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Grapevine pangenome facilitates trait 
genetics and genomic breeding
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Grapevine breeding is hindered by a limited understanding of the genetic 
basis of complex agronomic traits. This study constructs a graph-based 
pangenome reference (Grapepan v.1.0) from 18 newly generated phased 
telomere-to-telomere assemblies and 11 published assemblies. Using 
Grapepan v.1.0, we build a variation map with 9,105,787 short variations 
and 236,449 structural variations (SVs) from the resequencing data of 
466 grapevine cultivars. Integrating SVs into a genome-wide association 
study, we map 148 quantitative trait loci for 29 agronomic traits (50.7% 
newly identified), with 12 traits significantly contributed by SVs. The 
estimated heritability improves by 22.78% on average when including SVs. 
We discovered quantitative trait locus regions under divergent artificial 
selection in metabolism and berry development between wine and table 
grapes, respectively. Moreover, significant genetic correlations were 
detected among the 29 traits. Under a polygenic model, we conducted 
genomic predictions for each trait. In general, our study facilitates the 
breeding of superior cultivars via the genomic selection of multiple traits.

The cultivated grapevine (Vitis vinifera ssp. vinifera L.) is an economi-
cally important perennial fruit crop that is grown widely for winemaking 
and fresh fruit in ~94 countries1,2. Previous studies have suggested that 
grapevine originated from a single domestication event in the Black and 
Caspian Sea regions more than 10,000 years ago, which subsequently 
spread across the northern hemisphere with gene flow from local wild 
populations1–6. However, other studies have suggested the potential 
for multiple domestication events7–9. Since domestication, grapevine 
cultivars have accumulated deleterious genomic variants, including 
single-nucleotide polymorphisms (SNPs) and SVs, in a heterozygous 
state, resulting in strong inbreeding depression2,10. Recent studies have 
highlighted the potential contribution of hidden genomic variants, 

including SVs10–15, to phenotypes, but the quantitative genetic basis 
of complex agronomic traits in grapevine has rarely been investigated 
at the genome scale.

Long-read sequencing technologies have revealed the preva-
lence of SVs in plant genomes. It is increasingly evident that SVs are 
more likely than SNPs to influence the phenotype of domestication 
traits13,16–18. At the population level, SVs tend to occur at low frequencies, 
reflecting negative selection signals10,13,19. Furthermore, the frequency 
of SVs may be related to their recent origin. For example, recent trans-
posable element (TE) activity can generate new SVs that are initially 
present in only one individual or lineage20. In part because of their low 
population frequencies, SVs are typically in low linkage disequilibrium 
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to 312.10 Mb (59.03%) (Supplementary Table 4). In addition, we iden-
tified centromere and telomere sequences in all assemblies (Fig. 1c 
and Supplementary Table 5). Consistent with previous studies27, the 
predominant repeat unit of the centromere was 107 bp long. Overall, 
these 18 assembled haplotypes and their annotations represent one 
of the highest-quality grapevine genomic datasets generated to date.

To represent genetic diversity among grapevines, we collected 
11 previously published assemblies from five cultivars (one with 
haplotype-resolved assemblies and four primary assemblies) and 
four wild accessions (one with haplotype-resolved assemblies and three 
primary assemblies) (Fig. 1c and Supplementary Table 1). Using these 
samples, we investigated the heterozygosity within the genome. We 
found that the heterozygosities of Vitis retordii, V. arizonica, V. labrusca 
and V. vinifera ssp. sylvestris are significantly lower than those of the 
cultivars (excluding PNT2T, telomere-to-telomere grape genome of 
PN40024 (ref. 27)) (P < 0.05, Student’s t-test). For example, genome 
heterozygosity was 0.40% in V. labrusca compared with an average of 
1.42% across V. vinifera cultivars, whereas it was 1.66% in an interspecific 
hybrid (Shine Muscat, V. labrusca × V. vinifera) (Supplementary Fig. 3a). 
We also identified genome-wide presence and absence variations 
between the two haplotypes from our newly sequenced accessions. 
The results showed that an average of 12.57% (4,645) of genes were in 
a hemizygous state, which was identified as the entire gene structure 
affected by SVs (Supplementary Fig. 3b). Utilizing gene annotations 
obtained from these 18 grape accessions, we identified core and vari-
able gene families. Our analysis revealed a total of 30,268 gene families, 
with 19.07% identified as core families and 77.00% categorized as vari-
able families, including 20.40% soft-core families and 56.60% nones-
sential families. In addition, 3.93% of the identified gene families were 
classified as private (Supplementary Fig. 4).

An unbiased pangenome reference is crucial for discovering global 
genetic diversity, including SVs, among grape genomes. Using 29 hap-
lotypes from the sequenced samples, we constructed two graph-based 
pangenomes based on the PanGenome Graph Builder (PGGB) and 
Minigraph-Cactus (MC) programs. The total length of the MC-based 
pangenome (Grapepan v.1.0) reached 1.43 Gb, which is 2.88 times 
that of the PNT2T genome (Fig. 1d). We identified SVs from graph 
deconstruction and integrated assembly alignments to validate the 
sensitivity and precision of SV detection and then repositioned SVs 
using PNT2T coordinates. Altogether, we detected 236,449 reliable 
SVs with high precision (Fig. 1e), and we verified large SVs (>10 kb) by 
mapping HiFi reads (Supplementary Fig. 5). The PGGB pangenome 
provided a similar result to the MC pangenome (Supplementary Fig. 6). 
Based on the Grapepan v.1.0 SV map, we found a biased distribution of 
SVs throughout the genome, including two SV hotspots near the cen-
tromeres of chromosome (Chr) 9 and Chr19 (Supplementary Fig. 7a). A 
significant fraction of the observed SVs had low population frequencies 
(Supplementary Fig. 7b). On average, 88.6% of the SVs overlapped TEs, 
whereas 30.9% intersected gene structures (Supplementary Fig. 7c,d). 
The high concordance between TEs and SVs indicates that the former 
play a critical role in driving genetic variation events.

To expand the genome-wide SV map, we integrated short-read 
sequencing data from 466 accessions, including 324 that were 
newly sequenced (Supplementary Tables 6 and 7). The genotypes 
of pangenome-based SVs in these accessions were characterized, 

(LD) with SNPs. One practical implication of low LD is that SVs may 
encompass substantial missing heritability for quantitative traits10,13. 
Consistent with this viewpoint, the addition of SVs to population and 
quantitative genetic analyses has yielded new insights into local adapta-
tion and agronomic traits12,13,17,21.

Grapevine genomes are highly heterozygous, partly because of 
the accumulation of genetic variation during clonal propagation, 
which has been carried out for thousands of years6,10,22,23. For example, 
the genomes of diploid Chardonnay and Cabernet Sauvignon contain 
more than 10% heterozygous sites including SNPs, insertion–dele-
tions (indels) and SVs10,24,25. Although the commonly used reference 
genome from PN40024 was highly homozygous after nine generations 
of selfing, it is missing >10% of genes compared with heterozygous 
cultivars26,27. Across cultivars, only ~7% of the genes are shared, whereas 
~8% are unique to each individual28. The high level of variability in 
grapevine merits the construction of a pangenome reference that 
incorporates presence–absence variation, improves the detection 
of genomic variants, including SV, and reduces reference biases29–34.

Here we assembled 18 haplotype-resolved telomere-to-telomere 
(T2T) assemblies representing eight diploid grapevine cultivars and 
one diploid wild grape. We then constructed a graph-based pange-
nome, which we call Grapepan v.1.0, using these new assemblies and 
11 previously published chromosomal assemblies. These genotypes 
represent the global genetic diversity of grapes. Using Grapepan v.1.0, 
we built a variation map that includes SNPs, indels (2 bp ≤ indel < 50 bp) 
and SVs (≥50 bp) across a larger sample of 466 accessions, including 
324 that were newly sequenced. We utilized this variation map in a 
genome-wide association study (GWAS) and the genomic prediction 
of 29 complex agronomic traits. This exercise identified quantitative 
trait loci (QTLs) for these agronomic traits, provided unique insights 
into the contribution of SVs to quantitative genetic variation and dem-
onstrated the feasibility of breeding superior cultivars via genomic 
selection for multiple traits. The pangenome reference (Grapepan 
v.1.0), variation map, QTLs and our genomic selection models facilitate 
genomic breeding of grapevine.

Results
The graph pangenome reference for grapevine (Grapepan 
v.1.0)
HiFi reads, Hi-C reads and ultra-long nanopore reads were collected for 
nine representative diploid samples, including one accession of Vitis 
retordii, a wild species endemic to Asia, and eight grapevine cultivars 
(seven table grapes and one wine grape) (Supplementary Table 1). The 
nine samples resulted in 18 haplotypes that reached T2T-level assembly 
after gap filling (Supplementary Fig. 1). Genome sizes ranged from 
479.15 to 539.30 Mb (Supplementary Table 2). The quality of haplo-
type assembly was confirmed by high contiguity (>99.9%), minimal 
switching error (<0.05%) and low Hamming error35 (<2.83%) (Fig. 1a,b 
and Supplementary Table 3). Benchmarking universal single-copy 
orthologs evaluation indicated an average completeness of 98.4% for 
these haplotypes (range 98.07% to 98.64%; Supplementary Fig. 2). We 
used the same pipeline to annotate all haplotypes and to ensure con-
sistent results. Across the 18 haplotypes, the number of protein-coding 
genes ranged from 34,536 to 38,526 (Supplementary Table 2), and the 
TE sequence length per haplotype ranged from 263.86 Mb (54.68%) 

Fig. 1 | T2T genome assemblies and the construction of Grapepan v.1.0.  
a, NGx plot showing the assembly continuity of the 18 newly assembled 
haplotypes compared with the published PNT2T assembly. Two haplotypes 
(haplotype 1 and haplotype 2) of the same individual are distinguished.  
b, Assessment of the assembly for nine sequenced grape accessions (BMNG, 
HMNG, MH, WG, MF, PN, SM, TS and BM). The quality values demonstrate the 
base-level accuracy of each sample. The phasing accuracy is indicated by the 
percentages of switch errors and hamming errors. c, Comparative genomics of 
27 (published genomes only selected the primary haplotype) assemblies and 

one assembly of Muscadinia rotundifolia as outgroup for chromosome 1. d, Total 
length of MC pangenome sequences with different numbers of haplotypes; 
M represents megabase pairs and G represents gigabase pairs. e, Validation of 
pangenome deletions and insertions involved counting SVs of varying lengths 
and calculating the accuracy. f, PCA of the first two components of the 466 
sequenced grape accessions. Different grape groups are distinguished by 
different colors. The samples used to construct Grapepan v.1.0 represent a wide 
range of genetic diversity. PC, principal component. g, The decay of LD was 
calculated based on three different datasets: SVs, SNPs and SVs + SNPs.
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providing a more thorough understanding of SV frequencies across a 
diverse set of accessions. In total, the variation map contained 8,591,818 
SNPs, 513,969 indels and 236,449 SVs.

Grapepan v.1.0-based population structure of grapevine
We used the genome-wide SNPs to explore genetic relationships among 
grapes (Fig. 1f and Supplementary Fig. 8). Population structure analy-
ses identified three major grape species or subspecies (V. labrusca, V. 
vinifera ssp. sylvestris and V. vinifera ssp. vinifera) within 466 collected 
grape accessions (Supplementary Figs. 9 and 10). We further analyzed 
modern cultivars of V. vinifera ssp. vinifera, which separated into three 
groups upon ADMIXTURE and PHATE analyses: winemaking varieties 
from Europe and the Middle East (Wine), and two groups of table grapes, 
one from Europe and Eastern Asia (Table1) and one from hybridization 
with V. labrusca (Table2, V. labrusca × V. vinifera). The Wine group had 
a high identity-by-state value (0.82), indicating a long history of shared 
genomic segments (Supplementary Fig. 11). The recent hybrid origin 
of the Table2 group may contribute to its lower identity-by-state value 
(0.79), low recessive deleterious burden and relatively high heterozy-
gous burden compared with other groups. These observations support 
the vigorous phenotypes of Table2 grapes, because their deleterious 
burden is hidden in the heterozygous state owing to their hybrid origin 
(Supplementary Fig. 12). We assessed LD decay using both SNPs and 
SVs within the Wine and Table1 groups. LD decay was consistent across 
groups and rapid, but although was even more rapid among SVs (Fig. 1g 
and Supplementary Fig. 13). This rapid decay likely reflects the fact 
that SVs were typically observed in low frequencies (Supplementary 
Figs. 14 and 15). However, the rapid decay of LD between SVs and SNPs 
suggests that part of the missing heritability for quantitative traits 
could be hidden among SVs in the grape genome10.

GWAS of complex agronomic traits and the importance of SVs
To investigate the contribution of SVs to quantitative traits, we per-
formed a phenotypic survey of 29 traits over 2 years (2016 and 2017) 
for the 324 newly sequenced accessions (Fig. 2a). The sample of 324 
cultivars included 106 Wine grapes, 108 Table1 grapes and 110 Table2 
grapes (Supplementary Fig. 16). The 29 traits comprised five pheno-
typic categories: bunch (six), contents (eight), berry traits (eight), fruit 
size (four) and skin (three) (Fig. 2a). GWAS has been used to investigate 
phenotypic traits related to the composition and dimensions of fruit 
using ~6,000 SNPs36. Our larger sample size and genome-scale variants 
facilitate genomic selection for multiple traits simultaneously. We 
began by analyzing correlations among quantitative traits over the 
2 years (Supplementary Fig. 17) and by mapping phenotypes in princi-
pal component analysis (PCA) (Fig. 2b). In the berry content category, 
pairwise correlations for the traits fructose (Fru), glucose (Glu) and 
soluble solids content (SSC) were significantly positive (P < 0.001). 
Traits were also correlated between different categories. For example, 
titratable acid (TAC) of the content category had a significant negative 
correlation with four measurements of fruit size: berry weight (BeWe), 
berry volume (BV), berry length (BL) and berry width (BeWi) (P < 0.001; 
Supplementary Fig. 17). These correlations likely follow from the fact 
that the synthesis of acids typically ceases during veraison, and this 
cessation contributes to the dilution of acid concentrations as the fruit 
continues to ripen and expand36. These correlations among phenotypes 
may lead to an overlap of some candidate GWAS loci and have potential 
implications for the genomic selection of elite grape varieties with 
multiple desirable traits.

To elucidate differences in 29 agronomic traits at the population 
level, we performed uniform manifold approximation and projection 
(UMAP) analyses. The first two components (UMAP1 and UMAP2) 
established trait differences between the Wine, Table1 and Table2 
groups. Within-group trait distances were significantly lower than 
between-group distances (P < 0.001) (Fig. 2d). We then mapped the 
normalized values of agronomic traits onto the UMAP analysis to 

characterize the distribution of each trait among three groups. We 
found that 25 of 29 agronomic traits were evenly distributed without 
obvious group differences (Fig. 2c and Supplementary Fig. 18).

Previous GWAS analyses have faced challenges in simultaneously 
accommodating a large variety of cultivars, multiple phenotypic traits 
and high-resolution data analysis37–39, and no previous study of grape-
vine has included SVs in GWAS analyses. We performed GWAS analyses 
of SNPs and SVs using Grapepan v.1.0, based on a joint dataset contain-
ing 2 years of GWAS results (Fig. 3a). A total of 148 loci were significantly 
associated with agronomic traits, including 136 genomic regions that 
were detected by SNPs and 12 that were captured by SVs. Altogether, 
27.61 Mb (~5.58%) of the genome was associated with at least one of 
the 29 agronomic traits (Supplementary Table 8). Of the 148 candi-
date regions, 26 (~17.57%) overlapped with loci identified by previous 
functional studies (Supplementary Table 9). For example, based on 
the SNP dataset, we detected a locus associated with the seedless or 
seedness trait on grapes in Chr18 (31.41–31.45 Mb), which contains a 
MADS-box gene, agamous-like 11 (AGL11), responsible for the develop-
ment of ovules into seeds after fertilization40. Similarly, we identified 
a 95-bp deletion in the BL1 locus that was significantly associated with 
grape berry length. This variant, which was located in the exon region 
of Vitvi011427 and encodes a NAD(P)-linked oxidoreductase super-
family protein, had a phenotypic variation explained (PVE) value of 
6.31% and was present in 20.4% of sequenced grapes (Fig. 3b and Sup-
plementary Table 8). In addition, a significant 1.1 kb deletion in the 
SN6 locus had a PVE of 6.08%, was associated with a photolyase cod-
ing gene Vitvi030206 and had a frequency of 13.0% across sequenced 
grapes (Fig. 3c). A 139 bp insertion specific to Table2 grapes was located 
in the Suc1 locus associated with sucrose content, demonstrated a 
PVE of 6.60% and was present in 56.9% of Table2 grapes (Fig. 3d). This 
insertion is close to a gene homologous to AtRHM1, which encodes 
an enzyme involved in UDP-beta-l-rhamnose biosynthesis. We also 
performed GWAS of the SNP dataset from the PNT2T single reference 
genome. We found that 124 of 136 (91.18%) loci were detected by both 
the pangenome SNP and PNT2T reference SNP (Supplementary Fig. 19). 
Collectively, our GWAS analysis based on the pangenome integrated 
SVs and SNPs to improve mapping of important traits.

We compared candidate GWAS loci for traits from different phe-
notypic categories and found a candidate locus (SSC7, Chr17:6.47–
6.53 Mb) for SSC that was close to a candidate locus (BeWi9, 
Chr17:6.47–6.65 Mb) responsible for berry width. There were two 
most significant SNPs (17_6489512 and 17_6484258) with PVE values 
of 6.05% and 5.91% for SSC7 and BeWi9 loci, respectively (Fig. 3e,f). 
We constructed a local phylogenetic tree using the variations from 
the combined region (6.47–6.65 Mb). The tree featured a tight clus-
ter within cultivated grape groups that had an extremely short inner 
branch length (Supplementary Fig. 20). The combined region had low 
genetic diversity compared with the rest of the genome, suggesting a 
selective sweep (Fig. 3g). The homozygous genotype of SNP 17_6489512 
showed significantly lower soluble solids content (P = 6.778 × 10−4) 
and the homozygous genotype of SNP 17_6484258 showed significant 
higher berry width (P < 1.12 × 10 −15) (Fig. 3h). Based on the genome 
annotation in this locus, we identified two gene clusters, the NEPS 
([−]-isopiperitenol and/or [−]-carveol dehydrogenase) family (five 
members) and NRT1 (nitrate or dipeptide and/or tripeptide transport-
ers) family (four members), and examined the expression of these 
genes in berries (Fig. 3i). Vitvi031750 of the NEPS family and Vitvi031760 
of the NRT1 family had significantly high expression in four grapevine 
cultivars of both haplotypes, whereas the expression of Vitvi031756 
in two Wine grapes (Merlot and Cabernet Sauvignon) was higher than 
Table1 grapes (Fujiminori and Venus Seedless).

Divergent selection on agronomic traits in grapevine
To determine whether the QTLs associated with complex traits were 
under selection during divergence between populations, we performed 
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XP-EHH (cross population extended haplotype homozogysity)41 analy-
ses between the two table grape groups (Table1 and Table2). We found 
a total of 21.45 Mb (4.4%) regions that were significantly differenti-
ated (P < 0.05) (Fig. 4a). The top 5% outliers in fixation statistics (FST) 
analysis showed a similar pattern (Supplementary Fig. 21). Gene set 
enrichment analysis (GSEA) revealed enrichment of four Gene Ontology 
(GO) terms associated with hormone responses and stress responses 
among the set of genes in the diverged genomic regions (Fig. 4c). Com-
paring the highly differentiated regions with the regions associated 
with phenotypes, six GWAS candidate loci were located in divergent 
genomic regions, and these were associated with berry color (BC4 
locus), skin astringent (SA1), berry shape (BeS2), bunch weight (BuW5), 
flesh firmness (FF6) and tartaric acid content (Tar4) (Supplementary 
Fig. 22). Among them, a BC4 locus containing multiple MYB genes on 
Chr2 associated with berry color42 based on the pangenome SV dataset 
(Supplementary Table 10). The FF6 locus explained 7.35% of the vari-
ation for flesh firmness, which differed between groups because the 
Table2 group had an 11.7% increase in flesh firmness compared with 
the Table1 group (P < 0.01) (Supplementary Fig. 23).

The different usage of grapevine cultivars (for winemaking or 
consumption as fresh fruit) might drive genetic and phenotypic diver-
gence between cultivated populations. We found that approximately 
21.35 Mb of the genomic region was significantly different between the 
Wine group and the Table1 group based on XP-EHH analysis (P < 0.05) 
(Fig. 4b). The GSEA results indicate that amino sugar, glutathione 
and chitin metabolic processes, and the toxin catabolic process are 
enriched in the differentiated genomic regions (Fig. 4d). We detected 45 
candidate GWAS loci associated with population divergent regions that 
determine berry size across five traits: BeWi, BL, BV, BeWe and weight 
of a single bunch (Supplementary Table 8). Metabolites provide rich 
flavors to wine, and 32 related candidate loci were enriched based on 
eight metabolic phenotypes (TAC, SSC, Glu, Fru, Suc, Tar, malic acid and 
citric acid). Within the diverged regions, we also identified five GWAS 
candidate loci (BV12, BeWe6, BuW2, BV15 and BeWi9) associated with 
fruit size, and two GWAS candidate loci (TAC3 and SSC7) associated 
with metabolites (Supplementary Fig. 22 and Supplementary Table 11). 
Overall, our analysis suggests that divergent selection on agronomic 
traits is associated with different breeding targets.
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SVs enhance heritability estimates for grape traits
Because most SVs are not linked with SNPs (Fig. 1g), they could poten-
tially contribute to the missing heritability in association analyses and 
genomic scanning tests13; in fact, we have already shown that a few 
candidate GWAS regions were identified with only SVs and not SNPs. 
We further investigated the contribution of SVs to phenotypic traits 
by using the LDAK model to estimate the proportion of phenotypic 
variance that is explained by genetic variants. The use of only SVs or 
SNPs limited the power of prediction for most agronomic traits, with 
the heritability contributed by SNPs ranging from 0.01% to 52.3% 
and that contributed by SVs ranging from 0.5% to 86.1% (Fig. 5a). 
The response to quantitative traits was dominated by SNPs, which 
implies polygenic architecture with minor effects from many loci, 
whereas qualitative traits were mostly affected by SVs with poten-
tially large effects. Our analysis indicated that SVs contributed more 
to the heritability of 15 traits than SNPs. For example, genome-wide 

SVs explained 74.6% of the variance in BeWi but genome-wide SNPs 
explained only 0.5% (Fig. 5a). Similarly, SVs contributed 35.8% of the 
captured heritability in the SSC, but SNPs contributed only 0.6%. One 
5.6 kb deletion on Chr7 explained 6.23% of the PVE for SSC (SSC2, 
Chr7:2029369–2032050) (Fig. 5c). The Wine grape accessions with 
a heterozygous deletion of this SV had a significantly lower SSC than 
accessions without the deletion. We suspect this might be related to 
the regulation of Vitvi011368, a gene encoding an isoamylase. The 
GWAS result revealed a significant association between BL and an SNP 
(BL2 locus, Chr10_9052243, PVE: 6.63%) (Fig. 5d). SNPs contributed to 
20.9% of the captured heritability in BL, whereas SVs further improved 
the captured heritability to 64.9%.

We calculated the genetic correlation between traits to assess 
the genomic selection of multiple traits for grape breeding. We com-
bined pangenome SVs and SNPs to calculate pairwise genetic cor-
relations among 29 traits, 20.7% of which showed a significant signal 
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(P < 0.05). The genetic correlations (rG value) between various traits 
of fruits ranged from 0.41 to 0.97, suggesting a potential for concur-
rent selection of multiple traits in future breeding efforts (Fig. 5b). 
Single BeWe (SV heritability = 63.7%) and BL (SV heritability = 54.0%) 
were the main hubs of pairwise genetic correlations. Polygenic scores 
(PGS) can be used to aggregate effects across many genetic variants 
into a single predictive score, enabling the assessment of genome 

selection43. We evaluated PGS on the basis of GWAS summary statistics 
(pangenome SNPs + SVs) based on two derivation methods for all 29 
traits (Supplementary Fig. 24 and Supplementary Table 12). The PGS 
prediction accuracy averaged >50% across all traits. As expected, traits 
with higher captured heritability tend to show improved prediction 
accuracy. The predictive accuracies obtained in this study showed 
improvements of at least 16%, and often higher, relative to previously 
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reports for grapevines36,37. In particular, we found that BL has a higher 
heritability (74.9%), exceeding the 36.4% heritability captured in SSC. 
The PGS prediction showed an accuracy of 57.46% in SSC and 79.53% 
in berry length (BL) (Fig. 5e,f). Collectively, our analyses enable sub-
stantial prediction of agronomic traits in the grape breeding program.

Discussion
Accelerating the innovation of grape varieties is urgently required 
to adapt to future planting, rapidly changing market demands and 
climate change. Grape breeding exhibits a degree of reliance on older 
varieties; in particular, clonal reproduction allows the preservation 
of genotypes over extended periods, some of which are older than 
900 years22. Advances in grapevine breeding lag far behind those made 
in annual cereal crops because of their long generation times (~3 years 
on average), high deleterious burden that leads to inbreeding and/or 
hybrid depression, high genomic heterozygosity, inefficient genetic 
transformations and limited knowledge about the genetic basis of 
complex agronomic traits.

Progress in understanding the complexity of the grapevine over 
the past two decades, from phenotypic characterization to marker 
identification and association analysis, has greatly benefited breed-
ing efforts. Early breeding emphasized correlation analysis between 
phenotypic traits and low-density genetic markers, and selected pheno-
typic traits through marker-assisted selection36,39,44. Using association 
analyses, researchers have linked specific genetic variations to desir-
able phenotypic traits, providing breeders with valuable tools for the 
targeted selection of multiple phenotypes, including berry size, color 
and sugar content37–39,45. These efforts have led to significant contri-
butions such as the development of seedless grape varieties and the 
enhancement of disease resistance in grapevines46,47. However, limita-
tions inherent in detecting variations within a single reference genome 
hinder the identification of crucial variants associated with breeding 
traits and a comprehensive analysis of agronomic trait inheritance.

Advanced pangenome-based approaches underscore broader 
efforts aimed at discovering genetic variants in crop breeding48. Recent 
research has focused on North American wild grapevines and has 
established a nonreference pangenome inclusive of nine wild acces-
sions32. Their sequencing encompasses the diversity of wild grapevine 
species, aiming to integrate resistance variants from wild species for 
use in rootstock improvement. By contrast, our pangenome (Grapepan 
v.1.0) focuses on discovering variants associated with agronomic traits 
in domesticated grapevines. We selected representative cultivated 
varieties to construct the pangenome. We also included table grape 
varieties to expand diversity across grape populations with different 
uses49. Therefore, our pangenome may contain more advantageous 
genotypes related to domesticated traits, thus directly serving breed-
ing programs. We utilized a graph-based approach in which any variant 
is integrated as a node within the pangenome reference. Indeed, the 
most significant enhancement of the pangenome lies in the discovery 
of SVs30,50. The number of newly discovered SNPs differs only slightly 
compared with alignment with a single reference genome or previous 
pangenome versions32. Thus, our grape pangenome places greater 

emphasis on uncovering traits associated with SVs and revealing their 
inheritance patterns.

In Grapepan v.1.0, SVs often associated with repetitive sequences 
and TEs, suggesting that TE-mediated events are an important evolu-
tionary force49,51,52. The low frequency of SVs in the grapevine genome 
can be attributed to recent TE activity and the evolutionary constraints 
imposed by natural selection. This poses challenges in precisely con-
trolling the breeding process when relying solely on SNP for trait 
selection. This challenge is exacerbated by the incomplete capture of 
heritability for multiple traits, particularly from SVs, which might be 
related to two factors. First, LD decay can influence the resolution of 
genetic mapping and the identification of causal variants53. Second, SVs 
are often found to generate and explain a greater proportion of pheno-
typic variation in numerous traits compared with SNPs54. The rarity of 
SVs also makes it difficult to accurately estimate their frequency and 
effect size within a population10. Consequently, the statistical power 
to detect associations involving rare SVs is lower than that for SNPs. In 
addition, SVs are larger relative to SNPs and can engender more imme-
diate functional consequences, such as perturbations in gene dosage 
or the disruption of critical gene regulatory elements16,31. For example, 
SVs contribute the largest share of heritability for approximately half 
of the molecular traits in tomatoes, the identification of SVs based 
on pangenome has greatly increased estimates of the heritability of 
metabolic traits17. In foxtail millet, the precision of 73.9% of traits with 
both SNP and SV markers increased by between 0.04% and 12.67% com-
pared with SNP-only markers14. Fruit color serves as a key trait in grape 
breeding, renowned for its association with SV determination10,55,56. We 
confirmed the higher heritability in fruit color contributed by SV and 
emphasized the power and accuracy of SV-based GWAS and genomic 
selection. We have found that the inheritance of an isoamylase gene 
associated with a 5.6-kb deletion explained 6.23% of the variance in 
SSC. Collectively, a deep understanding of SVs based on the pange-
nome will greatly improve the efficiency of SV-associated analysis for 
grapevine breeding44,48.

The ultimate goal of genomic breeding is to build superior culti-
vars by combining beneficial alleles underlying multiple agronomic 
traits of interest, while purging or hiding moderate-to-strong deleteri-
ous variants (including SNPs and SVs)57,58. Interestingly, we found strong 
genetic correlations among the 29 grape agronomic traits investigated, 
which allowed us to predict multiple traits during the same breed-
ing cycle and decrease the time and monetary costs of breeding. In 
particular, SV-based genomic selection will play an excellent role in 
programs integrating multiple breeding traits. Overall, our Grapepan 
v.1.0, variation map, and the genomic prediction will greatly facilitate 
grapevine genomic breeding.
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Fig. 5 | Missing heritability, genetic correlations and genomic predictions  
of agronomic traits. a, The heritability of 29 traits contributed by genomic  
SVs and SNPs. The contributions from SNP and SV were distinguished. b, The 
genetic correlations among 29 traits. FDR (Benjamini–Hochberg) corrected.  
c, The genotypes of the gene Vitvi011368 and SSC in each group. Top, schematic 
diagram of a deletion in the region including the gene Vitvi011368. Bottom, SSC2 
values in each group with different genotypes (center line, median; box limits, 
first and third quartiles; whiskers, 1.5× interquartile range). The sample sizes, 
from left to right, are [6, 50, 54], [6, 40, 61] and [10, 42, 50]. Statistical significance 
was determined using two-sided Student’s t-tests. d, GWAS result and LD analysis 
of the BL2 locus, which contained a candidate gene, Vitvi018414. Differences in 
BL between populations and genotypes were estimated (center line, median; box 

limits, first and third quartiles; whiskers, 1.5× interquartile range). The sample 
sizes, from left to right, are [38, 70], [12, 96] and [103, 3]. Statistical significance 
was determined using two-sided Student’s t-tests. e, Linear regression analysis 
for phenotype prediction between SSC2 values and values predicted by LDpred2-
auto. The confidence interval (CI) is shown by gray shading. The smoothed line 
represents a linear regression fit of the actual data, and the shading represents 
the CI. Sample size n = 29. f, Linear regression analysis for phenotype prediction 
between BL values and predicted values by lassoum2. The significance of the 
linear relationship between variables was evaluated through Pearson correlation 
coefficients. The smoothed line represents a linear regression fit of the actual 
data, and the shading represents the CI. Sample size n = 29. °Bx, degrees Brix; NS, 
nonsignificant.
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Methods
Samples and genome sequencing
We collected nine grape accessions for genome assemblies, including 
seven V. vinifera ssp. vinifera (six Table1 grapes and one Wine grape), 
one V. labrusca × vinifera hybrid (Table2) and one V. retordii grape (Sup-
plementary Table 1). We generated HiFi, Hi-C and ONT (Oxford Nano-
pore) ultra-long 150-kb reads for three grape accessions (Manicure 
Finger, Muscat Hamburg and Shine Muscat) and ONT ultra-long reads 
for the other six samples (the HiFi and Hi-C reads were obtained from 
other studies that have been published or will be published soon59–61).

We also obtained 11 previously published grape genome haplo-
types from 9 grape accessions10,24,25,27,62–64 (Supplementary Table 1). 
Notably, haplotype-resolved assemblies were achieved for Cabernet 
Sauvignon63 and V. arizonica grape. These 18 grape accessions were 
utilized for core and/or variable gene family analysis, and 29 corre-
sponding haplotypes were used to construct the graph pangenome.

We collected 324 modern cultivars of V. vinifera ssp. vinifera, 
including 106 Wine grapes, 108 Table1 grapes and 110 Table2 grapes, 
from the experimental orchard of Zhengzhou Fruit Research Institute 
of the Chinese Academy of Agricultural Sciences (Zhengzhou, China). 
The genomic DNA of these accessions was used for genome sequencing 
(15-fold coverage) (Supplementary Table 6). These newly sequenced 
data were used for subsequent analyses, including GWAS analysis, 
genomic prediction, heritability estimation and genetic correlation 
calculation. To improve population genome analysis, we also collected 
previously published resequencing data from 139 grape accessions and 
three outgroups6,64–66. These data were download from the National 
Center for Biotechnology Information (NCBI) database (Supplemen-
tary Table 6). Altogether, 466 grape varieties were used to investigate 
population structure, genetic diversity and genetic differentiation. This 
study provides a detailed description of the grape samples used for 
genome assembly and short-reads sequencing (Supplementary Notes).

De novo genome assembly
For nine genome assemblies, the HiFi and ONT reads with Hi-C reads 
were integrated for self-correction, trimmed and assembled using the 
Hifiasm67 program (v.0.19.5-r587). For each accession, the contig-level 
assemblies were anchored and oriented to 19 chromosomes based 
on the reference-guided software RagTag68 (v.1.0.1). The two sets of 
HiFi contigs were then validated, grouped, sorted and anchored with 
the Hi-C reads to generate two pseudochromosomes, by using Juicer 
(v.1.5)69 and 3D-DNA (v.201008)70. In addition, we utilized Juicebox 
(v.1.11.08) to visualize and check the Hi-C data. We analyzed the gaps 
in these assembled haplotypes. These gaps were filled based on reads 
mapping and assembled scaffolds using the ONT data. We used Next-
Denovo71 (v.2.5.0) to generate the ONT assemblies. We then used Mini-
map2 (v.2.26)72 to map the ONT reads to the genome. Combined with 
Integrative Genomics Viewer visualization73, we identified split reads 
and estimated gaps. The gaps were closed with ONT assemblies with 
HiFi reads polished. Therefore, we obtained 18 gap-free T2T haplotypes 
from 9 newly sequenced grapes. The completeness of genome assem-
bly was checked according to the benchmarking universal single-copy 
orthologs score74, and phase errors were verified by Hamming error and 
switch error. Genome heterozygosity was estimated with a k-mer-based 
approach using kmc75 (v.3.2.2) and GenomeScope2.0 (ref. 76) programs.

The annotation of genome assemblies
We used the same pipeline to annotate gene structure and repetitive 
sequences in all 29 haplotypes. For gene annotation, expression data 
were collected from various tissues, including flowers, leaves, stems, 
roots and fruits (PRJNA565689 and PRJNA434655). To improve the 
annotation process, we used Hisat2 (v.2.10.2)77 to align RNA sequenc-
ing reads against the repeat-masked assemblies. The mapping states 
were extracted using StringTie78 (v.1.3.0). We mainly relied on customs 
scripts that integrated Braker79 (v.3.0.2), PASA80 (v.2.5.1) and MAKER81 

(v.3.01.03) programs for our genome annotations. We developed gene 
models and conducted subsequent searches utilizing AUGUSTUS82 
(v.3.4.0). Incomplete genes and low confidence gene structures were 
filtered based on hidden Markov models and Pfam83 (v.1.6) database. 
TEs were identified using multiple combined programs. We generated 
the nonredundant TE catalogs using RepeatModeler84 (v.2.0.4) based 
on all haplotypes. At the same time, we improved the nonredundant 
TE annotation based on the program EDTA85 (v.2.0.1). RepeatMasker86 
(v.4.1.2) was used to execute homolog annotation.

Telomere repeat units were investigated utilizing TIDK (v.0.2.0). 
The entire genome underwent an in-depth search and we generated 
statistics pertaining to telomere regions and visualized the telomere 
peaks. To investigate tandem repetitive sequences, we used Tandem 
Repeats Finder87 (v.4.09) to generate the statistics of the number of 
repeats and position information. These statistics were combined to 
annotate the centromeric repeats.

Comparative genomics
We performed genome alignments based on 27 haplotypes (18 newly 
generated and 9 previously published) from 18 representative grape 
accessions. We additionally collected one assembly from outgroup 
Muscadinia rotundifolia88. Haplotype sequences were aligned using 
SyRI89 (v.1.6.3) and the resulting alignments visualized using Plotsr90 
(v.1.0.0). A set of homologous genes was estimated based on gene 
family clustering using Orthofinder91 (v.2.5.2). The resulting statistical 
summaries were used for identifying the core and nonessential gene 
family sets.

Construction of the graph pangenome reference (Grapepan 
v.1.0)
To represent the genetic diversity of grapes, we constructed a 
graph pangenome that incorporated a total of 29 haplotype assem-
blies, including 18 newly sequenced haplotype assemblies from 9 
phase-resolved accessions and 11 previously published assemblies 
based on continuous long read data (two phase-resolved and seven 
primary assemblies). Based on these genome assemblies, we used two 
tools to build graph pangenome, MC (v.2.6.11)92 and PGGB (v.0.5.4)93, 
respectively. We combined reads mapping and assembled alignments 
to validate the graph paths, edges and nodes in the grape pangenome. 
To address the issue of small fragments in assemblies, we implemented 
filtering steps to exclude minor, fragmented and diverse assemblies 
that could introduce the wrong structures.

Pangenome variation maps
The complex regions of the PGGB pangenome may introduce additional 
challenges and uncertainties during SV genotyping based on Illumina 
sequencing data. Therefore, we chose to use the MC pangenome (Gra-
pepan v1.0) to generate the SV set for population-scale SV genotyping. 
We used the PNT2T assembly as the reference to order the position 
of variations. We deconstructed the MC pangenome to obtain an SV 
map. At the same time, we identified SVs by aligning assemblies using 
SVIM-asm94 (v.1.0.3). To validate these pangenome SVs, we compared 
the SV generated by MC and SVIM-asm and obtained three validation 
metrics (precise, recall ratio and f1 score) using the program Truvari95 
(v.4.1.0). The high-quality pangenome SVs were filtered for downstream 
analysis. To performed GWAS using SVs in a large population, we geno-
type the pangenome SVs in 466 sequenced grape accessions. We used 
vcfbub (v.0.1.0) to filter SV, processing input variants. We used the 
re-genotyping tool PanGenie50 (v2.1.0) to determine unique k-mers in 
the graph with PanGenie index. We then executed the PanGenie com-
mand on each accession and combined these VCF (variant call format) 
files to generate a merged SV map. We then distinguished biallelic and 
multiallelic variants. The resulting biallelic bubble-based VCF was used 
for downstream GWAS analysis, whereas the multiallelic bubble-based 
VCF was used for haplotype graph classification.
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In addition, we generated pangenome SNPs and indels maps based 
on these sequenced grape accessions. We mapped 466 short reads 
to Grapepan v.1.0 using the Giraffe command from the vg program 
(v.1.51.0) and generated a BAM file for each accession. Small variants 
were identified by GTX (http://www.gtxlab.com/product/cat) (v.2.2.1) 
based on the BAM files. The decay of LD between SNPs and SVs was 
estimated using nonlinear regression of pairwise r2. LD was calculated 
using PLINK96 (v.3.31) and LD decay graphs were plotted using PopLD-
decay97 (v.3.26).

Population genetic analyses
We analyzed population structure based on 466 whole-genome 
sequencing data. The maximum likelihood (ML) tree was constructed 
using IQ-TREE98 (v.1.6.619) based on the VT + F + R5 model. The reliabil-
ity of the ML tree was estimated using the ultrafast bootstrap approach 
with 1,000 replicates. Figtree and an online tool iTOL (Interactive 
Tree of Life v.3, https://itol.embl.de) were used to display the ML tree. 
Population structure was analyzed using the ADMIXTURE99 (v.1.3) pro-
gram with a block-relaxation algorithm. To explore the convergence of 
individuals, we ran the cross-validation error procedure with K from 2 
to 8. PCA was performed using PLINK (v.1.9). Two-dimensional PHATE 
embedding was generated using the first 20 principal components in 
the program phateR (v.1.0.7).

The genome divergence between different grape groups was 
estimate based on XP-EHH by using the selscan program100 (v.2.0.0). To 
identify candidate regions potentially affected by selections, nucleo-
tide diversity and population FST were calculated based on vcftools101 
(v.0.1.13) and genomics_general (https://github.com/simonhmartin/
genomics_general).

Measurement of 29 agronomic traits
Phenotyping of traditional core-cultivated grapes was performed in the 
experimental fields of the Zhengzhou Institute of Fruit Trees (Zheng-
zhou, China) in the spring and summer of 2016 and 2017 (over two 
growing seasons). Three clones were investigated per grape accession. 
We investigated 29 agronomic traits in field experiments. The meas-
urements and criteria for 21 phenotypes were based on standardized 
protocols from the International Organization of Vine and Wine, with 
minor adaptations made for certain traits as necessary. The remaining 
eight agronomic traits were defined based on our field experience. 
All specific methods for phenotypic measurement and definitions of 
phenotypes can be found in Supplementary Notes. Our 29 phenotypic 
traits included five phenotypic categories: six traits in bunch category 
(bunch shape, number of wings of the primary bunch, number of sub-
sidiary bunches, bunch density, weight of a single bunch and ease of 
detachment from pedicel), eight traits in content category (SSC, Glu, 
Fru, Suc, TAC, Tar, malic acid and citric acid), eight traits in berry traits 
category (firmness of flesh, juiciness of flesh, particularity of flavor, 
number of seeds, length of seeds, berry shape, uniformity of time of 
physiological stage of full maturity of the berry and berry color), four 
traits in berry size category (BL, BeWi, BV and BeWe) and three traits 
in berry skin category (astringence of skin, thickness of skin and berry 
bloom). We used Scatterplot Matrix to plot the correlations between 
each two pairs of traits and highlight the significant differences.

Genome-wide association study
For two consecutive growing seasons of phenotype data, we conducted 
independent GWAS analysis and created a joint dataset by combin-
ing the GWAS results from both years. We have constructed a pange-
nome dataset encompassing SNPs and SVs. Based on these datasets, 
we independently conducted GWAS analyses: reference-based SNPs, 
pangenome-based SNPs and pangenome-based SNPs + SVs. PermG-
WAS (v.2023.05) was used to perform GWAS analysis of agronomic 
traits. To account for population structure, we implemented a mixed 
linear model approach to estimate heritability for each trait. The top 

five principal components have been shown to effectively capture 
population structure. To reduce the influence of overfit structure, we 
considered both fixed effects (using four PCA components to capture 
population structure) and random effects (using a kinship matrix 
to model individual covariance). Furthermore, we use permutation 
analysis to verify the result of each GWAS. The minimal P value from 
each permutation was used to calculate a permutation-based threshold 
using the maxT/minP multiple testing procedure.

The PVE of the most significantly associated single variant was 
estimated using the following formula102:

PVE = [2 × (beta2) ×MAF × (1 −MAF)]/ [2 × (beta2) ×MAF(1 −MAF)

+((s.e. × (beta))2) × 2 × N ×MAF × (1 −MAF) ]

Where N represents the sample size, s.e. is the standard error of the 
effect size of genetic variants, beta is the effect size of genetic variants, 
and MAF is the minor allele frequency of the target marker.

Heritability estimation
The genome SNP heritability (G_h2

SNP) of a trait is the fraction of pheno-
typic variance explained by additive contributions from all pangenome 
SNPs. Similarly, we calculate the genome SV heritability (G_h2

SV) using 
all pangenome SVs. The LDAK103 (v.5.2) program provides a model for 
estimating G_h2

SNP and G_h2
SV by deriving approximate relationships 

between the heritability of a variant and MAF. Consider the heritability 
model of the form:

E[h2
j ] = tauiwj[ fj(1 − fj)]

(1+alpha)

where wj is the weighting for each SNP or SV (j), fj is its MAF and tau 
are the corresponding coefficients and are estimated from the SNP 
or SV. The parameter alpha determines how the expected heritability 
contributed by a variant depends on its MAF (https://dougspeed.com/
technical-details/).

Our approach involves filtering out genotyping error and nearly 
linked mutation sites, followed by utilization of the LDAK-Thin model. 
To improve robustness, we inferred G_h2

SNP and G_h2
SV based on a kinship 

matrix generated by pangenome SNPs or SVs. Because LDAK cannot 
directly estimate alpha, we adopt an alternative strategy involving a 
trial of multiple alpha values by comparing the highest log likelihood 
and identified value estimates from the Gaussian distribution.

Polygenic scores
To establish a connection between genetic variation and phenotype, 
we used a method that combines LD between loci and multiple genetic 
variations, calculating PGS through application of the LDpred2 pro-
gram (v.1.12.4)104. To reduce the overfitting issues arising from exces-
sive variable numbers, we initially clustered all genomic variations. 
We then partitioned the dataset into three subsets: a training dataset 
comprising 70%, a tuning dataset consisting of 20% and a test dataset 
constituting 10%. We used the training dataset to generate final sum-
mary statistics.

Transcriptome and GO enrichment analyses
To validate the candidate genes identified in our GWAS and divergent 
selection, we retrieved fruit expression data from two accessions at 
three distinct stages—green–hard, veraison and ripening—from the 
NCBI database (PRJNA565689), with each library consisting of three 
biological replicates. These sequenced reads were mapped to the 
PNT2T genome using the STAR program (v.2.4.2)105. Gene expression 
levels were quantified using featureCounts106 (v.2.0.2) in terms of tran-
scripts per kilobase of exon model per million mapped reads. Based 
on the GO database (http://geneontology.org/), we conducted the 
background GO-Terms using whole-genome proteins. GO and GSEA 
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enrichment analysis was performed using clusterProfiler107 (v.4.0) and 
a test threshold of false discovery rate (FDR) <0.05.

Statistical analysis
Details on all statistical analyses used in this paper, including the statis-
tical tests used, the number of replicates and precision measures, are 
indicated in the corresponding figure legends. Statistical analysis of 
replicate data was performed using appropriate strategies in R (v.8.4.3).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All long-read and Hi-C sequencing data have been deposited in the 
NCBI database under the accession code BioProject: PRJNA1048106. All 
resequencing data generated have been deposited in the NCBI database 
under the accession code BioProject: PRJNA994294. All assemblies have 
been deposited under the accession codes BioProject: PRJNA1018808, 
PRJNA1018809, PRJNA1029477, PRJNA1029478, PRJNA1029479, 
PRJNA1029480, PRJNA1130629, PRJNA1130630, PRJNA1130639, 
PRJNA1130641, PRJNA1130642, PRJNA1130643, PRJNA1130644, 
PRJNA1130647, PRJNA1130648, PRJNA1130649, PRJNA1130650, 
PRJNA1130651. These data are also available at the National Genomics 
Data Center Genome Sequence Archive (https://ngdc.cncb.ac.cn/gsa/) 
with BioProject codes PRJCA024688 and PRJCA024753. The Grapepan 
v.1.0, all assembled genome sequences and annotations are available 
via Zenodo at https://doi.org/10.5281/zenodo.10851547 (ref. 108) and 
https://doi.org/10.5281/zenodo.10846425 (ref. 109).

Code availability
All scripts and codes associated with this project are available via 
GitHub at https://github.com/zhouyflab/GrapePan and Zenodo at 
https://doi.org/10.5281/zenodo.13308856 (ref. 110).
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