Extended Data Table 2 Benchmarking cell embeddings using scIB with default annotations for 144 cell types on the Human Fetal Lung Cell Atlas, the donor split

From: Limitations of cell embedding metrics assessed using drifting islands

Method

 

Bio conservation

Batch correction

Aggregate score

HVG

I-label

L-NMI

L-ARI

K-NMI

K-ARI

S-label

cLISI

S-batch

iLISI

KBET

G-Con

PCR

Batch

Bio

Total

PCA

 

0.571

0.809

0.581

0.723

0.237

0.532

1.000

0.834

0.043

0.620

0.821

0.000

0.464

0.636

0.567

PCA

✓

0.581

0.799

0.619

0.716

0.191

0.535

0.999

0.868

0.059

0.640

0.797

0.000

0.473

0.634

0.570

TSNE

 

0.583

0.762

0.318

0.720

0.160

0.499

1.000

0.542

0.042

0.480

0.663

0.000

0.345

0.577

0.484

TSNE

✓

0.585

0.767

0.350

0.716

0.157

0.504

1.000

0.568

0.059

0.509

0.693

0.000

0.366

0.582

0.496

UMAP

 

0.580

0.765

0.387

0.713

0.162

0.489

0.999

0.576

0.068

0.572

0.708

0.000

0.385

0.585

0.505

UMAP

✓

0.548

0.771

0.404

0.713

0.162

0.524

0.999

0.586

0.085

0.560

0.707

0.000

0.388

0.589

0.508

Harmony

 

0.544

0.720

0.339

0.648

0.203

0.490

0.929

0.831

0.144

0.808

0.774

0.291

0.570

0.553

0.560

Harmony

✓

0.487

0.641

0.334

0.554

0.115

0.488

0.927

0.831

0.150

0.675

0.671

0.597

0.585

0.507

0.538

Scanorama

 

0.487

0.821

0.692

0.723

0.236

0.538

1.000

0.860

0.096

0.739

0.818

0.000

0.503

0.643

0.587

Scanorama

✓

0.564

0.816

0.703

0.725

0.237

0.536

1.000

0.865

0.091

0.744

0.821

0.000

0.504

0.654

0.594

BBKNN

 

0.413

0.753

0.340

0.703

0.150

0.541

0.927

0.590

0.160

0.785

0.725

0.000

0.452

0.547

0.509

BBKNN

✓

0.573

0.754

0.392

0.697

0.158

0.487

0.931

0.580

0.133

0.669

0.649

0.000

0.406

0.571

0.505

fastMNN

✓

0.415

0.251

0.060

0.228

0.040

0.397

0.984

0.778

0.162

0.101

0.067

0.616

0.345

0.339

0.341

scVI

 

0.552

0.709

0.369

0.636

0.136

0.522

0.927

0.834

0.139

0.840

0.860

0.415

0.618

0.550

0.577

scVI

✓

0.606

0.724

0.407

0.663

0.142

0.521

0.923

0.838

0.142

0.818

0.849

0.681

0.666

0.569

0.608

scANVI

 

0.532

0.785

0.559

0.682

0.174

0.540

1.000

0.818

0.137

0.850

0.862

0.154

0.564

0.610

0.592

scANVI

✓

0.597

0.856

0.738

0.736

0.232

0.554

1.000

0.829

0.121

0.834

0.861

0.521

0.633

0.673

0.657

scGen

✓

0.603

0.902

0.756

0.789

0.285

0.609

0.931

0.695

0.144

0.846

0.906

0.138

0.546

0.697

0.636

scPoli

 

0.462

0.876

0.663

0.802

0.290

0.624

1.000

0.745

0.145

0.869

0.903

0.000

0.532

0.674

0.617

scPoli

✓

0.661

0.879

0.700

0.802

0.313

0.629

1.000

0.739

0.143

0.867

0.899

0.230

0.575

0.712

0.657

Geneformer

 

0.492

0.640

0.304

0.520

0.107

0.475

0.996

0.829

0.114

0.672

0.624

0.410

0.530

0.505

0.515

scGPT

✓

0.486

0.583

0.225

0.467

0.063

0.445

0.991

0.770

0.165

0.636

0.549

0.482

0.521

0.466

0.488

scGPT (FT)

✓

0.517

0.717

0.342

0.658

0.156

0.518

0.998

0.762

0.130

0.819

0.826

0.585

0.624

0.558

0.584

Author’s

 

0.575

0.844

0.561

0.774

0.347

0.567

1.000

0.834

0.070

0.780

0.897

0.000

0.516

0.667

0.607

Islander (Tri)

 

0.624

0.923

0.932

0.822

0.315

0.724

1.000

0.815

0.114

0.825

0.838

0.000

0.518

0.763

0.665

Islander (SCL)

0.625

0.854

0.380

0.852

0.399

0.785

1.000

0.748

0.145

0.792

0.822

0.000

0.501

0.699

0.620

Islander (Run1)

0.818

0.999

1.000

0.901

0.449

0.793

1.000

0.854

0.124

0.889

0.972

0.240

0.616

0.851

0.757

Islander (Run2)

0.824

0.999

1.000

0.891

0.406

0.793

1.000

0.853

0.123

0.883

0.970

0.217

0.609

0.845

0.751

Islander (Run3)

0.817

0.999

1.000

0.894

0.440

0.794

1.000

0.854

0.123

0.888

0.970

0.249

0.617

0.849

0.756

  1. The highest scores for each metric are highlighted in bold. All subsequent tables adhere to the same annotation scheme.