Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-precision cytosine base editors by evolving nucleic-acid-recognition hotspots in deaminase

Abstract

Base editors (BEs), covalent fusions of a cytosine or adenine deaminase with a nuclease-impaired CRISPR protein, mediate site-specific conversion of C:G to T:A (CBEs) or A:T to G:C (ABEs) in the genome. Existing BEs modify all cytosines or adenines within the editing window, which limits their precision. Here we engineer nucleotide and context specificity of the Escherichia coli transfer RNA-specific adenosine deaminase (TadA) to pinpoint cytosine editing. Strategically sampling multiple nucleic-acid-recognition hotspots through directed evolution, we develop 16 TadA-derived NCN-specific deaminases that cover every possible −1 and +1 context for a target cytosine, providing on-demand deaminase choices for editor customization. We apply these variants to (1) correct disease-associated T:A-to-C:G transitions documented by ClinVar, achieving greater accuracy than conventional CBEs in 81.5% of cases, and (2) model two cancer-driver mutations—KRASG12D (ACC) and TP53R248Q (CCG)—in vitro. Our approach offers a general strategy to access precise base editors for potential clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Directed evolution of multipotent TadAC.
Fig. 2: Directed evolution of TadAC with aborted adenine deamination activity.
Fig. 3: Directed evolution of an ACG-specific deaminase.
Fig. 4: Directed evolution of ACC-specific, TCA-specific, CCT-specific and GCA-specific deaminases.
Fig. 5: Evaluation of 16 context-specific Tad-CBEs using a paired sgRNA–target library.
Fig. 6: Precise modeling of cancer-driver mutations by context-specific Tad-CBEs.

Similar content being viewed by others

Data availability

All NGS data were deposited to the National Center for Biotechnology Information Sequence Read Archive under BioProject PRJNA976736.

Code availability

Codes for analyzing the paired sgRNA–target library are available from GitHub (https://github.com/yuanwuCB/PairedLib_analysis).

References

  1. Krishnan, A., Iyer, L. M., Holland, S. J., Boehm, T. & Aravind, L. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc. Natl Acad. Sci. USA 115, E3201–E3210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conticello, S. G. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 9, 229 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  PubMed  Google Scholar 

  5. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rallapalli, K. L. & Komor, A. C. The design and application of DNA-editing enzymes as base editors. Annu. Rev. Biochem. 92, 43–79 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug. Discov. 19, 839–859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, J. et al. Discovery of deaminase functions by structure-based protein clustering. Cell 186, 3182–3195 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Vaisvila, R. et al. Discovery of cytosine deaminases enables base-resolution methylome mapping using a single enzyme. Mol. Cell 84, 854–866 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Gehrke, J. M. et al. An APOBEC3A–Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36, 977–982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Z. et al. Precise base editing with CC context-specificity using engineered human APOBEC3G–nCas9 fusions. BMC Biol. 18, 111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thuronyi, B. W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070–1079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mok, B. Y. et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat. Biotechnol. 40, 1378–1387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiao, Y. L., Wu, Y. & Tang, W. An adenine base editor variant expands context compatibility. Nat. Biotechnol. 42, 1442–1453 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Rubio, M. A. et al. Editing and methylation at a single site by functionally interdependent activities. Nature 542, 494–497 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iyer, L. M., Zhang, D., Rogozin, I. B. & Aravind, L. Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Res. 39, 9473–9497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerber, A. P. & Keller, W. An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 286, 1146–1149 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Wolf, J., Gerber, A. P. & Keller, W. TadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. 21, 3841–3851 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Lapinaite, A. et al. DNA capture by a CRISPR–Cas9-guided adenine base editor. Science 369, 566–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, H. S., Jeong, Y. K., Hur, J. K., Kim, J. S. & Bae, S. Adenine base editors catalyze cytosine conversions in human cells. Nat. Biotechnol. 37, 1145–1148 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Jeong, Y. K. et al. Adenine base editor engineering reduces editing of bystander cytosines. Nat. Biotechnol. 39, 1426–1433 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J. et al. Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry 45, 6407–6416 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Losey, H. C., Ruthenburg, A. J. & Verdine, G. L. Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat. Struct. Mol. Biol. 13, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Di Tommaso, P. et al. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39, W13–W17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Logue, E. C. et al. A DNA sequence recognition loop on APOBEC3A controls substrate specificity. PLoS ONE 9, e97062 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, X. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856–860 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Grunewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861–864 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sakata, R. C. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat. Biotechnol. 38, 865–869 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875–882 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Hecht, A. et al. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res. 45, 3615–3626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, L. et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 41, 663–672 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Neugebauer, M. E. et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673–685 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Lam, D. K. et al. Improved cytosine base editors generated from TadA variants. Nat. Biotechnol. 41, 686–697 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolfe, A. D., Li, S., Goedderz, C. & Chen, X. S. The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. NAR Cancer 2, zcaa027 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kouno, T. et al. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat. Commun. 8, 15024 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, M. et al. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat. Biotechnol. 38, 1037–1043 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, N. et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. 42, 484–497 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez-Rivera, F. J. et al. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat. Biotechnol. 40, 862–873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Lei, Z. et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nat. Methods 18, 643–651 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, J., Yang, B. & Yang, L. To BE or not to BE, that is the question. Nat. Biotechnol. 37, 520–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Jin, S. et al. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol. Cell 79, 728–740 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, L. et al. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat. Cell Biol. 23, 552–563 (2021).

    Article  PubMed  Google Scholar 

  53. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grunewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zuo, E. et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat. Methods 17, 600–604 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Zeissig, M. N., Ashwood, L. M., Kondrashova, O. & Sutherland, K. D. Next batter up! Targeting cancers with KRAS-G12D mutations. Trends Cancer 9, 955–967 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Nishimasu, H. et al. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Hu, J. et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J. Hematol. Oncol. 14, 157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, E., Neugebauer, M. E., Krasnow, N. A. & Liu, D. R. Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference. Nat. Commun. 15, 1697 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, S. et al. TadA reprogramming to generate potent miniature base editors with high precision. Nat. Commun. 14, 413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, S. et al. TadA orthologs enable both cytosine and adenine editing of base editors. Nat. Commun. 14, 414 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, G. et al. Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation. Nat. Commun. 15, 8090 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kohli, R. M. et al. A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J. Biol. Chem. 284, 22898–22904 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carpenter, M. A., Rajagurubandara, E., Wijesinghe, P. & Bhagwat, A. S. Determinants of sequence-specificity within human AID and APOBEC3G. DNA Repair 9, 579–587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, M., Rada, C. & Neuberger, M. S. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. J. Exp. Med. 207, 141–153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan, J. et al. Improving prime editing with an endogenous small RNA-binding protein. Nature 628, 639–647 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 186, 3983–4002 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu, G. et al. Prediction of efficiencies for diverse prime editing systems in multiple cell types. Cell 186, 2256–2272 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Mathis, N. et al. Machine learning prediction of prime editing efficiency across diverse chromatin contexts. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02268-2 (2024).

  80. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harrington, L. B. et al. A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8, 1424 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Davis, J. R. et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat. Biomed. Eng. 6, 1272–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cho, S. I. et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764–1776 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Willis, J. C. W., Silva-Pinheiro, P., Widdup, L., Minczuk, M. & Liu, D. R. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat. Commun. 13, 7204 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu, J. et al. Strand-preferred base editing of organellar and nuclear genomes using CyDENT. Nat. Biotechnol. 42, 936–945 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Yi, Z. et al. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat. Biotechnol. 42, 498–509 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 2272–2274 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Xiao, Y. L. et al. Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nat. Biotechnol. 41, 993–1003 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  96. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all W.T. lab members for discussion and K. M. Watters for scientific editing of the paper. This work was completed in part with computing resources provided by the University of Chicago Research Computing Center. We thank the Single-Cell Immunophenotyping Core Facility at the University of Chicago for sequencing support. This work was supported in part by the National Institutes of Health (R21GM141670 to W.T.). W.T. is supported by the Searle Scholars Program (SSP-2021-113), the Cancer Research Foundation Young Investigator Program, the American Cancer Society (RSG-22-043-01-ET) and the David and Lucile Packard Foundation (2022-74685).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and W.T. conceptualized and designed the study. Y.W. carried out the first and second rounds of directed evolution. Y.L.X. carried out the third and fourth rounds of directed evolution. Y.W. and Y.L.X. performed 15 parallel evolutions of TadAC(NCN) and purified TadAC(NCN). Y.W. characterized TadAC1.1 and TadAC(NCN) in vitro. Y.W. and Y.L.X. prepared HEK293T cells carrying the paired sgRNA–target library and characterized Tad-CBEs using these cells. Y.W. prepared mRNA, evaluated Tad-CBEs at endogenous loci and conducted genome-wide off-target analysis. Y.L.X. conducted transcriptome-wide off-target analysis. Y.W. performed all NGS and analyzed the data. W.T. supervised the study. Y.W. and W.T. wrote the paper with input from Y.L.X.

Corresponding author

Correspondence to Weixin Tang.

Ethics declarations

Competing interests

The University of Chicago has filed a provisional patent on TadAC proteins and their applications in gene editing. All authors are listed as inventors.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–38 and Tables 1 and 3–13.

Reporting Summary

Supplementary Table 2

Genotypes of wildtype TadA, TadA8.20, TadA8e, TadA8r, and TadA-derived cytosine deaminases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xiao, YL. & Tang, W. High-precision cytosine base editors by evolving nucleic-acid-recognition hotspots in deaminase. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02678-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02678-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing