Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Induced proximity at the cell surface

Abstract

Molecular proximity is a governing principle of biology that is essential to normal and disease-related biochemical pathways. At the cell surface, protein–protein proximity regulates receptor activation, inhibition and protein recycling and degradation. Induced proximity is a molecular engineering principle in which bifunctional molecules are designed to bring two protein targets into close contact, inducing a desired biological outcome. Researchers use this engineering principle for therapeutic purposes and to interrogate fundamental biological mechanisms. This Review focuses on the use of induced proximity at the cell surface for diverse applications, such as targeted protein degradation, receptor inhibition and activating intracellular signaling cascades. We see a rich future for proximity-based modulation of cell surface protein activity both in basic and translational science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bifunctional inducers of proximity can elicit diverse biological effects at the cell surface through multiple mechanisms of action.
Fig. 2: Strategies for TPD via lysosome-trafficking receptors and cell surface E3 ligases.
Fig. 3: Strategies for receptor inhibition through induced phosphatase recruitment.
Fig. 4: Strategies for receptor activation through induced proximity.
Fig. 5: Induced proximity modalities acting between two cells.

Similar content being viewed by others

References

  1. Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Schreiber, S. L. Molecular glues and bifunctional compounds: therapeutic modalities based on induced proximity. Cell Chem. Biol. 31, 1050–1063 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Yamazoe, S. et al. Heterobifunctional molecules induce dephosphorylation of kinases—a proof of concept study. J. Med. Chem. 63, 2807–2813 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, P.-H. et al. Modulation of phosphoprotein activity by phosphorylation targeting chimeras (PhosTACs). ACS Chem. Biol. 16, 2808–2815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, X. & Ciulli, A. Proximity-based modalities for biology and medicine. ACS Cent. Sci. 9, 1269–1284 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibson, W. J. et al. Bifunctional small molecules that induce nuclear localization and targeted transcriptional regulation. J. Am. Chem. Soc. 145, 26028–26037 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ng, C. S. C., Liu, A., Cui, B. & Banik, S. M. Targeted protein relocalization via protein transport coupling. Nature 633, 941–951 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marei, H. et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature 610, 182–189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).

    Article  PubMed  Google Scholar 

  13. Mullard, A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. 18, 237–239 (2019).

    Article  Google Scholar 

  14. Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20, 247–250 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pance, K. et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. Nat. Biotechnol. 41, 273–281 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, Y., Teng, P., Montgomery, N. T., Li, X. & Tang, W. Development of triantennary N-acetylgalactosamine conjugates as degraders for extracellular proteins. ACS Cent. Sci. 7, 499–506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gramespacher, J. A., Cotton, A. D., Burroughs, P. W. W., Seiple, I. B. & Wells, J. A. Roadmap for optimizing and broadening antibody-based PROTACs for degradation of cell surface proteins. ACS Chem. Biol. 17, 1259–1268 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Siepe, D. H., Picton, L. K. & Garcia, K. C. Receptor elimination by E3 ubiquitin ligase recruitment (REULR): a targeted protein degradation toolbox. ACS Synth. Biol. 12, 1081–1093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lau de, W., Peng, W. C., Gros, P. & Clevers, H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 28, 305–316 (2014).

    Article  Google Scholar 

  23. Sampathkumar, P. et al. Targeted protein degradation systems to enhance Wnt signaling. eLife 13, RP93908 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zheng, J. et al. Bifunctional compounds as molecular degraders for integrin-facilitated targeted protein degradation. J. Am. Chem. Soc. 144, 21831–21836 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Morimoto, M., Till, N. A. & Bertozzi, C. R. Tumor immune cell targeting chimeras (TICTACs) for targeted depletion of macrophage-associated checkpoint receptors. Preprint at bioRxiv https://doi.org/10.1101/2023.12.06.570444 (2023).

  26. Dovedi, S. J. et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov. 11, 1100–1117 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Moores, S. L. et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 76, 3942–3953 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Ludwig, S. D. et al. Multiparatopic antibodies induce targeted downregulation of programmed death-ligand 1. Cell Chem. Biol. 31, 904–919 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, S., Cui, J., Chen, H., Yu, B. & Long, S. Recent progress in degradation of membrane proteins by PROTACs and alternative targeted protein degradation techniques. Eur. J. Med. Chem. 262, 115911 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, X., Zhou, Y., Zhao, Y. & Tang, W. Targeted degradation of extracellular secreted and membrane proteins. Trends Pharmacol. Sci. 44, 762–775 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahn, G., Banik, S. M. & Bertozzi, C. R. Degradation from the outside in: targeting extracellular and membrane proteins for degradation through the endolysosomal pathway. Cell Chem. Biol. 28, 1072–1080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, D. et al. Transferrin receptor targeting chimeras for membrane protein degradation. Nature 638, 787–795 (2025).

  33. Sibley, D. R., Benovic, J. L., Caron, M. G. & Lefkowitz, R. J. Phosphorylation of cell surface receptors: a mechanism for regulating signal transduction pathways. Endocr. Rev. 9, 38–56 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Billadeau, D. D. & Leibson, P. J. ITAMs versus ITIMs: striking a balance during cell regulation. J. Clin. Invest. 109, 161–168 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monroe, J. G. ITAM-mediated tonic signalling through Pre-BCR and BCR complexes. Nat. Rev. Immunol. 6, 283–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ben Mkaddem, S., Benhamou, M. & Monteiro, R. C. Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front. Immunol. 10, 811 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suber, J. & Iweala, O. I. Strategies for mast cell inhibition in food allergy. Yale J. Biol. Med. 93, 719–731 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gomez, G. Current strategies to inhibit high affinity FcεRI-mediated signaling for the treatment of allergic disease. Front. Immunol. 10, 175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, D., Kepley, C. L., Zhang, M., Zhang, K. & Saxon, A. A novel human immunoglobulin Fcγ–Fcɛ bifunctional fusion protein inhibits FcɛRI-mediated degranulation. Nat. Med. 8, 518–521 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Daëron, M. et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc γ RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 3, 635–646 (1995).

    Article  PubMed  Google Scholar 

  42. Turner, H. & Kinet, J.-P. Signalling through the high-affinity IgE receptor FcεRI. Nature 402, 24–30 (1999).

    Article  Google Scholar 

  43. Tam, S. W., Demissie, S., Thomas, D. & Daëron, M. A bispecific antibody against human IgE and human FcγRII that inhibits antigen-induced histamine release by human mast cells and basophils. Allergy 59, 772–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, D. et al. A chimeric human–cat fusion protein blocks cat-induced allergy. Nat. Med. 11, 446–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Eggel, A. et al. Inhibition of ongoing allergic reactions using a novel anti-IgE DARPin–Fc fusion protein. Allergy 66, 961–968 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Zellweger, F. et al. A novel bispecific DARPin targeting FcγRIIB and FcεRI-bound IgE inhibits allergic responses. Allergy 72, 1174–1183 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Veri, M.-C. et al. Therapeutic control of B cell activation via recruitment of Fcγ receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum. 62, 1933–1943 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Karnell, J. L. et al. CD19 and CD32b differentially regulate human B cell responsiveness. J. Immunol. 192, 1480–1490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chu, S. Y. et al. Suppression of rheumatoid arthritis B cells by XmAb5871, an anti-CD19 antibody that coengages B cell antigen receptor complex and Fcγ receptor IIb inhibitory receptor. Arthritis Rheumatol. 66, 1153–1164 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Perugino, C. A. et al. Evaluation of the safety, efficacy, and mechanism of action of obexelimab for the treatment of patients with IgG4-related disease: an open-label, single-arm, single centre, phase 2 pilot trial. Lancet Rheumatol. 5, e442–e450 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Paul, S. P., Taylor, L. S., Stansbury, E. K. & McVicar, D. W. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 96, 483–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. McCord, K. A. et al. Dissecting the ability of Siglecs to antagonize Fcγ receptors. ACS Cent. Sci. 10, 315–330 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ikehara, Y., Ikehara, S. K. & Paulson, J. C. Negative regulation of T cell receptor signaling by Siglec-7 (P70/AIRM) and Siglec-9. J. Biol. Chem. 279, 43117–43125 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Enterina, J. R., Jung, J. & Macauley, M. S. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed. J. 42, 218–232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Movsisyan, L. D. & Macauley, M. S. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org. Biomol. Chem. 18, 5784–5797 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Macauley, M. S. et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Invest. 123, 3074–3083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duong, B. H. et al. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J. Exp. Med. 207, 173–187 (2009).

    Article  PubMed  Google Scholar 

  59. Orgel, K. A. et al. Exploiting CD22 on antigen-specific B cells to prevent allergy to the major peanut allergen Ara h 2. J. Allergy Clin. Immunol. 139, 366–369 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Niiro, H. & Clark, E. A. Regulation of B-cell fate by antigen-receptor signals. Nat. Rev. Immunol. 2, 945–956 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Islam, M. et al. Suppressing immune responses using Siglec ligand-decorated anti-receptor antibodies. J. Am. Chem. Soc. 144, 9302–9311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Duan, S. et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J. Clin. Invest. 129, 1387–1401 (2021).

    Article  Google Scholar 

  63. Duan, S. et al. Nanoparticles displaying allergen and Siglec-8 ligands suppress IgE–FcεRI-mediated anaphylaxis and desensitize mast cells to subsequent antigen challenge. J. Immunol. 206, 2290–2300 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Fernandes, R. A. et al. Immune receptor inhibition through enforced phosphatase recruitment. Nature 586, 779–784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Patsoukis, N., Wang, Q., Strauss, L. & Boussiotis, V. A. Revisiting the PD-1 pathway. Sci. Adv. 6, eabd2712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ren, J. et al. Induced CD45 proximity potentiates natural killer cell receptor antagonism. ACS Synth. Biol. 11, 3426–3439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Finney, H. M., Rapecki, S. E., Wright, M. J. & Tyson, K. L. Molecules with specificity for CD45 and CD79. US patent US10774152B2 (2020).

  68. Wu, S. et al. Aptamer-based enforced phosphatase-recruiting chimeras inhibit receptor tyrosine kinase signal transduction. J. Am. Chem. Soc. 146, 22445–22454 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Schmid, E. M. et al. Size-dependent protein segregation at membrane interfaces. Nat. Phys. 12, 704–711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Waldmann, T. A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, a028472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Saxton, R. A., Glassman, C. R. & Garcia, K. C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 22, 21–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, J. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 7, 3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goetz, R. & Mohammadi, M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 14, 166–180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lai, Y. & Dong, C. Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int. Immunol. 28, 181–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, G. W. et al. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch. Pharm. Res. 38, 575–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Hernandez, R., Põder, J., LaPorte, K. M. & Malek, T. R. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Junttila, I. S. et al. Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat. Chem. Biol. 8, 990–998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harris, K. E. et al. A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells. Sci. Rep. 11, 10592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yen, M. et al. Facile discovery of surrogate cytokine agonists. Cell 185, 1414–1430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Romei, M. G. et al. i-shaped antibody engineering enables conformational tuning of biotherapeutic receptor agonists. Nat. Commun. 15, 642 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sonoda, J., Chen, M. Z. & Baruch, A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm. Mol. Biol. Clin. Investig. 30, 20170002 (2017).

  82. Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Fon Tacer, K. et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050–2064 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xie, Y. et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 5, 181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Véniant, M. M. et al. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 153, 4192–4203 (2012).

    Article  PubMed  Google Scholar 

  86. Smith, R. et al. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-klotho bispecific protein. PLoS ONE 8, e61432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kolumam, G. et al. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/βklotho complex. eBioMedicine 2, 730–743 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ming, A. Y. K. et al. Dynamics and distribution of klothoβ (KLB) and fibroblast growth factor receptor-1 (FGFR1) in living cells reveal the fibroblast growth factor-21 (FGF21)-induced receptor complex. J. Biol. Chem. 287, 19997–20006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wong, C. et al. Fibroblast growth factor receptor 1/klothoβ agonist BFKB8488A improves lipids and liver health markers in patients with diabetes or NAFLD: a phase 1b randomized trial. Hepatology 78, 847–862 (2023).

    Article  PubMed  Google Scholar 

  90. Gordon, M. D. & Nusse, R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Clevers, H., Loh, K. M. & Nusse, R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).

    Article  PubMed  Google Scholar 

  92. Post, Y. et al. Design principles and therapeutic applications of novel synthetic WNT signaling agonists. iScience 27, 109938 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Janda, C. Y. et al. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 545, 234–237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tao, Y. et al. Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. eLife 8, e46134 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Miao, Y. et al. Next-generation surrogate Wnts support organoid growth and deconvolute Frizzled pleiotropy in vivo. Cell Stem Cell 27, 840–851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, H. et al. Development of potent, selective surrogate WNT molecules and their application in defining Frizzled requirements. Cell Chem. Biol. 27, 598–609 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rankovic, Z., Brust, T. F. & Bohn, L. M. Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 26, 241–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Sachdev, S., Creemer, B. A., Gardella, T. J. & Cheloha, R. W. Highly biased agonism for GPCR ligands via nanobody tethering. Nat. Commun. 15, 4687 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheloha, R. W., Gellman, S. H., Vilardaga, J.-P. & Gardella, T. J. PTH receptor-1 signalling—mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 11, 712–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goebeler, M.-E. & Bargou, R. C. T cell-engaging therapies — BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article  PubMed  Google Scholar 

  102. You, G. et al. Bispecific antibodies: a smart arsenal for cancer immunotherapies. Vaccines 9, 724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Zhao, S. et al. Gnawing between cells and cells in the immune system: friend or foe? A review of trogocytosis. Front. Immunol. 13, 791006 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, K.-J. et al. Trogocytosis between non-immune cells for cell clearance, and among immune-related cells for modulating immune responses and autoimmunity. Int. J. Mol. Sci. 22, 2236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Joly, E. & Hudrisier, D. What is trogocytosis and what is its purpose? Nat. Immunol. 4, 815 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Till, N., Ramanathan, M., Loh, K. Y. & Bertozzi, C. Trogocytosis targeting chimeras (TrogoTACs) for targeted protein transfer. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2024-k7kn2-v2 (2024).

Download references

Acknowledgements

N.T. was supported by F32 Postdoctoral Fellowship F32GM143843. This work was supported by National Institutes of Health grant R01GM058867 (C.R.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn R. Bertozzi.

Ethics declarations

Competing interests

C.R.B. is a cofounder and scientific advisory board member of Lycia Therapeutics, Palleon Pharmaceuticals, Enable Biosciences, Redwood Bioscience (a subsidiary of Catalent), OliLux Bio, InterVenn Bio, Grace Science, Firefly Bio, Neuravid and Valora Therapeutics. C.R.B. is also on the board of directors of Alnylam, OmniAb and Xaira Therapeutics. N.A.T. and M.R. declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Weiping Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Till, N.A., Ramanathan, M. & Bertozzi, C.R. Induced proximity at the cell surface. Nat Biotechnol 43, 702–711 (2025). https://doi.org/10.1038/s41587-025-02592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-025-02592-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing