
waiting times, that is, Tj = min Ti, or equivalently j = argmin Ti. It can be 
shown that the corresponding probability is P(j = argmin Ti) = λj/Σiλi, 
which is the softmax function over the vector of logits. Conveniently, 
this definition corresponds to the classical cross-entropy model for 
classification with λ = exp(logits). Thus, Delphi uses a conventional 
loss term for token classification:

P jloss = −log ( ) = −cross_entropy(logits, tokens)j

Furthermore, in the competing exponential model the time to the 
next event T* = min Tj is also exponentially distributed with rate λ* =  
Σiλi = Σi exp(logitsi). The loss function of exponential waiting times T 
between tokens is simply a log-likelihood of the exponential distribu-
tion for T*:

∗ ∗p T Tloss = −log ( ) = −(logsumexp(logits) − sum(exp(logits)) × ).T

These approximations hold as long as the rates λi are constant in 
time, which is a reasonable assumption over short periods. For this 
reason, padding tokens were introduced to ensure that waiting times 
are modelled over a relatively short period, which does not exceed  
5 years in expectation. In line with the tie-braking logic used for causal 
self-attention, co-occurring events were predicted from the last 
non-co-occurring token each.

Loss function. The total loss of the model is then given by:

loss = loss + lossj T

Non-informative padding, as well as sex, alcohol, smoking and BMI, 
were considered mere input tokens and therefore removed from the 
loss terms above. This was achieved by setting their logits to -Inf and by 
evaluating the loss terms only on disease and ‘no event’ padding tokens.

Sampling procedure. The next disease event is obtained through 
sampling the disease token and the time until the next event. The dis-
ease token is sampled from the distribution that originates from the 

application of the softmax to logits. For the time, samples from all 
exponential distributions with rates λi are taken, and the minimum 
is retained. Logits of non-disease tokens (sex, lifestyle) are discarded 
from the procedure to sample disease events only.

Model training
Models were trained by stochastic gradient optimization using the 
Adam optimizer with standard parameters for 200,000 iterations. The 
batch size was 128. After 1,000 iterations of warmup, the learning rate 
was decayed using a cosine scheduler from 6 × 10−4 to 6 × 10−5. 32-bit 
float precision was used.

Model evaluation
Modelled incidence. In the exponential waiting time definition above, 
the logits of the model correspond to log-rates of the exponential dis-
tribution, λ = exp(logit). For example, probability of an event occurring 
within a year is given by P(T < 365.25) = 1 − exp(−exp(logit) × 365.25).

Age- and sex-stratified incidence. For the training set, age- and 
sex-stratified incidences were calculated in annual age brackets. The 
observed counts were divided by the number of individuals at risk in each 
age and sex bracket, which was given by the number of probands for each 
sex minus the cumulative number of deaths to account for censoring.

Model calibration. Calibration curves were calculated on the basis 
of predicted incidences. To this end, all cases of a given token accru-
ing in five year age bins were identified. Subsequently, for all other 
probands, a control datapoint was randomly selected in the same age 
band. Predictions were evaluated at the preceding token given that the 
time difference was less than a year. The predicted incidences were then 
further grouped log-linearly into risk bins from 10–6 to 1, with multipli-
cative increments of log10(5). The observed annual incidence was then 
calculated as the average of cases and control in age bins, divided by 
5 years. The procedure was separately executed for each sex.

AUC for non-longitudinal data. To account for baseline disease risk 
changes over time, trajectories with disease of interest were stratified 
into 5 year age brackets from 50 to 80 years, on the basis of the occur-
rence of the disease of interest. To each bracket, control trajectories 
of matching age were added. Predicted disease rates were used within 
each bracket to calculate the AUC, which was then averaged across all 
brackets with more than two trajectories with the disease of interest. 
The evaluation was performed separately for different sexes. For some 
of the analyses, a time gap was used, meaning that for the prediction, 
only the tokens that were N or more months earlier than the disease of 
interest were used for the prediction.

Confidence interval estimation for ROC AUC. To estimate the CI 
for AUC for individual age and sex brackets, we use DeLong’s method, 
which provides CI mean and variance under the assumption that AUC 
is normally distributed. As AUC for diseases is calculated as an average 
of AUC for all brackets, as a linear combination of normal distributions 
it also is normally distributed with parameters:

N μ σAUC ~ ( , )2
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Quantification of variance between population subgroups. For each 
disease, we estimated the mean AUC μs and variance σs

2 for each sub-
group using DeLong39 method. Under the null hypothesis that all sub-
groups have the same true AUC (no bias), any observed differences 
would be attributable to statistical variance.

We use a two-level testing approach: (1) individual subgroup testing: 
for each disease–subgroup combination, we calculate standardized 
residuals by subtracting the weighted mean AUC across all subgroups 
from the subgroup-specific AUC and dividing by the s.d.:
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Under the null hypothesis, these standardized residuals should 
follow a standard normal distribution. We identify outliers using a 
two-sided Bonferroni-corrected significance threshold.

(2) Disease-level testing: for each disease, we sum the squared stand-
ardized residuals across all subgroups:
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s

Under the null hypothesis, this sum follows a χ2 distribution with 
degrees of freedom equal to (n − 1), where n is the number of subgroups. 
We identify diseases with excessive between-subgroup variance using 
a one-sided Bonferroni-corrected significance threshold.

Owing to limitations of DeLong’s method with small sample sizes, 
in each disease–subgroup combination, we filtered age and sex brack-
ets with fewer than six cases and diseases with less that two brackets 
remaining after filtering. We also excluded diseases that had fewer 
than two subgroups presented.

Incidence cross-entropy. To compare the distribution of annual inci-
dences of model and observed data, a cross-entropy metric was used. 
Let pi be the annual occurrence of token i in each year. thus, the age-  
and sex-based entropy across tokens is given H(p,q) = −p × log(q) −  
(1 − p) × log(1 − q). For low incidences p and q, the latter term is usually 
small. The cross-entropy is evaluated across all age groups and sexes.

Generated trajectories. To evaluate the potential of generating disease 
trajectories, two experiments were conducted using data from the 
validation cohort. First, trajectories were generated from birth using 
only sex tokens. This was used to assess whether Delphi-2M recapitu-
lates the overall sex-specific incidence patterns. Second, all available 
data until the age of 60 were used to simulate subsequent trajectories 
conditional on the previous health information. A single trajectory 
was evaluated per proband. Trajectories were truncated after the age 
of 80 as currently little training data were available beyond this point. 
Incidence patterns were evaluated as described above.

Training of linear models with polygenic risk scores, biomarkers 
and overall health rating status. We trained a family of linear regres-
sion models on the task of predicting 5-year disease occurrence. All 
models were trained on the data available at the time of recruitment 
to the UK Biobank, using different subsets of the following predictors:
•	 Polygenic risk scores (UKB Category 301)
•	 Biomarkers (as used in the MILTON paper, biomarkers with more 

than 100,000 missing values in UKB excluded, imputed with MICE)
•	 Overall health rating (UKB field 2178)
•	 Delphi logits for the disease of interest

Moreover, all models had sex and age information included.
To evaluate the performance of the models, we used the same age- 

and sex-stratified AUC calculation that we used for Delphi performance 

evaluation. For breast cancer, only female participants were included. 
For E10 insulin-dependent diabetes mellitus, we masked all other dia-
betic diseases (E11–E14) from Delphi inputs when computing logits.

Model longitudinal evaluation
Study design. To validate the predictions of the model, we also perform 
a longitudinal test, internally for the UK Biobank data and externally 
on the Danish health registries. This has two advantages: (1) we can 
enforce an explicit cut-off and separate data to avoid any potential 
time-leakage; and (2) we obtain insights into Delphi-2M prognostic 
capabilities and generalization.

However, as mentioned in the data splits, we use two different cut-off 
dates between the two data sources, mainly due to differential data 
availability, the principal setup applies to both in the exact same way.

We collate data up to a specific cut-off date for each individual and 
use Delphi-2M to predict an individual’s future rate across all disease 
tokens. Building on the exponential waiting time representation, we 
obtain rates over a 1 year time frame. The preceding year after the cut-off 
date is discarded to introduce a data gap. Subsequently the incidence 
in the next year is used for evaluation. Predictions are made for indi-
viduals 50–80 years of age.

Algorithms for comparison. We build a standard epidemiological 
baseline based on the sex- and age-stratified population rates. These are 
based on the Nelson–Aalen estimator40,41, a nonparametric estimator 
of the cumulative hazard rate, across all diseases. For the UK Biobank, 
the estimators are based on the same training data as Delphi-2M. For 
the Danish registries, we use the entire Danish population in the time 
period from 2010 to 2016.

As the UK Biobank contains a wide range of phenotypic measures, we 
also estimate clinically established models and other machine learning 
algorithms for comparison.

We evaluate the models on cardiovascular disease (CVD) (ICD-10: 
I20–25 I63, I64, G45), dementia (ICD-10: F00, F01, F03, G30, G31) and 
death.

For CVD we compare against: QRisk3 (ref. 42), Score2 (ref. 43)
(R:RiskScorescvd:SCORE2)44, Prevent45,46 (R:preventr)47, Framing-
ham11,46,48 (R:CVrisk:10y_cvd_frs)11, Transformer, AutoPrognosis 
v2.0 (ref. 49) and LLama3.1(8B)50 (https://ollama.com/library/llama3).

For dementia we compare against: UKBDRS51, Transformer and 
LLama3.1(8B)50.

For death, we compare against: Charlson (R:comorbidity)52, Elix-
hauser53,54 (R:comorbidity)52, Transformer and LLama3.1(8B).

We collect a total of 60 covariates that are used to varying degrees 
across the algorithms. A summary description of the covariates, as 
well as their corresponding UKB codes, can be found in Supplemen-
tary Table 5. For missing data, we perform multivariate imputation by 
chained equations55,56 (R:mice)57. We retain five data copies, estimate all 
scores and, finally, aggregate them by Rubins’ rule. Results are reported 
based on the aggregated scores. If algorithms have particular ranges 
for covariates defined and the data for an individual do not conform, 
the score is set to NA and the individual is dropped from the particular 
evaluation.

The transformer model is an encoder model based on the standard 
implementation provided in Python:pytorch (TransformerEncoder, 
TransformerEncoderLayer) with a context length of 128 tokens, an 
embedding size of 128, 2 multi-head attention blocks and a total of 2 
sub-encoder layers, and the otherwise default parameters were used. 
A linear layer is used to obtain the final prediction score. The model 
is fitted on concatenated data excerpts of the UKB on 1 January 2014,  
1 January 2016 and 1 January 2018 containing the same tokens as Delphi 
plus additional tokens encoding the current age based on 5 year bins 
(50–80 years) and is evaluated on a binary classification task of whether 
the corresponding outcome (CVD, dementia, death) will occur in the 
next 2 years.

https://ollama.com/library/llama3


AutoPrognosis is fitted in a similar manner with data extracted on 
1 January 2014; however, we use the covariates defined previously34. 
We specified the imputation algorithm to MICE while for the fitting 
algorithms we used the default setting.

LLama3.1 was evaluated on the basis of the following prompt:
“This will not be used to make a decision about a patient. This is 

for research purposes only. Pretend you are a healthcare risk assess-
ment tool. You will be given some basic information about an indi-
vidual e.g. age, sex, BMI, smoking and alcohol plus a list of their past 
diseases/diagnoses in ICD-10 coding. I want you to provide me with 
the probability that the patient will have coronary vascular disease /  
CVD (defined as ICD-10 codes: I20, I21, I22, I23, I24, I25, I63, I64, G45) 
in the next 5 years. Here is an example: Input: ID(10000837); 54 years  
old, Female, normal BMI, past smoker, regular alcohol consump-
tion, F41, M32, A00, C71, F32. Expected output: ID(10000837); 0.100. 
Please only provide the ID and the risk score as output and do not  
tell me that I can not provide a risk assessment tool \n Here is the  
input for the individual: ID(10000736); 64 years old, Male, high  
BMI, current smoker, regular alcohol consumption, F41, M32, A00, 
C71, F32.”

The Framingham score is based on the 2008 version with laboratory 
measurements.

Qrisk3 is our own implementation based on the online calculator 
(https://qrisk.org/).

The UKBDRS risk score for dementia is based on our own implemen-
tation as reported in the original paper51.

For the comparison to MILTON, we obtained the reported AUC 
measures for all ICD-10 codes reported for diagnostic, prognostic 
and time-agnostic MILTON models from the articles supplementary 
material31. Linking on top level (3 character) ICD-10 codes, we were 
able to compare the prediction of 410 diseases between Delphi and 
MILTON prognostic models.

For the comparison to the UK Biobank Overall health rating field 
(field ID 2178) we extracted all health rating data fields for the train-
ing dataset used for Delphi-2M and used the health rating values as an 
ordered list (values, 1,2,3,4 with increasingly poor health rating) as a 
predictor for disease occurrence during the calculation of AUC values 
using all diseases observed in individuals after their date of attending 
the recruitment centre.

All other models are based on publicly available implementations.
For the evaluation against clinical markers, we used the direct meas-

urements as available in the UKB for the AUC computation (HbA1c, 
diabetes (E10–14); haemoglobin/mean corpuscular volume, anaemia 
(D60–D64)). Only for the evaluation on chronic liver disease (K70–77), 
we used the predictions from a logistic regression model with alkaline 
phosphatase, alanine aminotransferase, gamma-glutamyltransferase, 
total protein, albumin, bilirubin and glucose as covariates. Evaluations 
are based on a 5-year time window after an individual’s recruitment 
data.

The Charlson and Elixhauser comorbidity index is based on the same 
data as Delphi; however, the Charlson comorbidity index is originally 
based on ICD-10 level 4 codes. We therefore estimate based on a version 
that maps the level 3 codes to all possible level 4 codes. We estimated 
a version with the level 3 codes as well and this did perform margin-
ally worse.

Overall, we tried to model the data as close as possible to the origi-
nally used covariates; however, in some places, small adjustments were 
made. Particularly, we retain only level 3 ICD-10 codes; thus, definitions 
based on level 4 codes are approximated by their level 3 codes.

Performance measures and calibration. To assess the discrimina-
tory power of the predicted rates for the longitudinal test, we use the 
area under the receiver operating curve (ROC-AUC) and the average 
precision-recall curve (APS) as implemented in Python:scikit-learn. 
Thus, we compare the observed cases in the evaluation period against 

the predicted scores obtained at the respective cut-off date. All diseases 
with at least 25 cases were assessed.

Furthermore, we compare the predicted rates from Delphi-2M to 
the observed incidence to determine the calibration of the predicted 
rates using Python:scikit-learn. Delphi-2M predicted rates are split 
into deciles, and for each bin, we compare Delphi-2M’s average rate 
against the observed rate within the bin. We include all diseases with 
at least 25 cases.

Model interpretation
Token embedding UMAP. The low-dimensional representation of 
token space was constructed by applying the UMAP58 dimensionality 
reduction algorithm to the learned token embeddings for Delphi-2M 
(1,270 × 120 matrix). The cosine metric was used.

SHAP. To evaluate the influence of each token in a trajectory on the next 
predicted token, we adopted the SHAP methodology. Each trajectory 
from the validation cohort was augmented by masking one or several 
tokens and then used for prediction. The change of logits after many 
such augmentations was aggregated by a PartitionExplainer from the 
SHAP Python package.

Masking procedure. The number of augmentations for each trajectory 
was determined using the PartitionExplainer masking algorithm. When 
masked, tokens were replaced by a ‘no event’ placeholder that was also 
used during training. Sex tokens, when masked, were replaced with the 
corresponding token of the opposite sex.

SHAP values evaluation. The described procedure was applied to each 
of 100,639 trajectories in the validation cohort. The predicted token 
was always the last available token in the trajectory.

Cox hazard ratios. To assess the interpretation of the SHAP values, we 
use a penalized time-dependent Cox model, developed for use with 
EHR data15, and compare the corresponding hazard estimates to our 
averaged SHAP values.

Nonparametric hazard ratios. To complement the SHAP analysis 
and the assessment of Delphi-2M’s modelling of time-dependent eff
ects, we also performed an evaluation based on the Nelson–Aalen 
estimator. For a given token, we identify individuals with the token  
and estimate their corresponding cumulative hazard from the  
occurrence of the token onwards. Moreover, we randomly select 
five age–sex-matched individuals for each case and estimate the 
cumulative hazard in this comparison group. We can then obtain an 
estimate of the hazard rate by taking the derivative of the cumula-
tive hazard. We apply a Gaussian kernel to acquire a smooth estimate. 
Subsequently, we can take the ratio of the two hazards and obtain  
a crude nonparametric estimate for the hazard ratio of the token over  
time.

Generative modelling
Training on synthetic data. The model was trained on simulated 
trajectories sampled from Delphi-2M. The dataset size was 400,000 
trajectories, the same as for the original training set. The trajectories 
were samples from birth; sex was assigned randomly. No training  
hyperparameters were changed compared to Delphi-2M.

Statistics and reproducibility
Validation on external datasets. No novel data were generated for this 
study. Reproducibility of the method has been confirmed by retraining 
Delphi-2M using different train-validation splits (n = 4 independent 
experiments; Supplementary Fig. 1) and testing the trained model 
using longitudinal UK Biobank data and external data from the Danish 
National Patient Registry.

https://qrisk.org/
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
UK Biobank data are available under restricted access through a pro-
cedure described online (http://www.ukbiobank.ac.uk/using-the- 
resource/). Danish registry data are available for use in secure, dedi-
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vices/apply. Source data are provided with this paper.

Code availability
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Extended Data Fig. 1 | Effect of the “no event” padding token. a, Boxplots 
(n = 3 model replicates trained with different seeds) of the average loss (y-axis; 
lower is better) for Delphi-2M trained with different “no event” padding rates 
(inverse scale, x-axis). The y-axis shows the average cross-entropy loss, calculated 
over disease tokens only - that is, without padding tokens, sex and lifestyle 
tokens. UK Biobank validation data was used to calculate the reported losses.  
The boxplots feature the median as the center line, the box from the first to the 
third quartile and the whiskers for 1.5x IQR. b, Average cross-entropy loss, 

aggregated over 5-year age bins. A higher rate of “no event” tokens lowers the 
loss, especially for younger ages, during which generally few disease tokens are 
recorded, prohibiting the model from adjusting predictions for advancing age. 
c, “No event” token rate estimated by Delphi (y-axis) vs the true rate at which 
tokens were added to the training data. The boxplots feature the median as  
the center line, the box from the first to the third quartile and the whiskers for 
1.5x IQR. n = 4000 random timepoints from the validation dataset trajectories, 
selected for “no event” token rate evaluation.
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Extended Data Fig. 2 | Parameter screen. a, Validation cross-entropy (rightmost 
axis) for models trained with different architectural hyperparameter values 
(other axes). b, Same data as a, showing validation loss (y-axis) against each model 
parameter (x-axis). The boxplots (n = 486 independently trained models within 

each panel in total) feature the median as the center line, the box from the first 
to the third quartile and the whiskers for 1.5x IQR, clipped at min/max data 
points. c, Random-forest-based importance of different hyperparameters and 
their correlation with validation loss.



Extended Data Fig. 3 | Calibration of Delphi-2M’s instantaneous predictions. 
a. Shown are results for 9 selected diseases and death on validation data for  
age groups of 5 years and both sexes. Predictions in each age-sex stratum are 
grouped into bins of powers of 10 (x-axis, average within each bin, and observed 

rates are calculated from validation data for predictions falling into each bin 
(y-axis). b, Calibration plots on the Danish longitudinal testing data. Each line 
represents an ICD-10 disease evaluated for each decile of the Delphi rate and 
compared against the observed rate in the population.



Article

Extended Data Fig. 4 | Assessment of Delphi-2M in relation to other baseline 
models and stratifications. a, Comparison of Delphi-2M against clinical 
biomarkers for selected diseases performed using the UKB validation dataset. 
Predictions are based on the information available at recruitment and evaluated 
over the subsequent 5 years. CLD: Chronic liver disease. Mod: Logistic regression 
model of several clinical markers. MCV: Mean corpuscular volume. b, AUC 
results comparing Delphi-2M to a simple disease predictor of Overall health 
rating UKB data field 2178. AUC values for field 2178 as a predictor for future 

health events (after the date of recruitment) (x-axis) against the AUC values 
from Delphi using the UKB validation data. c. Boxplot, showing the prediction 
AUCs for Delphi, split over sex, disease chapter and lifestyle factors, such as 
alcohol consumption, smoking and BMI. The boxplots feature the median as 
the center line, the box from the first to the third quartile and the whiskers for 
1.5x IQR, clipped at min/max data points. Shown are data for n = 906 diagnoses 
for males and n = 957 diagnoses for females for which sufficiently many events 
were recorded in the validation data to evaluate AUCs.



Extended Data Fig. 5 | Integrating Delphi-2M predictions with other  
data types. Results of a linear regression model that uses Delphi logits and 
additional features to predict 5-year disease occurrence for selected diseases. 
Shown is the average validation AUC across 5-year age groups ranging from 40 

to 80 years of age, additionally stratified by sex. All models use sex and age as 
additional covariates. For prediction, only data before recruitment was used. 
As additional features, models use polygenic risk scores (PRS, a), 57 biomarkers 
used in the MILTON study (b) and UKB field 2178 Overall health rating status (c).
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Assessment of simulated health trajectories.  
All simulations are from the age of 60 onwards and use validation data.  
a, Simulated (x-axis) and observed (y-axis) annual disease rates during ages  
70–75 for high and low smoking, alcohol consumption and BMI groups.  
b, Simulated and observed incidences for selected prior diseases. Same data as 
in a, but grouped for different prior diseases. c, Fold changes for the groups 
with and without prior diseases shown in b. d, Delphi accurately stratifies 

trajectories into low-, mid- and high-risk groups for selected diagnoses and 
death. Cumulative incidence (y-axis) as a function of age (x-axis). Risk groups 
are based on the top 1% and bottom 5% risk at the age of 60 years when 
simulations started. The low-risk group percentile was chosen to be larger  
to include sufficient cases for evaluation. Orange curves denote Delphi-2M 
simulations, blue observed data.



Article

Extended Data Fig. 7 | Comparison of SHAP values and Cox proportional 
hazards coefficients. Shown are analyses for 10 selected diseases, as stated in 
the titles. SHAP values (x-axis) are estimated by averaging individual values 
from different trajectories. Cox proportional hazard coefficients (y-axis) are 

estimated using a proportional hazards model with parameter regularization, 
resulting in a high number of zero coefficients. The non-zero Cox coefficients 
and SHAP show a high correlation.



Extended Data Fig. 8 | Relation of token embedding space and SHAP 
effects. a. Disease embedding UMAP, coloured by the disease ICD-10 chapter. 
b. UMAP scatter plot, coloured by the SHAP disease rate change for the disease 
of interest, denoted by a cross marker. According to the SHAP analysis, diseases 

with similar embeddings tend to have a greater effect on the predicted rate  
of each other. Top row, the effect of the selected disease on the rate of other 
subsequent diseases. Bottom row, the effect of other diseases on the selected 
disease. c. Same as b, more diseases.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Token source-related biases. Non-random missingness 
may cause biases in predictions even when sources are not explicitly provided 
to the model. a. Disease embedding UMAP for a Delphi model with explicit 
token sources (e.g. “Common cold (self-reported)” and “Common cold (hospital 
records)” are separate tokens), tokens coloured by ICD-10 chapters. b. Same as 

a, coloured by token source. c. Same as a, but for the standard Delphi-2M model. 
Only tokens with more than 75% of all entries from one source are shown.  
d. Same as c, coloured by primary token source. e. SHAP value matrix (similar to 
Fig. 4c), with tokens grouped by chapter and primary source.
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Extended Data Fig. 10 | Effects of ethnicity and deprivation. a, Modelled rate 
per year separated by sex and ethnic background. b, Modelled rate per year 
separated by sex and Townsend deprivation index bins (increasing for greater 
deprivation index values). The boxplots in a and b use the entire validation 
cohort (n = 100639 individual trajectories) and feature median as the center 
line, the box from the first to the third quartile, the whiskers for 1.5x IQR and the 
outliers. c-d, Average number of disease tokens per year, shown for different 
ethnicities (c) and deprivation indices (d). e-f, Age and sex stratified AUCs for 
10 selected diseases. AUCs are averaged across 5-year age groups ranging from 
40 to 80 years of age. The same average is used as the center for error bars. 
AUCs for individual age and sex brackets are shown as grey dots. 95% confidence 
intervals are calculated using DeLong’s method. g-h, Width of DeLong’s 95% 

confidence intervals for AUC vs number of cases, shown for different ethnicities 
and deprivation strata. For rare diseases, AUC estimates have high variance.  
i, Standard deviation between AUC estimates for different strata vs number of 
cases of this disease for the training dataset. Each dot represents a disease.  
j, Average validation AUC across 5-year age groups ranging from 40 to 80 years 
of age, aggregated by the corresponding ICD chapters. Difference between 
average AUCs calculated for participants with birth years before 1944 and after 
1960. The boxplots feature the median as the center line, the box from the first 
to the third quartile and the whiskers for 1.5x IQR, clipped at min/max data 
points. Shown are data for n = 906 diagnoses for males and n = 957 diagnoses 
for females for which sufficiently many events were recorded in the validation 
data to evaluate AUCs.
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