Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decoding the redox behaviour of copper in Ullmann-type coupling reactions

Abstract

The copper-catalysed functionalization of aryl halides is one of the most preferred methods for forming carbon–carbon and carbon–heteroatom bonds1. Yet the redox behaviour of the copper species in the catalytic cycle remains poorly understood and a subject of debate2. We report experimental and theoretical mechanistic investigations into the reaction of a well-defined Cu(I) complex with an electron-poor aryl iodide, which leads to the formation of an isolable Cu(III)−aryl complex that subsequently reductively eliminates to form a C(sp2)−CF3 bond. Our integrated experimental and theoretical findings indicate that the process proceeds through a Cu(I)/Cu(III)/Cu(II)/Cu(III)/Cu(I) redox sequence. By controlling the temperature, we managed to interrupt this sequence and capture the reactivity of the copper species through various spectroscopic methods, enabling in-depth mechanistic analysis. These findings shed light on the intricate behaviour of copper species and challenge the traditional mechanistic proposal for the reaction of Cu(I) with aryl iodide, thus providing fresh perspectives into the mechanistic aspect of the copper-catalysed coupling reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanistic investigations into Ullmann-type reaction.
Fig. 2: Oxidative addition of p-CF3C6F4I (2-I) to [(bpy)CuI(CF3)] (1a) to form Cu(III)−aryl products via Cu(II) intermediates.
Fig. 3: Mechanistic studies on the reaction of [(bpy)CuI(CF3)] (1a) with p-CF3C6F4I (2-I) at −20 °C.
Fig. 4: Mechanistic studies on disproportionation between [(bpy)CuII(CF3)(I)] (Int-a-CuII) and [(bpy)CuII(CF3)(Ar)] (Int-b-CuII) at −10 °C.
Fig. 5: Density functional theory calculations on the reaction of [(bpy)CuI(CF3)] (1a) with p-CF3C6F4I (2-I).

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the main text and the Supplementary Information.

References

  1. Anilkumar, G. & Saranya, S. Copper Catalysis in Organic Synthesis (Wiley, 2020).

  2. Sambiagio, C., Marsden, S. P., Blacker, A. J. & McGowan, P. C. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem. Soc. Rev. 43, 3525–3550 (2014).

    CAS  PubMed  Google Scholar 

  3. Ullmann, F. & Bielecki, J. Ueber synthesen in der biphenylreihe. Chem. Ber. 34, 2174–2185 (1901).

    CAS  Google Scholar 

  4. Beletskaya, I. & Cheprakov, A. V. Copper in cross-coupling reactions: the post-Ullmann chemistry. Coord. Chem. Rev. 248, 2337–2364 (2004).

    CAS  Google Scholar 

  5. Evano, G., Blanchard, N. & Toumi, M. Copper-mediated coupling reaction and their application in natural products and designed biomolecules synthesis. Chem. Rev. 108, 3054–3131 (2008).

    CAS  PubMed  Google Scholar 

  6. Monnier, F. & Taillefer, M. Catalytic C−C, C−N, and C−O Ullmann-type coupling reactions. Angew. Chem. Int. Ed. 48, 6954–6971 (2009).

    CAS  Google Scholar 

  7. Bhunia, S., Pawar, G. G., Kumar, S. V., Jiang, Y. & Ma, D. Selected copper-based reactions for C−N, C−O, C−S, and C−C bond formation. Angew. Chem. Int. Ed. 56, 16136–16179 (2017).

    CAS  Google Scholar 

  8. Garcia-Melchor, M., Braga, A. A. C., Lledos, A., Ujaque, G. & Maseras, F. Computational perspective on Pd-catalyzed C–C cross-coupling reaction mechanisms. Acc. Chem. Res. 46, 2626–2634 (2013).

    CAS  PubMed  Google Scholar 

  9. Strieter, E. R., Bhayana, B. & Buchwald, S. L. Mechanistic studies on the copper-catalyzed N-arylation of amide. J. Am. Chem. Soc. 131, 78–88 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tye, J. W., Weng, Z., Johns, A. M., Incarvito, C. D. & Hartwig, J. F. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides. J. Am. Chem. Soc. 130, 9971–9983 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tye, J. W., Weng, Z., Giri, R. & Hartwig, J. F. Copper(I) phenoxide complexes in the etherification of aryl halides. Angew. Chem. Int. Ed. 49, 2185–2189 (2010).

    CAS  Google Scholar 

  12. Giri, R. & Hartwig, J. F. Cu(I) amido complexes in the Ullmann reaction. Reactions of Cu(I)-amido complexes with iodoarenes with and without autocatalysis by CuI. J. Am. Chem. Soc. 132, 15860–15863 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, C., Weng, Z. & Hartwig, J. F. Synthesis of copper(I) thiolate complexes in the thioetherification of aryl halides. Organometallics 31, 8031–8036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Marcos-Ayuso, G., Lledós, A. & Casares, J. A. Copper(I) activation of C−X bonds: bimolecular vs. unimolecular reaction mechanism. Chem. Commun. 58, 2718–2721 (2022).

    CAS  Google Scholar 

  15. Casitas, A. et al. Direct observation of CuI/CuIII redox steps relevant to Ullmann-type coupling reactions. Chem. Sci. 1, 326–330 (2010).

    CAS  Google Scholar 

  16. Wang, Z.-L., Zhao, L. & Wang, M.-X. Construction of Caryl−Calkynyl bond from copper-mediated arene−alkyne and aryl iodide−alkyne cross-coupling reactions: a common aryl-CuIII intermediate in arene C−H activation and Castro−Stephens reaction. Org. Lett. 14, 1472–1475 (2012).

    CAS  PubMed  Google Scholar 

  17. Long, C., Zhao, L., You, J.-S. & Wang, M.-X. Copper(I)-catalyzed halogenation and acyloxylation of aryl triflates through a copper(I)/copper(III) catalytic cycle. Organometallics 33, 1061–1067 (2014).

    CAS  Google Scholar 

  18. Jones, G. O., Liu, P., Houk, K. N. & Buchwald, S. L. Computational explorations of mechanisms and ligand-directed selectivities of copper-catalyzed Ullmann-type reactions. J. Am. Chem. Soc. 132, 6205–6213 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Q. et al. Radical reactivity, catalysis, and reaction mechanism of arylcopper(II) compounds: the missing link in organocopper chemistry. J. Am. Chem. Soc. 141, 18341–18348 (2019).

    ADS  CAS  PubMed  Google Scholar 

  20. Delaney, C. P. et al. Cross-coupling by a noncanonical mechanism involving the addition of aryl halide to Cu(II). Science 381, 1079–1085 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tomashenko, O. & Grushin, V. V. Aromatic trifluoromethylation with metal complexes. Chem. Rev. 111, 4475–4521 (2011).

    CAS  PubMed  Google Scholar 

  22. Liu, T. & Shen, Q. Progresses in copper-mediated formation of trifluoromethylated arene. Eur. J. Org. Chem. 2012, 6679–6687 (2012).

    CAS  Google Scholar 

  23. Kalkman, E. D., Mormino, M. G. & Hartwig, J. F. Unusual electronic effects of ancillary ligands on the perfluoroalkylation of aryl iodides and bromides mediated by copper(I) pentafluoroethyl complexes of substituted bipyridines. J. Am. Chem. Soc. 141, 19458–19465 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konovalov, A. I., Lishchynskyi, A. & Grushin, V. V. Mechanism of trifluoromethylation of aryl halides with CuCF3 and the ortho effect. J. Am. Chem. Soc. 136, 13410–13425 (2014).

    ADS  CAS  PubMed  Google Scholar 

  25. Brothers, P. J. & Roper, W. R. Transition-metal dihalocarbene complexes. Chem. Rev. 88, 1293–1326 (1988).

    CAS  Google Scholar 

  26. Liu, H. & Shen, Q. Well-defined organometallic Copper(III) complexes: Preparation, characterization and reactivity. Coord. Chem. Rev. 439, 213923 (2021).

    Google Scholar 

  27. Liu, H. & Shen, Q. Bistrifluoromethylated organocuprate [Ph4P]+[Cu(CF3)2]: synthesis, characterization and its application for trifluoromethylation of activated heteroaryl bromides, chlorides and iodides. Org. Chem. Front. 10, 2324–2328 (2019).

    Google Scholar 

  28. Liu, H., Wu, J., Jin, Y., Leng, X. & Shen, Q. Mechanistic insight into copper-mediated trifluoromethylation of aryl halides: the role of CuI. J. Am. Chem. Soc. 143, 14367–14378 (2021).

    ADS  CAS  PubMed  Google Scholar 

  29. Tomashenko, O. A., Escudero-Adán, E. C., Belmonte, M. M. & Grushin, V. V. Simple, stable, and easily accessible well-defined CuCF3 aromatic trifluoromethylating agents. Angew. Chem. Int. Ed. 50, 7655–7659 (2011).

    CAS  Google Scholar 

  30. Dubinina, G. G., Furutachi, H. & Vicic, D. A. Active trifluoromethylation agents from well-defined copper(I)-CF3 complexes. J. Am. Chem. Soc. 130, 8600–8601 (2008).

    ADS  CAS  PubMed  Google Scholar 

  31. Morimoto, H., Tsubogo, T., Litvinas, N. D. & Hartwig, J. F. A broadly applicable copper reagent for trifluoromethylations and perfluoroalklylations of aryl Iodides and bromides. Angew. Chem. Int. Ed. 50, 3793–3798 (2011).

    CAS  Google Scholar 

  32. Morstein, J., Hou, H.-Y., Cheng, C. & Hartwig, J. F. Trifluoromethylation of arylsilanes with [(phen)CuCF3]. Angew. Chem. Int. Ed. 55, 8054–8057 (2016).

    CAS  Google Scholar 

  33. Lu, Z. et al. A key intermediate in copper-mediated arene trifluoromethylation [nBu4N]+[Cu(Ar)(CF3)3]: synthesis, characterization and C(sp2)−CF3 reductive elimination. Angew. Chem. Int. Ed. 58, 8510–8514 (2019).

    CAS  Google Scholar 

  34. Wang, G., Li, M., Leng, X., Xue, X. & Shen, Q. Neutral five-coordinate arylated copper(III) complex: key intermediate in copper-mediated arene trifluoromethylation. Chin. J. Chem. 40, 1924–1930 (2022).

    CAS  Google Scholar 

  35. Luo, Y. et al. Oxidative addition of an alkyl halide to form a stable Cu(III) product. Science 381, 1072–1079 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clot, E. et al. Bond energy M–C/H–C correlations: dual theoretical and experimental approach to the sensitivity of M–C bond strength to substituents. Chem. Commun. 4, 490–491 (2003).

    Google Scholar 

  37. Evans, M. E. et al. Energetics of C−H bond activation of fluorinated aromatic hydrocarbons using a [Tp′Rh(CNneopentyl)] complex. J. Am. Chem. Soc. 131, 13464–13473 (2009).

    ADS  CAS  PubMed  Google Scholar 

  38. Hathaway, B. J. & Billing, D. E. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord. Chem. Rev. 5, 143–207 (1970).

    CAS  Google Scholar 

  39. Comba, P., Hambley, T. W., Hitchman, M. A. & Stratemeier, H. Interpretation of electronic and EPR spectra of copper(II) amine complexes: a test of the MM-AOM method. Inorg. Chem. 34, 3903–3911 (1995).

    CAS  Google Scholar 

  40. Breitenfeld, J., Ruiz, J., Wodrich, M. D. & Hu, X. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl−alkyl Kumada coupling reactions. J. Am. Chem. Soc. 135, 12004–12012 (2013).

    ADS  CAS  PubMed  Google Scholar 

  41. Ting, S. I., Williams, W. L. & Doyle, A. G. Oxidative addition of aryl halides to a Ni(I)-bipyridine complex. J. Am. Chem. Soc. 144, 5575–5582 (2022).

    ADS  CAS  PubMed  Google Scholar 

  42. Stille, J. K. & Lau, K. S. Y. Mechanisms of oxidative addition of organic halides to group 8 transition-metal complexes. Acc. Chem. Res. 10, 434–442 (1977).

    CAS  Google Scholar 

  43. Maes, B. U. W. et al. Oxidative addition of haloheteroarenes to palladium(0): concerted versus SNAr-type mechanism. Chem. Eur. J. 21, 7858–7865 (2015).

    CAS  PubMed  Google Scholar 

  44. Powers, I. G. & Uyeda, C. Metal−metal bonds in catalysis. ACS Catal. 7, 936–958 (2017).

    CAS  Google Scholar 

  45. Karunananda, M. K., Parmelee, S. R., Waldhart, G. W. & Mankad, N. P. Experimental and computational characterization of the transition state for C−X bimetallic oxidative addition at a Cu−Fe reaction center. Organometallics 34, 3857–3864 (2015).

    CAS  Google Scholar 

  46. Till, N. A., Oh, S., MacMillan, D. W. C. & Bird, M. J. The application of pulse radiolysis to the study of Ni(I) intermediates in Ni-catalyzed cross-coupling reactions. J. Am. Chem. Soc. 143, 9332–9337 (2021).

    ADS  CAS  PubMed  Google Scholar 

  47. Lozano-Lavilla, O., Gómez-Orellana, P., Lledós, A. & Casares, J. A. Transmetalation reactions triggered by electron transfer between organocopper complexes. Inorg. Chem. 60, 11633–11639 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Ye at Sun Yat-sen University for UV-visible absorption spectroscopy and electron paramagnetic resonance experiments. We gratefully acknowledge the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0590000) and the National Natural Science Foundation of China (grant no. 22531010). We acknowledge the Beijing Super Cloud Center (BSCC) (http://www.blsc.cn/) for providing the high-performance computing resources that contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Contributions

Q.S. and Y. Luo conceived the concept. Y. Luo performed the experiments and analysed experimental data. Y. Li, B.W. and S.Z. performed the DFT calculations. B.W. performed the EPR experiments and calculations and UV–vis spectroscopic investigations. G.W. contributed to the preliminary explorations. J.W. assisted in the kinetic studies. Q.S. and K.N.H. supervised the research. Y. Luo, B.W., K.N.H. and Q.S. wrote the manuscript. All authors discussed the results.

Corresponding authors

Correspondence to K. N. Houk or Qilong Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 19F NMR monitoring experiments for other Cu-mediated C − C coupling reactions.

a, The time-course plot for the reaction between [(bpy)CuI(CF3)] (1a) and pentafluoroiodobenzene. b, The time-course plot for the reaction between [(bpy)CuI(CF3)] (1a) and 3,5-difluoro-4-iodobenzonitrile. c, The time-course plot for the reaction between [(bpy)CuI(CF3)] (1a) and 3-fluoro-2-iodobenzonitrile. d, The time-course plot for the reaction between [(bpy)CuI(CF3)] (1a) and methyl 4-iodobenzoate. e, The time-course plot for the reaction between [(bpy)CuI(CF3)] (1a) and iodobenzene. f, The time-course plot for the reaction between [(bpy)CuI(CF3)] (1a) and 1-bromo-2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzene (2-Br). g, The time-course plot for the reaction between [(bpy)CuI(C6F4-p-CF3)] (1c) and aryl iodide 2-I. Purple line, sum of observed fluorine signals, calculated as [CF3]total = [(bpy)Cu(CF3)] + 2 × [(bpy)Cu(CF3)2(Ar)] + [ArCF3] + 3 × [(bpy)Cu(CF3)3] + 4 × [Cu(CF3)4] (for trifluoromethylation), or [CF3]total = [(bpy)Cu(ArF)] + [ArF − ArF] (for biaryl synthesis). N.D. = not detected.

Extended Data Fig. 2 Kinetic studies of the reaction of complex 1a at millimolar concentrations.

a, Kinetics of the reaction between [(bpy)Cu(CF3)] (1a, 1.0 mM) and aryl iodide (100 mM) at −20 °C, monitored by in situ UV-visible absorption spectroscopy. The decay curve was fit to the expression ct = Aek1obst + B. b, Eyring analysis of the reaction of 1a (1.0 mM) with 2-I (100 mM) at several temperatures varying from 248 K to 257 K. c, EPR spectrum of the reaction between 1a (1.0 mM) and 2-I (100 mM) in CH3CN after UV-vis absorption spectral measurement (black line); EPR spectrum of the aliquot (10-fold diluted with dichloromethane) of the reaction between 1a (20 mM) and 2-I (200 mM) in CH3CN (black line) (blue line). All X-band EPR spectra were recorded at 100.1 K.

Supplementary information

Supplementary Information

Supplementary Sections 1–11, including Supplementary Figs. 1–63, Tables 1–23, references and NMR Spectra data – see Contents for details.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, Y., Wu, B. et al. Decoding the redox behaviour of copper in Ullmann-type coupling reactions. Nature 646, 1105–1113 (2025). https://doi.org/10.1038/s41586-025-09627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09627-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing