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The diversity and biochemical potential of the PiggyBac transposase
geneinsertion system remains largely unexplored. Using a eukaryotic
transposon mining pipeline, we expand the explored diversity by two orders
of magnitude and experimentally validate a subset of highly divergent
PiggyBac sequences. Fine-tuning a protein language model to further
expand PiggyBac sequence space discovers transposases with improved
activity and that are compatible with T cell engineering and Cas9-directed
transposase-assisted integration.

The advancement of genome-engineering technologies has trans-
formed biological engineering and opened new avenues for therapeutic
and biotechnological applications’. Central to these developments are
toolsthatenableefficient insertion of large DNA sequences into target
genomes, an essential capability to unlock the full potential of syn-
thetic biology**. Among these tools, DNA transposons have been widely
adapted for genome modification across numerous organisms*°. Nota-
bly, the PiggyBac transposase has emerged as a powerful tool because
of its ability to integrate substantial DNA cargo across diverse cellular
environments, makingit a highly versatile platform for gene insertion.

Active PiggyBac elements have been identified in the genomes of
insects and bats®’ and phylogenetic studies have identified PiggyBac
transposases across multiple eukaryotic families®”. Nonetheless, much
oftheir evolutionary diversity and biochemical potential remain unex-
plored. Traditionally, exploring PiggyBac diversity can be achieved by
bioprospecting natural sequences. However, recent advances in genera-
tive artificial intelligence (Al) methods applied to protein design have
shown that sampled natural diversity can be augmented to generate
functional sequences notseeninnature'® ", Forinstance,acombination
of RFdiffusion™ and methodologies to design catalytic sites created
active synthetic serine hydrolases with new folds™. A protein large

language model (pLLM) was recently used to generate a CRISPR-Cas9
that does not exist in nature but performs well for gene-editing appli-
cations'’. The development of such models has opened up exciting
opportunities to expand biodiversity and improve gene integration
tools. Despite this broad exploration, the potential of PiggyBac as a
gene insertion tool remains constrained by its preference for TTAA
integration sites, limiting its target specificity and precision®. Efforts
toimprove targeting precision have explored fusions with engineered
DNA-binding domains such as transcription activator-like effector,
engineered zinc-finger proteins and CRISPR catalytically inactive Cas9,
each with varying targeting efficiencies''®. Our phylogenetic mining
uncovered over 13,000 PiggyBac elements, revealing domain acquisi-
tions across multiple PiggyBac clusters. We experimentally validated a
subset of these elements, identifying ten active transposases with up to
30%sequenceidentity to one another, thereby expanding the functional
repertoire of known PiggyBac elements. Additionally, we generated
‘mega-active’synthetic variants of the widely used laboratory-evolved
hyperactive PiggyBac (HyPB) transposase using a fine-tuned pLLM,
Progen2 (ref.19),and demonstrated the applicability of these PiggyBac
orthologsin critical gene-editing contexts, such as primary T cell engi-
neering and Cas9-directed transposase-assisted integration.
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Fig.1| PiggyBacbioprospecting. a, PiggyBacidentification and testing pipeline
overview (detailed pipeline in Supplementary Fig.1and Methods). Piggybac
domains: N terminus, gray; double DNA-binding domain, yellow; catalytic
domain, green; insertion domain, blue; CRD, pink (detailed domain depictionin
Supplementary Fig. 7). Panel a created with BioRender. b, PiggyBac phylogenetic
tree fromthe 2,500 identified clusters at 0.6 identity. Cluster size is represented
by the circle radius on top of tree leaves and the number of unique taxonomic
species present in the cluster is shown by circle color. Tree ring labels, from inner
toouter: (1) identified PiggyBac main groups (five in total); (2) major cluster
taxonomic groups; (3) clusters with more than one broad taxonomic group;

(4) CRD classification; and (5) clusters with fusion domains. Tested PiggyBac
clusters are marked with arrows, inactive PiggyBac clusters are marked with
orange arrows and active PiggyBac clusters are marked with green arrows. The
four colored stars represent previously described PiggyBac-like transposons
with demonstrated autonomous activity: PiggyBat®, blue; PiggyBac’, red;

Mage”, orange; PLE-wu®, purple. The ‘fish’ category includes Chondrichthyes,
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Agnatha and Osteichthyes (complete legends and colorsin Supplementary Fig. 2).
¢, Experimental validation of PiggyBac orthologs by nontargeted transposon
integration fluorescence assay in HEK293T cells 2 weeks after transfection, in
the presence (TPS, pink) or absence (no TPS, green) of transposase plasmid.
Data are presented as the mean values + 95% confidence interval (Cl), withn =2
for orthologs with amean level of RFP lower than 1% and n = 3 for those with
higher (seven top performers). d, Sequence identity heat map between active
orthologs from c. e, Effect of N-terminal phosphorylation substitutions on
excision, measured by transposon excision fluorescence assay. StA indicates
serine-to-alanine substitutions in CKIl phosphorylation sites (Supplementary
Fig.7). Dataare presented as the mean values relative to WT + 95% Cl, withn =3.
f, Targeted transposon integration qPCR assay with Poetur and Antgra4 orthologs
inthe triple-mutant background (R372A;K575A;D450N) at the AAVS1-3 site.

Data are presented as the mean values + 95% CI, with n =1. g, Pictures of species
containing the top two PiggyBac hits*. Credits: A. grandis, photo courtesy of
USDA Agricultural Research Service; P. turrubarensis, Paradise Costa Rica.

We searched all available eukaryotic genome assemblies on the
National Center for Biotechnology Information (NCBI; 31,565 genomes)
and Dfam® (20,638 PiggyBac sequences) databases, finding a total of
273,643 PiggyBac transposon open reading frames (ORFs) together

with their DNA sequences (Fig.1a and Supplementary Fig.1). To differ-
entiate active transposons fromtransposase-derived proteins co-opted
by the host that have lost transposition activity”-?, we retrieved
sequenceswith the presence of an RNase H-like domain, cysteine-rich
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domain (CRD), terminalinverted repeats (TIR) and a target site duplica-
tion (TSD) with the TTAA motif (Supplementary Fig. 1). These motifs
arereported to be crucial for DNA excision and integration’. Filtering
yielded a dataset of 116,216 putatively transposition competent Pig-
gyBac elements that resulted in 13,693 PiggyBac subfamilies after
clustering at 80% sequence identity.

The eukaryotic distribution of PiggyBac transposons is notably
diverse, encompassing taxa from fungiand plants to mammals (Fig.1b
and Supplementary Fig. 2b); itis predominantly representedininsects
(-60%), followed by fish and mollusks (5%). We identified five main
PiggyBac groups (Fig. 1b and Supplementary Figs. 2a and 3a) on the
basis of main tree phylogenetic branches, taxonomic distribution and
the CRD types. More than 200 clusters are represented by more than
one broad taxonomic group (Fig. 1b, ring 3), indicating widespread
horizontal gene transfer across groups, as previously reported in other
transposable elements®. Group 4 has aunique, unexpected taxonomic
distribution with presencein fungi, land plants and algae (Fig. 1b, ring 1,
purple). We also observed ‘superhost’ species, characterized by con-
taining numerous PiggyBac sequences. The top three superhosts cap-
tured 7.3% of all PiggyBac diversity (Supplementary Fig. 3). Additionally,
we found multiple domain acquisition events atboth Nand C termini,
with 4.6% of all the reported clusters containing a fusion domain
and N-terminal fusions being more predominant (Fig. 1b, ring 5).
DNA-binding domains and fusogens were the most abundantly
acquired domains, suggesting multiple transposition mechanisms
for DNArecognition and cell entry (Supplementary Fig. 4).

We used AlphaFold3 (ref. 24) structural prediction and clustering
to further understand the diversity of the CRD domain. We identi-
fied two main CRD cross brace zinc-finger folds, HC6H and C5HC2
(Supplementary Fig.5).In contrast to CSHC2, the HC6H groupis longer
and retains two unique f3-sheets inits insertion domain. The insertion
domain consists of structures with three and five 3-strands in CSHC2
and HC6H, respectively, which interrupts the catalytic domain after the
seventh 3-strand. While the catalytic domain catalyzes the hydrolysis
and transesterification steps necessary for transposition, the inser-
tion domain has a role in DNA binding and transposon integration’.
Analysis of the catalytic domainindicates high structural conservation
(root-mean-square deviation (r.m.s.d.) of the catalytic region near 2 A
and a template modeling (TM)-score of 0.915) despite high sequence
divergence (Supplementary Fig. 5).

To explore the potential of bioprospected transposon diversity
forgeneinsertion, we selected 23 representative PiggyBac sequences
across the phylogenetic tree for experimental testing (Fig. 1b, colored
triangles). These sequences were chosen to encompass all five major
PiggyBac groups, both primary CRD types and arepresentative range of
taxonomicgroups. Transposition activity was validated through detect-
ing excision of the transposase plasmid (Supplementary Fig. 6a) and
nontargeted integration of ared fluorescent protein (RFP)-containing
transposon payload in HEK293T cells (Fig. 1c). Nontargeted integration
refersto the canonical PiggyBac transposition mechanism, in whichit
excises and inserts itself into TTAA motifs throughout the genome®.
Ofthetested sequences, nine (-40%) had detectable activity, withtwo
sequences equivalent tolaboratory-evolved HyPB®. Active sequences
were spread across phylogeny and had low sequence identity to HyPB
(Fig.1d). Thisbroad distribution of active elements across taxonomic
and CRD diversity underscores the potential of PiggyBactransposons
asversatile toolsingeneticengineering and gene-transfer applications.
Interestingly, the previously described PiggyBat sequence did not
exhibit activity, which contrasts with previous reports®. This discrep-
ancy is likely because of the fact that a consensus PiggyBat sequence
generated in this study is constructed from multiple PiggyBat cluster
sequences and is different from the previously described. To further
improve transposon activity, we identified and removed CKIl phospho-
rylation motifs in the N terminus of PiggyBac, previously reported to
inhibitits transposition activity in HyPB’ (Supplementary Fig. 7b). CKII

site removal increased transpositionactivity in both orthologs (Fig. 1e).
We also tested how TIR truncation affected excision in Poetur and
Antgra4 (Supplementary Fig. 8), identifying minimal TIR versions with
equal activity. We further tested compatibility of our orthologs with the
previously described FiCAT™® targeted insertion system. In the FiCAT
platform, aCas9 enzyme fused to an engineered Piggybac transposase
induces a double-strand break (DSB) at a target genomic site. The
PiggyBac component, engineered to be excision competent and inte-
gration deficient, excises a transposon delivered by plasmid. This
transposon is then inserted into the DSB site, generating an integra-
tion signature mediated by nonhomologous end joining. Our results
showed successful FICAT compatibility of Poetur and Antgra4 in
HEK293T cells (Fig. 1f and Supplementary Figs. 9 and 10).

Next, we sought to explore how the generated corpus of natural
sequences could be used to improve the activity of existing trans-
posases. We fine-tuned the ProGen2-base language model" using over
13,000 bioprospected sequences, similarly to the method previously
described for Cas9 nucleases'. In our training data, the HyPB sequence
was included five of ten times, depending on the model, to bias the
model toward improvement of the HyPB sequence. We created two sep-
aratemodels: one model to generate sequences from the N terminus to
Cterminusandthe second to generate sequences fromthe C terminus
toNterminus. We thengenerated over 100,000 sequences from these
two models prompted with the first 50 (N->C) or last 50 (C->N) amino
acids. A total of 50 amino acids were selected to give sufficient context
to the models so that they could generate similar sequences, with-
out giving so much that the model could perfectly recreate the HyPB
sequence. Sequences were first filtered on the basis of a set of basic
protein propertiesin addition to PiggyBac-specific properties (Fig.2a
and Supplementary Fig. 8b). We further filtered and scored sequences
bystructural (predicted local distance difference test (pLDDT), r.m.s.d.
to experimental structure, SURFMAP?***” and TM-scores) and deep
learning scores (Progen perplexity, ProteinMPNN?® and ESM1v?®’).
Generated sequences had higher pLDDT, ESM1v and ProteinMPNN
scores when compared to a matched subset of natural sequences,
indicating that the designed sequences may have higher activity than
the natural ones (Fig. 2b). ESM1visapLLM developed by Meta Research
that was designed for predicting variant effects, ProteinMPNN is a
deeplearning-based sequence design method that can decode amino
acid sequences fromstructural representations of proteins and score
proteins and pLDDT is a metric used by structural prediction tools to
evaluate the confidence of predictions. These metrics have previously
been used for computational scoring of enzymes®.

We experimentally tested 11sequences from each model (22 total),
15-54 mutations apart from the original HyPB sequence. All of the gen-
erated sequences displayed excision activity with an average percent-
age RFP ranging from 15% to 48% excision (Supplementary Fig. 11c). Of
the tested sequences, seven of 22 were significantly more active in exci-
sionthanthelaboratory-evolved HyPB (Fig. 2c) (Mann-Whitney U-test
with a P-value cutoff of 0.05). We further evaluated nontargeted inte-
gration of the synthetic sequences (Supplementary Fig.11d). seq3277
was the most active sequence in both excision and nontargeted inte-
gration. We termed this sequence Mega-PiggyBac. Curiously, seq136
showed the highest nontargeted integration efficiencies while having
baseline excisionactivities and had the highest number of substitutions
(54 amino acids (aa)), most of themin the catalytic region. To evaluate
the relevance of the proposed pLLM-based sequence improvement
approach, we tested both bioprospected sequences near the Poetur
sequence space and single mutants predicted to have improved fit-
ness by ESM1v (‘zero-shot’ approach?’) as comparable optimization
approaches. In contrast to pLLM, none of these approaches led to
mutants with significantly increased nontargeted integration activity
(Supplementary Fig.12).

We gathered multiple metrics to both inform our selection and aid
post hoc learning of properties associated with transposase activity.
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Fig. 2| Synthetic mega-active PiggyBac generation using protein language
model fine-tuning. a, Overview of the fine-tuning and sequence generation
pipeline. The Progen2-base model was fine-tuned on a set of over 10,000
PiggyBac orthologs identified through the bioprospecting pipeline. Over
100,000 sequences were generated with a sequence identity between 35% and
99% to the HyPB. Sequences were then filtered using a set of basic (gray) and
PiggyBac-specific (green) amino acid sequence metrics and scored using a set of
scores based on structural (orange) and deep learning (blue) metrics to selecta
final subset of 22 sequences for experimental validation. b, Distribution of four
key metrics (sequence identity, pLDDT, ProteinMPNN score and ESM1v score) for
natural sequences from the HyPB cluster at 60% identity (orange) and sequences
generated from our progen-ft model (blue) after filtering. The violin plots
represent the entire distribution of scores for the two sets of sequences and the
internal box plot represents the quartiles for each score, with the center being
the median, the bottom and top being the first and third quartiles, respectively,
and the whiskers going 1.5x the interquartile range from the top and bottom.

Ft, Fourier transform. ¢, Relative excision for progen-ft-generated variants
normalized to HyPB activity (highlighted in green), measured by a transposon
excision fluorescence assay. Bars reflect the mean relative excision over the

four trials and points represent the mean relative excision of replicates in each

trial. Data are presented as the mean values, with n =5.d, Correlations between
calculated and measured features to relative excision of the progen-ft-generated
variants. Significant correlations are highlighted in dark blue. Correlation

was measured with Pearson’s correlation. e, Targeted integration with top
pLLM-generated mutants, measured by a targeted transposon integration
GFPreconstitution assay that measures integration of al/2 GFP reporter cargo
upstream of a stably integrated 2/2 GFP in HEK293T reporter cell line. Triple-
mutant (x3) versions of the transposases were made by selecting the residues
corresponding to R372A;K375A;D450N in HyPB. Data are presented as the mean
values + 95% Cl, with n = 3.f, Targeted transposon integration measured by
digital PCR assay in C2C12 mouse myoblast cell lines at TTR and PCSK9loci for
top Al-designed transposases. The sum of integration in both orientations is
shown. Data are presented as the mean values + 95% Cl, with n = 2. g, Nontargeted
transposon integration measured by fluorescence assay in primary T cells for
top bioprospected ortholog Poetur7 days after electroporation. Data are
presented as the mean values + 95% CI, with n =2. h, Nontargeted integration of a
GFP cargoin primary T cells with HyPB and top synthetic sequences transposases
7 days after cell electroporation. Data are presented as the mean values + 95% Cl,
withn=3.

The structural and Al-based scores described above were used to help
guideour final selection and, following experimental testing of our vari-
ants, certain metrics were found to be correlated to transposase activ-
ity. Net charge of the protein, charged fraction of amino acids (ratio of
charged aminoacidsinthe sequence) and ProteinMPNN score seemed
to be positively correlated with protein activity. In contrast, perplexity
scores fromthe N->C fine-tuned model, model version (N->C or C—>N)
and Wimley-White* surface structural similarity scores seemed to be
negatively correlated (Fig. 2d and Supplementary Fig.10a).

We then tested top hits for FiCAT targeted integration (Fig. 2e).
Wefound that synthetic sequence 3277 improved targeted integration
twofold, demonstrating thatimproved pLLM-generated sequences are
compatible with programmable gene insertion. We further validated
targeted integration with top pLLM-generated sequences in mouse
c2c12 myoblast cells at TTR and PCSK9 loci (Fig. 2f). To illustrate the
potential impact of bioprospecting guided sequence discovery for

therapeutic applications, we stably delivered a GFP transposon cargo
with Poetur and Al-designed transposases in T cells, showing higher
nontargeted integration for Poetur (Fig. 2g) and for seq136 (Fig. 2h)
when compared to HyPB, while seq3277 (Fig.2h) had same nontargeted
integration activity despite having higher excision and targeted inte-
gration, underscoring that diversity in pLLM-generated sequences can
capture optimization toward different protein properties.

Ourwork expands the phylogenetic tree of PiggyBac transposons
by two orders of magnitude, unveiling a previously unexplored diver-
sity within this family of mobile genetic elements. This expansion led to
the discovery and characterization of nine additional active PiggyBac
orthologs, broadening the range of transposase variants available for
research and biotechnological applications. Among these identified
orthologs, two stand out for their exceptional performance, demon-
strating activity levels comparable to those of evolved HyPB variants
and robust activity in primary T cells, an essential target for many
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therapeutic applications in gene and cell therapy. Importantly, the
discovered orthologs are compatible with the FiCAT programmable
geneinsertion system. This compatibility paves the way forinnovative
approaches to gene insertion, enhancing the system’s versatility in
applications ranging from gene therapy to synthetic biology. Further-
more, we exemplified how pLLM de novo sequence generation offers a
powerful approach toimproving transposase activities. This method
enhances the optimization process and provides a framework where
the modifications are informed by a comprehensive sequence-func-
tion relationship. By leveraging the capabilities of pLLM, researchers
could use the described method to systematically identify variants
with enhanced properties.

Recent work demonstrated substantial activity improvement
upon TIR truncation®. Moreover, combining this knowledge on TIR
architecture with recently developed genome language models could
furtherimprove transposition activity. Additionally, determining how
Al-guided activity improvementimpacts specificity will be crucial for
successfully using these methods for therapeutic protein development.

Our findings underscore the power of combining bioprospection
with Al-driven sequence optimization to accelerate the discovery and
enhancement of next-generation gene insertion tools. This approach
not only expands the PiggyBac toolkit but also provides a valuable
framework for the development of additional gene modification tools
for precise and efficient genome manipulation applicable across bio-
technology and therapeutic fields.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-025-02816-4.
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Methods

Retrieval of PiggyBac transposons

Complete PiggyBactransposon sequences were gathered fromall avail-
able eukaryotic genomes in the NCBI database® (31,565 genomes) and
all PiggyBacelementsin the Dfam database (20,638). Dfam sequences
were directly downloaded by selecting entries labeled as PiggyBac.
NCBI eukaryotic genome-derived transposase sequences were identi-
fied using Bath®*>*, with a custom hidden Markov model constructed
fromall active PiggyBac sequencesreportedintheliterature. For NCBI
PB retrieval, flanking regions 4 kbp upstream and downstream were
included to capture the complete transposon sequence including DNA
TIRs. Afilter was applied to retain PiggyBac transposases longer than
250 aa. After thisfiltering, atotal of 273,643 PiggyBac were recovered,
with amean transposase length of 500 residues and mean DNA trans-
poson length of 3,298 bp.

To refine the boundaries of each transposon in the NCBI dataset,
clustering by RNase H-like domains of the PiggyBac hits at a 0.9 simi-
larity threshold was performed with MMseqs2 (ref. 38), followed by
multiple-sequence alignment (MSA) of the complete DNA sequences
(including flanking regions) within clusters using MAFFT*. Transposon
boundaries were then delimited on the basis of the MSA results.

Filtering for active PiggyBac elements
Toidentify active PiggyBactransposons fromall the transposonsiden-
tified in the previous step, we applied the following sequential filters:

1. RNase H-like domain identification: The presence of a RNase
H-like domain was confirmed using RPS-BLAST*’, with the
Conserved Domain Database* as the reference database and
selecting only sequences with an RNase H-like domain longer
than 250 aa.

2. CRDidentification: A total of 50 representative CRDs were
manually curated and structurally modeled using AlphaFold3
(ref. 24) to identify residues directly involved in zinc ion coor-
dination. On the basis of this curated set, we derived a set of
sequence motifs (Supplementary Table 2), revealing major CRD
groups and their variants. CRDs were then identified using regu-
lar expressions matching these curated motifs.

3. TIRidentification: TIRs were identified in the flanking DNA
regions using the EMBOSS tool Palindrome*, focusing on pairs
of palindromic sequences located on opposite flanks of the
transposon in the first and last 200 bp. We retained only TIRs
with at least two palindromic sequences of 10 bp or longer
and allowing up to two mismatches. As an additional quality
control step, only palindromes in which the two most common
nucleotides account for less than 80% of the palindrome were
selected.

4. TSDidentification: TSDs were searched for with regular expres-
sion within the first and last 50 bp of each transposon, using the
motif TTAACC, with up to two allowed mismatches.

Atotal of 116,216 putatively active PiggyBac elements were recov-
ered after applying the filtering process.

Dataset clustering

Thefiltered dataset was then clustered to reduce redundancy using the
RNase H-like domain of the transposase. We performed two cluster-
ings with MMseqs2, one at 0.8 identity and one at 0.6 identity. The 0.8
clustering was performed following transposon annotation 80-80-80
(ref. 43), as it is considered that two transposon elements belong to
the same family if they share 80% (or more) sequence identity in at
least 80% of their coding or internal domain. This dataset was used
for the fine-tuning of the pLLMs. The clustering at 0.6 was performed
to make abroader classification of PiggyBac families and used for the
phylogenetic analysis. The clustering at 0.8 produced 13,693 clusters,
while thatat 0.6 produced 2,572 clusters.

Phylogenetic analysis of bioprospected sequences

The phylogenetic tree was built with IQ-TREE (version 1.6.12)** on the
basis of an MSA generated with the 2,572 centroids from the 0.6 clus-
tering with MUSCLE*. Model finder*® was used to select the optimal
model for accurate phylogenetic estimation (LG + R10) and UFBoot*’
was used for bootstrap approximation with 1,000 replicates. The
resulting tree was visualized using iTOL*®, Additional PiggyBac domains
wereidentified with RPS-BLAST*°. Molecular graphics were generated
using UCSF Chimera®.

Blast identification of Poetur orthologs

Asearchwith BLASTn on the core nucleotide database was conducted
using Poetur. The whole transposon, including the TIR and TSD were
includedtofind hits thatalso possessed these motifs. A total of four hits
fromfour different species were manually selected on the basis of them
havinga coverage higher than 88%, sequence identity higher than 83%
and the presence of all necessary functional domains for transposition
activity (RNase H-like domain, CRD, TIR and TSD).

Model fine-tuning

The ProGen2-base” language model of 764 million parameters was
fine-tuned on over 13,000 sequences from the PiggyBac orthologs clus-
tered at 0.8. This fine-tuning was performed to give the ProGen2-base
modelabetter understanding of PiggyBac sequences. In this process,
the pretrained model was further trained on the PiggyBac orthologs
and, as the model trained, the 764 million parameters were updated
inaway that aimed to minimize the cross-entropy loss. We fine-tuned
two separate models: one model to generate sequences from the N
terminus to C terminus and the second to generate sequences from
the C terminus to N terminus. Both models were fine-tuned using the
full amino acid sequences excluding the N-terminal domain, which
was excluded because it is an extremely variable domain. In the HyPB,
the N terminus consists of the first 116 aa and, in general, the N termi-
nusisadisordered region leading up to the first double DNA-binding
domainregion.

The sequences were split using a 80:20 train-test split. In addi-
tion to the set of orthologous sequences used in the training, addi-
tional wild-type (WT) HyPB sequences (5-10) were added to the
training set to bias the model toward HyPB. This allowed us to gen-
erate sequencesin acloser sequenceidentity range to HyPB than we
were able to without biasing the dataset. Fine-tuning was performed
using the Trainer module fetched from Hugging Face over two epochs
withatraining batch size of 4 and evaluation batch size of 8. A constant
learning rate of 5.0 x 10 was used and the model was evaluated after
every 2,000 steps. Cross-entropy loss was used to evaluate every
checkpoint in the model and the checkpoint with the lowest valida-
tion loss was used for sequence generation. The remaining Trainer
parameters were kept at the default values. A full exploration of the
Trainer hyper parameters was not performed as, with these fairly
standard parameters, we were able to generate convincing sequences
with our desired properties.

Al sequence generation

Inboth models, 50 aafrom WT HyPB were used to prompt sequence
generation. An initial prompt was used to give the model enough
context to build a PiggyBac-like sequence. In preliminary testing,
50 aaseemed to provide agood balance of giving the models agood
starting point without allowing them to replicate the HyPB sequence
perfectly. For the N->C model, the first 50 aa after the N-terminal
domainwere used and, in the C->N model, the final 50 aa of the CRD
were used to prompt sequence generation. For the C->N model,
sequences were generated ‘backward’ and thenreversed to have the
standard directionality. The maximum sequence length for both
models was set to 500 aa and a temperature of 7= 0.5 and nucleus
probability P= 0.95 were used.
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Al sequence filtering

The generated sequences first went through a set of three basic filters.
First, duplicated sequences were removed. Second, sequences with
noncanonical amino acids were removed. Third, sequences were
filtered using a k-mer repetition filter such that no amino acid motif
of six, four, three or two residues was repeated two, three, six or
eight times consecutively. The next set of filters were HyPB specific
andincludedtesting for a PiggyBac CRD (based on the presence of at
least seven cysteine amino acidsin the final 50 aa), sequence identity
to WT (80-95% to the RNAse H-like and CRD domains) and specific
key residues including catalytic site, a-bridge residues, hyperac-
tive residues and another extensive set of key residues including
DNA-interacting residues.

For all of these sequences, we calculated perplexity using the
ProGen2-base model and the fine-tuned model responsible for gen-
erating a given sequence. For a subset of sequences that passed our
filters, structures were predicted using ESMFold*°. Structures were
thencomparedto the experimentally available PiggyBac structure (PDB
6X67) to extract r.m.s.d. and TM-scores using PyMOL (Schrodinger)
and TMAIlign®, respectively. Finally, structures were aligned to the
experimental PiggyBac structure and several surface properties were
calculated using SURFMAP: atool that projects surface residues from
aproteinstructure into atwo-dimensional space and can calculate dif-
ferent amino acid residue properties. The five metrics we calculated
using SURFMAP were stickiness, circular variance, Wimley-White,
Kyte-Doolittle and electrostatics. We then computed cosine similari-
ties between each surface feature in the generated structures and the
experimental structure. Lastly, ProteinMPNN* and ESM1v* scores
were calculated. ProteinMPNN is a deep learning-based sequence
design method that can decode amino acid sequences fromstructural
representations of proteins. ProteinMPNN can also be used to gener-
ate a log-likelihood score for any given sequence. Wimley-White is
ameasure of residue hydrophobicity, which was applied to surface
residuesin this case using SURFMAP.

Anadditional set of filters was created to narrow down the final set
of sequences. Sequences were required to beinthe top 75th percentile
for both ProteinMPNN and ESML1v scores, sequences were filtered on
length to exclude sequences that weretoo short, aconservative pLDDT
filter of 90 was used and an acceptable range for net charge of the
proteins was established. After this, sequences were selected manu-
allyin anattempt to cover sequence identities in the range of 90-97%
tothe entire HyPB sequence with high-quality sequences. During this
manual selection process, sequences with a higher proportion of the
key residues were selected for and any sequences that had particularly
badscoresinany of the calculated metrics were avoided. A final selec-
tion of 22 sequences was made.

Insilico deep mutational scan

ESM1v was used in a zero-shot version where the Poecliopsis amino
acid sequence was given as an input. ESM1v creates a fitness score for
all possible amino acids for residue position by calculating alog odds
ratio, assuming an additive model when multiple substitutions exist.
Then, the sumis made over the substituted positions and the sequence
is masked at every substituted position®.

Variant prediction was run in Google Colab Pro with one A-100
GPU with 80 GB of RAM. The script used to run the variant prediction
can be found on GitHub (https://github.com/Alejo945/1S-HyPB). The
outputisa TSV file with all possible variants and their scores.

Plasmid DNA sequences

Transposase ORF amino acid sequences were codon-optimized for
Homo sapiens and ordered and synthesized as gene fragments to TWIST
biosciences. Gene fragmentswere cloned into acytomegalovirus-based
expression vector by Golden Gate assembly using Esp3l restric-
tion enzyme. Transposon (cargo vector) plasmid sequences were

defined as the first 150 bp from the transposon ends from both 5
and 3’ TIR sequences and synthesized as gene fragments by TWIST
biosciences with added overhangs for golden gate assembly. An EF1a
RFP poly(A) expression cassette was included between the TIR. Triple
mutant (x3, R372A;K375A;D450N in Trichoplusia ni) residue selec-
tion was performed by aligning the ortholog sequences to the T. ni
PiggyBac mutated sequence. All plasmid sequences are available in
Supplementary Table1.

Cell culture

Hek293T cells (Invitrogen, R70007), were cultured in DMEM supple-
mented with high glucose (Gibco, Thermo Fisher), 10% FBS, 2 mM
glutamine, 100 U per ml penicillin and 0.1 mg ml™ streptomycin at
37°Cina5%CO,incubator.

PCR excision activity assay

To detect excision in bioprospected transposases, 120,000 cells
were seeded per adherent p24 well 1 day before transfection. Plasmid
DNA was mixed at a1:3 ratio of transposase and RFP transposon, with
0.035 pmol of transposase used per p24 well plate. Then, 48 h after
transfection, cells were collected and plasmid extraction was per-
formed using an NZYMiniprep kit (NZYtech, MB01001). TIR-flanking
primers (Supplementary Table 4) were used to detect transposon
excision. The2,900-bp and1,200-bp bandsindicated nonexcised and
excised transposon, respectively.

Nontargeted transposon integration fluorescence assay

To evaluate stable transposon integration activity, 120,000 cells were
seeded per adherent p24 well a day before transfection. Plasmid DNA
was mixed with and RFP transposon ataratio of 1:3:5, with 0.035 pmol
oftransposase used per p24 well plate. For transfection experiments,
cells were transfected with polyethyleneimine (PEI, Thermo Fisher
Scientific) at a 1:3 ratio of DNA and PEIl in Opti-MEM. RFP expression
of the transposon cargo vector was assessed 2 days and 20 days after
transfection using cell cytometry with the Cytek Aurora CS system.
The RFPsignal at day 20 was considered indicative of stable transgene
integration.

Transposon excision fluorescence assay

To quantify the excision activity of Al-generated transposases, a
fluorescent excision reporter system was used. HEK293T cells were
seeded in 24-well plates at a density of 120,000 cells per well 24 h
before transfection to ensure approximately 70% confluency on the
day of transfection. Transfections were performed in 24-well plates
using PEI (Thermo Fisher Scientific) at a 1:3 ratio of DNA and PEl in
Opti-MEM (Thermo Fisher). Transposase-expressing plasmid was
cotransfected with plasmid containing adisrupted mCherry reporter
sequence flanked by transposase recognition sites, leading tomCherry
restoration upon excision (Supplementary Fig. 6). Transposase and
transposon plasmids were mixed at al:3 ratio, with atotal of 0.035 pmol
of transposase. Then, 72 h after transfection, cells were collected and
mCherry reporter expression was assessed by flow cytometry using
the Cytek Aurora CS system.

Targeted transposon integration digital PCR assay

To quantify targeted integration of Al-generated transposases in the
FiCAT system, C2C12 cells (American Type Cell Collection, CRL-1772)
were cultured in DMEM (Gibco, Thermo Fisher) supplemented with
10% FBS, 2 mM L-glutamine, 100 U per ml penicillin and 0.1 mg ml™
streptomycin. Cells were maintained ina37 °Cincubator with 5% CO,.
Electroporation was conducted using the E Cell Line 4D-Nucleofector
X Kit S (Lonza). On the day of electroporation, cells were washed
with PBS, detached using trypsin—-EDTA (Gibco) and adjusted to a
concentration of 2 x 10° cells per condition. The cell suspension was
prepared in 20 pl of nucleofection master mix buffer, consisting of
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16.4 pl Nucleofector solution and 3.6 pl of supplement 1 (Lonza). Sub-
sequently, each condition was conucleofected with a DNA plasmid
encoding the triple-mutant variants (PBx3), Cas9, different guide
RNAs (gRNAs) and transposon plasmids in a 1:1:3:3 molar ratio, using
amaximum of 10% of the final sample volume. Lastly, each condition
was transferred into Nucleocuvette vessels and electroporation was
carried out using the CD-137 program. After electroporation, 100 pl
of prewarmed complete medium was added and cells were carefully
resuspended and transferred into a 24-well plate containing 500 pl
of complete medium for recovery and expansion. Then, 4 days after
electroporation, the cells were processed as follows: (1) one third were
collected for genomic extraction; (2) one third were analyzed for GFP
reporter expression by flow cytometry using the Cytek Aurora CS
system; and (3) one third were maintained in culture until episomal
disappearance. Genomic extraction was performed using Qiagen
DNeasy blood and tissue kit. Primers and probes were obtained from
PrimeTime qPCR probes (Integrated DNA Technologies). The assay
was designed using an endogenous control and evaluating the junc-
tion PCR for both integration orientations. Reaction mixtures (44 pl)
were prepared containing QlAcuityDx Universal master mix (1x), MgCl,
(6.28 mM), primers (0.73 pM), probes (0.63 pM), arestriction enzyme
(0.25Uper pL)and12.5 ng of sample DNA. These mixtures were loaded
ontoa QlAcuityDx Nanoplate 26k 24-well (260001) for quantification,
following the preparation protocol provided in the QlAcuityDx Uni-
versal master mix kit (260102). Thermal cycling protocol consisted
of an initial enzyme activation step at 95 °C for 2 min, followed by 40
cycles of a two-step amplification: denaturation at 95 °C for 15 s and
annealing and extension at 60 °C for 30 s. For digital PCR analysis,
the absolute DNA quantification per sample (copies per genome) was
determined using QlAcuity Software. Primer sequences are described
inSupplementary Table 6.

Targeted transposon integration fluorescence and qPCR assay
To quantify targeted integration of bioprospected transposases
in the FiCAT system, Plasmids encoding the triple-mutant variants
(PBx3) were cotransfected with Cas9, gRNA AAVS1-3, transposase
and transposon plasmids at a1:1:3:5 molarratioin 0.5 M Hek23T cells
seededinapé6 plate the day before transfection. Cells were analyzed
for RFP expression 2 days after transfection to estimate transfection
efficiency using cell cytometry with the Cytek Aurora CS system. Cells
were maintained in culture to measure overallintegration levels after
3 weeks. In parallel, to enrich cells for junction qPCR, two rounds
of enrichment by GFP sorting were conducted with BD FACSAria
(Biosciences), 1 week and 2 weeks after transfection. Genomic DNA
was extracted using Quiagen DNeasy blood and tissue kit column
4 days after the second sorting. A3’ junction PCR was performed and
sequenced on an Illumina MiSeq Nano kit 500 cycles (v2). A 3’ junc-
tion qPCR was performed to compare targeted integration across
bioprospected transposases.

Targeted transposon integration GFP reconstitution assay

To quantify targeted integrationin Al-generated PiggyBac transposases
inthe FiCAT system, a previously described GFP reconstitution assay™
was used. For GFP targeted integration assays, areporter HEK293T cell
line containing genomically integrated 2/2 GFP was transfected using
a1/2 GFP encoding transposon (Supplementary Fig. 6). A total of
240,0002/2 GFPHEK293Treporter cellswere seededinal2-well plate
1day before transfection. Cells were transfected with Lipofectamine
3000 (Invitrogen, L3000001) using Cas9, 2/2 GFP-targeting gRNA,
transposase and transposon plasmids at a 1:1:3:5 molar ratio. Cells
were analyzed for GFP expression 5 days after transfection to estimate
targeted integration efficiency using cell cytometry with the Cytek
Aurora CSsystem. The 2/2 GFP was integrated using the Sleeping Beauty
(SB100x) transposase system*’. Reporter DNA sequences are available
insupplementary Table 3.

Nontargeted transposon integration fluorescence assay

inT cells

To assess nontargeted integration of the PiggyBac and Al-generated
orthologs in T cells, peripheral blood mononuclear cells from two
different donors, isolated from buffy coats and cryopreserved, were
thawed and seeded on p24-coated plates containing anti-CD3/CD28
(1:1,000; BD Sciences) at a density of 1 x 10° cells per mlin3 ml of CTS
OpTmizer T cell expansion SFM medium (Thermo Fisher), supple-
mented with interleukin (IL)-7 and IL-15 (10 ng mlI™ each; Miltenyi Bio-
tec). Buffy coats were obtained from the Barcelona Blood and Tissue
Bank uponinstitutional review board approval.

For nontargeted integration in bioprospected orthologs, on the
third day of culture, electroporation was conducted using the P3 pri-
mary cell 4D-Nucleofector X kit (Lonza). Cells were washed with PBS
(Capricorn) and adjusted to a concentration of 7.5 x 10° cells per condi-
tion. The cell suspension was prepared in 20 pl of nucleofection buffer,
consisting of 16.4 pl of P3 primary cell Nucleofector solutionand 3.6 pl
of supplement1(Lonza). Subsequently, 1 ug of each DNA plasmid was
addedtothe suspension and electroporation was carried out using the
EO-115 nucleofection program. The minimal backbone GenCircle-TIR_
CAR19-GFP transposon plasmid was used (GenCircle, manufactured
by Genscript). For each evaluated transposase, conditions with trans-
posase + transposon and transposon only were electroporated in
duplicates to differentiate between episomal and integrated signals.
Following electroporation, 80 pl of complete medium was added
and cells were incubated at 37 °C for 20 min. The cells were then care-
fully resuspended and transferred to a fresh p24 plate containing
500 pl of medium for recovery and expansion. Approximately one
third of the well volume was used for flow cytometric analysis using the
Aurora system (Cytek) to assess RFP expression levels at 4 and 7 days
after transfection.

For nontargeted integration of Al-generated orthologs, On the
third day of culture, electroporation was conducted using the P3 pri-
mary cell 4D-Nucleofector X kit (Lonza). Cells were washed with PBS
(Capricorn) and adjusted to a concentration of 1 x 10® cells per condi-
tion. The cell suspension was prepared in 20 pl of nucleofection buffer,
consisting of 16.4 pl of P3 primary cell Nucleofector solutionand 3.6 pl
of supplement1(Lonza). Subsequently, 1 ug of each DNA plasmid was
addedtothe suspension and electroporation was carried out using the
EH-115 nucleofection program. The minimal backbone GenCircle-TIR_
CARI19-GFP transposon plasmid was used (GenCircle, manufactured
by Genscript).For each evaluated transposase, conditions with trans-
posase + transposon and transposon only were electroporated in
duplicates to differentiate between episomal and integrated signals.
Followingelectroporation, 80 pl of complete medium was added and
cells were incubated at 37 °C for 20 min. The cells were then carefully
resuspended and transferred to a fresh p24 plate containing 500 pl
of medium for recovery and expansion. Medium supplemented with
H-151 (MedChemExpress, HY-112693) STING inhibitor at 2 puM was
added. Approximately one third of the well volume was used for flow
cytometric analysis using the Aurora system (Cytek) to assess GFP
expression levels at 4 and 7 days after transfection.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Experimentally tested transposon sequence files are available in
Supplementary Table 1. Top active transposon and transposase plas-
mids were deposited to Addgene.

Code availability
Modelfine-tuningand PiggyBacgeneration codeisavailable from Github
(https://github.com/Integra-tx/Piggybac_bioprospecting_pipeline).
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