Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzyme specificity prediction using cross attention graph neural networks

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Abstract

Enzymes are the molecular machines of life, and a key property that governs their function is substrate specificity—the ability of an enzyme to recognize and selectively act on particular substrates. This specificity originates from the three-dimensional (3D) structure of the enzyme active site and complicated transition state of the reaction1,2. Many enzymes can promiscuously catalyze reactions or act on substrates beyond those for which they were originally evolved1,3-5. However, millions of known enzymes still lack reliable substrate specificity information, impeding their practical applications and comprehensive understanding of the biocatalytic diversity in nature. Herein, we developed a cross-attention-empowered SE(3)-equivariant graph neural network architecture named EZSpecificity for predicting enzyme substrate specificity, which was trained on a comprehensive tailor-made database of enzyme-substrate interactions at sequence and structural levels. EZSpecificity outperformed the existing machine learning models for enzyme substrate specificity prediction, as demonstrated by both an unknown substrate and enzyme database and seven proof-of-concept protein families. Experimental validation with eight halogenases and 78 substrates revealed that EZSpecificity achieved a 91.7% accuracy in identifying the single potential reactive substrate, significantly higher than that of the state-of-the-art model ESP (58.3%). EZSpecificity represents a general machine learning model for accurate prediction of substrate specificity for enzymes related to fundamental and applied research in biology and medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diwakar Shukla or Huimin Zhao.

Supplementary information

Supplementary Information

Supplementary Text sections 1–7, Supplementary Figs 1–52, Supplementary Tables 1–13 and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Su, Y., Dean, T.J. et al. Enzyme specificity prediction using cross attention graph neural networks. Nature (2025). https://doi.org/10.1038/s41586-025-09697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-025-09697-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing