Extended Data Fig. 4: Sequencing setup and channel characteristics of CsgG and CsgG:FCP nanopores. | Nature Biotechnology

Extended Data Fig. 4: Sequencing setup and channel characteristics of CsgG and CsgG:FCP nanopores.

From: A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity

Extended Data Fig. 4

a, Schematic representation of the electrophysiology setup of CsgG-based nanopores as used for polynucleotide sequencing. CsgG-based channels (G) are reconstituted into artificial membranes with the periplasmic vestibule and β-barrel exposed to the cis and trans sides, respectively. Polynucleotide – enzyme (E) complexes are added to the cis side and current reads are recorded under an electric potential (Δψ) of 100 to 300 mV. b, c, Representative single channel traces (b) and current - voltage (IV) curves (c) for wildtype CsgG, CsgGF56Q and CsgGR9 and their FCP complexes: CsgG:FCP, CsgGF56Q:FCP and CsgGR9:FCP. I-V curves show mean ± 95% confidence interval of at least 60 single channels per pore, with the exception of wildtype CsgG (36 single channels) and CsgG:FCP (14 single channels).

Back to article page