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Spatial transcriptomics identifies molecular 
niche dysregulation associated with distal 
lung remodeling in pulmonary fibrosis
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Large-scale changes in the structure and cellular makeup of the distal 
lung are a hallmark of pulmonary fibrosis (PF), but the spatial contexts 
that contribute to disease pathogenesis have remained uncertain. Using 
image-based spatial transcriptomics, we analyzed the gene expression of 
1.6 million cells from 35 unique lungs. Through complementary cell-based 
and innovative cell-agnostic analyses, we characterized the localization 
of PF-emergent cell types, established the cellular and molecular basis of 
classical PF histopathologic features and identified a diversity of distinct 
molecularly defined spatial niches in control and PF lungs. Using machine 
learning and trajectory analysis to segment and rank airspaces on a gradient 
of remodeling severity, we identified compositional and molecular changes 
associated with progressive distal lung pathology, beginning with alveolar 
epithelial dysregulation and culminating with changes in macrophage 
polarization. Together, these results provide a unique, spatially resolved 
view of PF and establish methods that could be applied to other spatial 
transcriptomic studies.

The human lung is structurally complex, with a diversity of special-
ized epithelial, stromal and immune cells having specific functional 
roles in anatomically distinct locations. Large-scale changes in the 
structure and cellular makeup of the distal lung are a hallmark of pul-
monary fibrosis (PF) and other chronic lung diseases1. PF is a progres-
sive syndrome that can occur in the setting of known environmental 
exposures, systemic disorders, monogenic syndromes or can be idi-
opathic. Idiopathic pulmonary fibrosis (IPF) remains the most com-
mon and severe form of PF; most patients succumb to their disease 
or require lung transplantation within 3–5 years of diagnosis, and 

available antifibrotic treatments only modestly slow the inexorable 
decline of lung function2,3.

A hallmark of histopathologic findings in the lungs of patients with 
IPF (described as ‘usual interstitial pneumonia’4) is spatial heterogene-
ity, where extensively remodeled regions can be found immediately 
adjacent to relatively preserved alveolar architecture. This spatial vari-
ability of pathology has been hypothesized to represent asynchronous 
disease evolution in the lung (‘temporal heterogeneity’). In addition 
to the spatial heterogeneity of pathology, IPF lungs are characterized 
by the following: ‘proximalized epithelial metaplasia’, wherein cell 
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For example, we observe basal and multiciliated cells and their marker 
genes oriented toward the basement membrane and inner lumen of 
airways, respectively (Fig. 2d,e). Similarly, spatial data allowed us to 
identify fibroblast subtypes, including alveolar fibroblasts dispersed 
broadly across the lung, myofibroblasts around conducting airways 
and alveolar ducts, ‘fibrotic’ activated fibroblasts in patchy foci and 
‘subpleural’ fibroblasts (expressing PLIN2) adjacent to mesothelial 
cells at the pleural surface (Fig. 2h,i).

To capture the regional heterogeneity of PF pathology, for a subset 
of participants, we profiled paired samples reflecting different degrees 
of pathologic remodeling, while from other participants we focused on 
‘transitional’ regions representing a ‘border’ between severely remod-
eled and relatively preserved alveoli. Including a spectrum of diseases, 
pathology provides an opportunity to explore the molecular evolution 
of disease beyond that which can be captured in studies focusing on 
highly remodeled/end-stage samples26,27. PF samples were labeled as 
‘less affected’ or ‘more affected’ based on the relative degree of overall 
pathology as described in the Methods (Supplementary Table 1). While 
our group and others have profiled samples from different regions 
within PF lungs using scRNA-seq, a key advantage of spatial transcrip-
tomics is to have molecular measurements perfectly matched to the 
histologically assessed gradations of pathologic remodeling9,18.

Focusing first on establishing the spatial context for cell types/
states that have been recently described in scRNA-seq, we observed 
that (consistent with other reports18,28–30) SCGB3A2+ epithelial cells were 
restricted to small/terminal airways in control lungs but found widely in 
remodeled areas of PF lungs where they frequently (but not exclusively) 
co-expressed SFTPC18,29 (Extended Data Fig. 6a). Among mesenchymal 
cells, PI16+/MFAP5+ adventitial fibroblasts were largely associated with 
vasculature, while WNT5A+ myofibroblasts were observed in ductal 
regions and at the interface between the lamina propria and adven-
titia of conducting airways (Fig. 2h,i and Extended Data Fig. 6b,c). A 
spectrum of activated ‘fibrotic’ fibroblasts expressing varying levels 
of CTHRC1, FAP and/or POSTN was most concentrated in subepithelial 
regions underlying areas of extensive epithelial metaplasia but was 
also found more diffusely in some samples. COL15A1+ ‘systemic venous’ 
endothelial cells were found relatively widely in PF samples, particularly 
those with the most advanced structural remodeling (Extended Data 
Fig. 6d). Consistent with prior work from ourselves and others18,19,26,27, 
we found KRT5−/KRT17+ ‘aberrant basaloid’ cells were located in close 
proximity to activated fibrotic fibroblasts (Supplementary Fig. 3). In 
contrast to one recent report26, in these analyses, which include a broad 
range of pathologic remodeling, we found KRT5−/KRT17+ cells are most 
likely to be located adjacent to alveolar type rather than airway-type 
epithelial cells, although they are also found in proximity to epithelial 
cells found in small airways (Supplementary Figs. 3 and 4 and Supple-
mentary Table 3). Furthermore, we found that KRT5−/KRT17+ cells were 
most abundant in less affected regions (Supplementary Fig. 5) and more 
likely to be adjacent to airway-type cells in severely remodeled regions.

We additionally performed a series of analyses comparing cellular 
and molecular changes between categorical designations and across 
a quantitative metric of ‘percent pathology’ and also characterized 
27 specific PF histopathological features based on annotations by a 
clinician (Supplementary Note, Extended Data Fig. 7, Supplementary 
Figs. 5–9, Supplementary Tables 4–8 and Supplementary Data).

Niche analyses reveal disease-emergent cellular interactions
We next sought to extend beyond a priori-defined pathological features 
to comprehensively define spatially integrated cellular/molecular 
units in the lung and characterize their evolution in disease. We used 
two complementary computational approaches to partition samples 
into regions of molecular and cellular similarity (that is, spatial ‘niches’; 
Figs. 1 and 3a; Methods). First, we used a cell-based approach using 
Seurat v5 (refs. 31,32), building a local neighborhood based on spatial 
proximity and cell type annotation, followed by k-means clustering. 

types typically found in conducting airways are observed in the distal 
lung epithelium; development and accumulation of cystic-appearing 
structures filled with mucus (‘honeycomb cysts’); and the emergence 
of ‘fibroblastic foci’ (subepithelial collections of fibroblasts), which 
have been speculated to represent the ‘leading edge’ of disease pathol-
ogy in the lung5. Along with genetic evidence linking IPF susceptibility 
to the lung epithelium6–9 and data from experimental models, these 
classical histopathologic features support the prevailing model of IPF 
pathogenesis10, whereby chronic/recurrent injury to the distal lung 
epithelium results in dysfunctional alveolar repair and culminates in 
progressive fibrotic remodeling.

Although the cellular complexity and spatial heterogeneity 
of disease present challenges when using bulk-tissue methods for 
genomic analysis, single-cell approaches are well-suited for such inves-
tigations. Large collaborative studies using droplet-based single-cell 
RNA sequencing (scRNA-seq) have refined our understanding of the 
cellular makeup of the normal human lung11–14 and highlighted dra-
matic changes in the cellular makeup and molecular programs in IPF 
lungs, including disease-emergent and disease-perturbed cell types 
and states9,15–24. The spatial heterogeneity of pathology implies that 
within a given IPF lung, multiple distinct pathologic programs may be 
simultaneously occurring in distinct spatial regions (niches); thus, it 
is critical to understand the spatial context within which cellular and 
molecular programs mediate disease pathogenesis. To this end, we 
used image-based spatial transcriptomics with subcellular resolution to 
investigate the evolution of alveolar niche dysregulation in idiopathic 
and other forms of PF.

Results
Diverse cellular landscape of the lung
Using the Xenium platform, we profiled 343 genes across 45 lung tis-
sue samples from nine unaffected donors and 26 participants who 
underwent lung transplant for PF, measuring 299,018,086 transcripts at 
subcellular resolution (Fig. 1, Supplementary Figs. 1 and 2 and Supple-
mentary Table 1). Of the 26 PF participants, the most frequent diagnosis 
was IPF (n = 12, 46.2%). The majority of donors self-reported European 
ancestry (29; 82.9%), and 17 (48.6%) reported current or prior tobacco 
use. To enable spatially resolved single-cell analysis, we partitioned 
transcripts into cells using automated cell segmentation boundaries 
(Fig. 1). As cell segmentation remains a challenge in the field due to 
uncertainty around cellular boundaries and reliable assignment of tran-
scripts to the correct cell, we focused only on transcripts overlapping 
nuclear boundaries. After this quality filtering, we retained 1,630,319 
cells containing 121,794,939 transcripts (Fig. 1 and Supplementary 
Fig. 2). Single-cell analysis was carried out using modified versions of 
standard approaches (Methods).

We identified a total of 47 cell types, including considerably larger 
numbers of cell types underrepresented in scRNA-seq studies, such as 
endothelial and mesenchymal cells9,12 (Fig. 2a, Supplementary Fig. 2 and 
Supplementary Table 2), better reflecting the cellular composition of 
the lung in disease states. For example, prior work using electron and 
light microscopy estimated the ratio of alveolar type 2 (AT2) to alveolar 
type 1 (AT1) cells in healthy distal lungs to be 1.68 (ref. 25). From these 
spatial transcriptomic analyses, we observed a mean AT2/AT1 ratio at 
2.5 in unaffected samples, substantially closer to the anticipated ratio 
than what is found in scRNA-seq (AT2/AT1 ratio = 13.2; Fig. 2b). Canoni-
cal cell-type markers9,11–13 localized in expected cells with generally 
high fidelity (Fig. 2c); nevertheless, even when restricting the analysis 
to transcripts within the nuclear boundary, some ‘contamination’ of 
gene expression from adjacent cells persists. This appears to be a funda-
mental property of spatial transcriptomic technologies, resulting from 
the performance of 2D cellular segmentation of 3D tissue (Fig. 2c and 
Extended Data Figs. 2–5). Assessing the spatial location of cells within 
specific lung structures (for example, airways, alveoli and vasculature) 
supported high confidence in annotated cell identities (Fig. 2d–i).  
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This approach was limited by the following two factors: (1) it is influ-
enced by the ‘granularity’ of cell annotation, and (2) it only uses data 
from transcripts assigned to nuclei. To overcome these limitations, 
we also developed a new approach to identify niches agnostic of cell 
assignment by directly using transcript data. Using GraphSAGE31, we 
trained a graph neural network model based on the spatial location 
of transcript data to aggregate local neighborhood information and 
define an embedding space that provides a new representation for all 
individual transcripts in the dataset. We then applied Gaussian mixture 
models to cluster transcripts in the embedding space and identify 
niches, assigning cells to these niches using a consensus approach. In 
both analyses, we identified 12 niches (C1–C12 for cell-based and T1–T12 
for transcript-based clustering), which displayed distinct gene expres-
sion signatures and cell-type compositions (Fig. 3b, Supplementary 
Figs. 14–16 and Supplementary Table 9).

The objective of this approach was to, in an unbiased manner, 
identify and characterize conserved relational patterns of cellular and 
molecular features that represent recurring patterns of inhomogene-
ous cellular/transcript groupings that are often in close proximity to 
one another (Fig. 3b and Supplementary Fig. 16). For example, airway 
niches C1 and T7 and lymphoid niches T2 and C9 describe the close 
spatial relationship between specific airway and lymphoid cell types, 
respectively (Fig. 3b, Supplementary Fig. 3 and Supplementary Table 3). 
The niches also capture more complex relationships between cells of 
different lineages, including ‘healthy’ alveolar niches (T4; C8), which 
include AT1, AT2, capillary cells and alveolar fibroblasts among other 
cell types. Surprisingly, we also observed neutrophils in this niche, 
likely a result of patchy acute inflammation in tissue from declined 
donors. Unaffected samples were primarily defined by these healthy 
alveolar niches, which had substantially lower relative abundance in PF 
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three to nine samples each and one additional replicate TMA with 17 additional 
samples and the inclusion of cell-bound stains. We quantified the expression 
of 343 genes at subcellular resolution using a custom panel. After filtering, 
we retained 299,018,086 high-quality transcripts for identifying transcript 

niches with GraphSAGE across all five TMAs. Of these, 210,370,118 transcripts 
on the original TMAs 1–4 were used to build the initial GraphSAGE model. After 
additional filtering, we annotated cell types for 1,630,319 segmented nuclei 
across the endothelial, epithelial, immune and mesenchymal lineages. An 
example sample shown is VUILD96LA (sarcoidosis diagnosis). The figure was 
created with BioRender.com.
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samples. Additionally, many niches were either disease-emergent or 
enriched in disease, including immune (T2, C7, C9), fibrotic (T6, T9, C4) 
and transitional epithelial niches (T3, C2; Fig. 3c and Supplementary 
Fig. 14). In particular, niches enriched for lymphocytic inflammation 

(T2, C9) were much more prevalent in more remodeled samples, poten-
tially implying a role in later (rather than early) disease pathogenesis. 
The transcript-based niche classification also resolved two distinct 
niches enriched for mesenchymal cells. T6 included activated fibrotic 
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fibroblasts and was largely restricted to regions around/adjacent to 
remodeled epithelium, whereas T9 was more broadly located, exhib-
ited lower expression of active fibrotic markers and appeared to reflect 
more ‘end-stage fibrosis’. Transitional epithelial niches were nearly 
absent from control samples but included the majority of epithelial 
cells from diseased samples. Strikingly, we observed that the niche 
composition of minimally remodeled regions of PF lungs more closely 
resembled that of more affected PF than control lungs. This unexpected 
finding implies that despite relative structural preservation, there is 
extensive molecular pathology in less severely remodeled regions and 
challenges the paradigm that spatial heterogeneity allows for true ‘early 
disease’ biology to be observed in relatively less remodeled areas of 
end-stage PF lungs.

We next set out to understand how these niches align with specific 
pathologic features (Supplementary Note). While a number of features 
included a heterogeneous mix of niches, some were predominantly 
or near-exclusively marked by a single niche (Fig. 3d). For example, 
granulomas and tertiary lymphoid structures (TLSs) were included 

predominantly in the disease-enriched C9 and T2 immune niches, and 
multinucleated cells were marked by C11 and T8 (Fig. 3b,d and Supple-
mentary Figs. 16 and 17). Of particular interest was our observation of 
patchy epithelial detachment from its underlying basement membrane 
(Fig. 4 and Extended Data Figs. 7–9). This feature, which we annotated 
as ‘epithelial detachment’, has also been described previously in IPF and 
other forms of PF and can be observed in histology elsewhere33,34. In our 
data, epithelial detachment was strongly associated with the transcript- 
and cell-based niches T3 and C3, respectively, which contain the vast 
majority of the detected KRT5−/KRT17+ cells (96% and 64%, respec-
tively; Figs. 3b,d and 4a). To further validate our findings, we generated 
matched sequencing-based spatial transcriptomic data using the 
Visium HD platform from two tissue sections that had already under-
gone Xenium-based profiling (Methods). Using a broader set of genes, 
we found highly concordant signal localization for both KRT5−/KRT17+ 
cells and activated fibrotic fibroblasts (Extended Data Fig. 10 and Sup-
plementary Table 10). As our annotations of epithelial detachment 
were not comprehensive by design (due to impracticalities around 
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comprehensive annotation of each sample; Supplementary Note), we 
postulated the niche analysis could aid in the rapid identification of 
additional examples of specific features. Indeed, directed by our niche 
analysis, we identified other regions exhibiting epithelial detachment 
in additional samples (Fig. 4b). These findings highlight the potential 
of spatial transcriptomic data to identify specific disease-associated 
pathologic features directly from the molecular data.

In one sample, we observed a striking region of dense fibrosis 
almost completely lined by the T3 and C3 niches (Fig. 4c,d). Adjacent 
to this area, we found multiple examples of epithelial detachment. We 
also identified structurally intact epithelium in the same transcrip-
tionally assigned niche (Fig. 4e–g), which appear to be examples of 
subpathologic remodeling, suggesting we can identify molecular and 
cellular changes that precede histopathology. While the molecular 
signature of epithelial detachment was prominent at the interface 
between the putatively advancing fibrotic front (marked by activated 
fibrotic fibroblasts) and alveolar epithelium, the larger fibrotic region 
was marked by stable fibrotic niches and pan-fibroblast marker COL1A1 
(Fig. 4c). Furthermore, we observed open structures reminiscent of 
alveoli but completely devoid of epithelium (Fig. 4c,d). At a single 
time point, we cannot establish the origin of these ‘remnant’ alveoli, 
but one possible explanation is that they follow epithelial detach-
ment at the fibrotic front. These observations raise the possibility 
that at least some KRT5−/KRT17+ cells may represent a cell state that 
precedes epithelial detachment and other progressive pathology. 
We find that the detachment-associated niches are present across 
disease samples (with slightly increased proportion in less affected 
biopsies) but virtually absent in controls (Fig. 4h). Interestingly, while 
both niches contained a high proportion of KRT5−/KRT17+ cells, the T3 
transcript niche predominantly marked a suite of cell types associated 
with transitional alveolar epithelium, including transitional AT2 cells 
and respiratory airway secretory cells (RASCs), and often appeared 
near architecturally normal alveoli adjacent to active fibrotic fronts 
(Fig. 4 and Extended Data Figs. 7–9), while the C3 cell niche captured 
the relationship between KRT5−/KRT17+ cells and activated fibroblasts 
expressing CTHRC1 and FAP (Figs. 3b,d and 4) and marked both epithe-
lial detachment and fibrotic foci. Indeed, within the C3 niche, we see a 
significantly increased likelihood for proximity between KRT5−/KRT17+ 
cells and activated fibrotic fibroblasts and vice versa, providing a 
clear association between these cells that is mutually strongest in 
this detachment-associated niche (Fig. 4i, Supplementary Figs. 3, 18  
and 19 and Supplementary Tables 2 and 11). Looking specifically at  
genes upregulated in KRT5−/KRT17+ cells compared to other epithe-
lial cell types, we observe similar patterns of expression to prior 
literature18,19,26, including increased COL1A1, known PF blood bio-
marker MMP7, and transcription factor-encoding genes SOX4 and 
SOX9 (Fig. 4j). Notably, these and other specific KRT5−/KRT17+ genes 
correspond to Gene Ontology (GO) pathways related to extracellular 
matrix organization along with cell adhesion and motility, suggesting 
that dysregulation of these gene programs may contribute to detach-
ment from the basement membrane and adjacent cells.

Disease-emergent macrophages accumulate in airspaces
In addition to identifying niches closely linked to specific pathologic 
features, our analyses also revealed widespread molecular pathology 
that did not specifically correspond to classical PF disease features. We 
identified a cell-based niche associated with macrophage accumulation 
within airspaces that was found across all disease samples irrespec-
tive of diagnosis (C11; Figs. 3b and 5a,b and Supplementary Fig. 14). 
Interestingly, the macrophages associated with airspace accumula-
tion appear to include two mostly distinct populations, one marked 
predominately by FABP4 and another by SPP1 (Fig. 5c–e). Accumulation 
of SPP1+ macrophages in airspaces is consistent with other studies in 
IPF17,26. In addition to airspace-accumulated macrophages, in PF sam-
ples with less substantial alveolar remodeling, we observed smaller 

populations of FABP4+ (alveolar) macrophages within alveoli and SPP1+ 
macrophages in the interstitium (Fig. 5c). Despite accumulation within 
airspaces, FABP4+ macrophages were only modestly increased in less 
affected samples as a proportion of the total macrophage population 
and became less frequent with increasing percent pathology (Fig. 5f, 
Extended Data Fig. 7 and Supplementary Fig. 7). Meanwhile, SPP1+ mac-
rophages are observed in control lungs but comprise a higher propor-
tion of the total macrophage population in more affected samples, and 
increased expression of SPP1 was associated with higher pathology 
scores (Fig. 5f, Supplementary Fig. 7 and Supplementary Tables 2, 7 
and 8), suggesting an evolution of macrophage phenotypes character-
izes progressive PF. We additionally confirmed the presence of both 
FABP4+ and mixed FABP4+/SPP1+ accumulations in distal airspaces using 
a broader set of genes with matched Visium HD data (Fig. 5g,h and 
Supplementary Table 10). In numerous participants, discrete regions 
of FABP4+ and SPP1+ macrophage accumulation were observed within 
the same 3–5 mm biopsy. It is not yet clear whether these distinct mac-
rophage subtypes directly promote local remodeling (for example, via 
SPP1-mediated promotion of transforming growth factor β activity35) 
or result from differential polarization related to microenvironmental 
cues. Indeed, while a number of studies have described phenotypic and 
compositional changes of macrophages in PF16,17,23,24, in this study we 
provide spatial contextualization and characterization of macrophage 
diversity in PF lungs at single cell resolution.

A timeline of alveolar dysregulation
Finally, we sought to leverage the spatial heterogeneity of disease fea-
tures across samples to recreate a ‘molecular natural history’ of PF 
progression. We hypothesized that, across these samples, leveraging 
the ability to specifically analyze each airspace as an independent unit 
would make it possible to capture much of the molecular evolution of 
alveolar remodeling and begin to establish an ‘order of events’ on the 
path to end-stage PF.

To this end, we first developed a machine learning approach to 
identify and segment lumens across samples based on spatial patterns 
of transcript expression (Figs. 1 and 6a; Methods). We then assigned 
cells to each lumen and filtered the analysis space to include only 
lumens likely to be alveolar in origin (Supplementary Table 13). Next, we 
ordered the remaining 1,747 airspaces on a continuum of most normal 
in composition (that is, ‘homeostatic’) to most remodeled based on 
the proportion of transcripts corresponding to the healthy alveolar 
transcript niche T4 (ref. 36; Fig. 6b). Supporting the validity of this 
pseudotime strategy, alveoli from unaffected samples are enriched 
at the start of the trajectory, and percent pathology tends to increase 
across the trajectory. After ordering alveoli by disease severity in this 
manner, we identified gene expression, cell-type composition and 
niche proportions significantly associated with pseudotime using 
generalized additive models (GAMs; Fig. 6b, Supplementary Figs. 20 
and 21 and Supplementary Tables 14–17; Methods). Supported by both 
the cell-type and niche analyses, we find that initial loss of alveolar 
homeostasis was marked by a loss of capillary endothelial cells and AT1 
cells. We observe an initial increase in proliferating AT2 cells (consistent 
with the classical description of ‘hyperplastic alveolar epithelial cells’ 
(AECs)), which then becomes less frequent as the remaining epithe-
lium has increasing ‘transitional’ and terminal airway-type features/
niches. Emergence of activated (CTHRC1+/FAP+) fibrotic fibroblasts 
appears around the transition to a more airway-like epithelium, while 
progressive accumulation of FABP4+ and then SPP1+ macrophages are 
later events.

We then used spectral clustering to group expression changes into 
four broad categories as follows: homeostasis and early, intermediate 
and late remodeling (Fig. 6b and Supplementary Table 18). Given lim-
ited knowledge of early disease mechanisms, we focused on genes in 
the homeostatic and early remodeling stages. We used a pseudobulk 
approach, aggregating gene expression levels across each airspace. To 
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deconvolve these dynamics in the early remodeling genes, we quan-
tified the expression level in each cell type from all cells within the 
1,747 airspaces (Fig. 6c and Supplementary Table 19). Furthermore, we 

carried out a cell-type-level GAM analysis for 25 cell types with sufficient 
counts, accounting for cell-type composition. In both analyses, we see a 
clear localization of signal to epithelial cells, with 30.9% and 32.3% of the 
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significant associations in the cell-type-level GAM analysis coming from 
this lineage for homeostasis and early remodeling, respectively, with 
18.6% and 16.1% localized specifically to AT2 cells. This result implies 
that molecular pathology in the alveolar epithelium is evident before 

extensive architectural remodeling occurs and supports the conceptu-
alization of epithelial injury and dysregulation as central to PF risk and 
disease initiation. This conclusion contrasts significant associations 
identified in late remodeling, where 34.5% of total associations are 
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as in b. The example alveoli shown are VUILD115MA_90 (cHP diagnosis; top) 
and VUILD78MA_27 (IPAF, bottom). Scale bars on the bottom right of each 
H&E = 20 µm.
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from epithelial cells, but 37.8% are from myeloid cells (Supplementary 
Fig. 22). Interestingly, when focusing on myeloid cells in late remod-
eling, we observed two ordered peaks of FABP4+ macrophages followed 
by SPP1+ macrophages. At the intersection of these two peaks, we 
identified several airspaces with both FABP4+ and SPP1+ macrophages 
(Fig. 6d), suggesting the possibility that FABP4+ macrophage accumula-
tion leads to recruitment of, or differentiation to, SPP1+ macrophages. 
Indeed, prior research has suggested both possibilities17,37. Together, 
these results support a conceptual model where initial alveolar remod-
eling is driven by disruption of the alveolar-capillary interface with 
activation of regeneration-associated programs in the epithelium, fol-
lowed by a wave of subepithelial fibroblast activation, then subsequent 
myeloid cell recruitment/proliferation.

Discussion
Building upon prior lung molecular atlas projects11–13,18,19,38, we gener-
ated an integrated, single-cell resolution, spatially contextualized 
characterization of the cellular diversity of the adult distal lung in health 
and chronic fibrotic lung disease. Beyond contextualizing individual 
cell types, we established the molecular basis of a diversity of classical 
histopathologic features of PF. Provocatively, we identified numerous 
regions where KRT5−/KRT17+ cells detached en masse from their base-
ment membrane when overlying areas adjacent to activated fibro-
blasts. This finding has been rarely reported previously33,34, although 
there remains debate as to whether this occurs in vivo or reflects an ex 
vivo artifact. While we cannot conclusively exclude the possibility, we 
suggest it is unlikely the same feature would be identified in multiple 
samples, in an analogous cellular and spatial niche context, by chance 
if this were a stochastic ex vivo artifact. In these regions, KRT5−/KRT17+ 
cells often exhibit an elongated, squamous-type morphology, rais-
ing the possibility that such detachment could be akin to sloughing 
of squamous-type epithelia in other tissues/conditions, in this case 
occurring in a pathologic state where repair and re-epithelialization 
may be ineffective. A similar finding was recently reported in an inde-
pendent preprint, including evidence of sloughed airway epithelium 
in live-imaged surgical biopsies, suggesting this phenomenon can 
occur in vivo39. The implications of this process are not yet clear, but 
one possibility is that exposed basement membranes could be prone 
to patchy fusion or permit migration of fibroblasts into the airspace 
where they elaborate pathologic extracellular matrix that leads to 
eventual airway obstruction, yielding cystic structures distal to the 
point of fusion/obstruction. In light of recent adoptive transfer stud-
ies suggesting IPF basal/basal-like cells can potentiate fibrosis when 
instilled into the airway40, these findings raise the possibility that par-
acrine effects of KRT5−/KRT17+ cells could extend beyond immediately 
adjacent neighbors in vivo.

We also found that whether using cell-aware or cell-agnostic 
approaches, there are a determinable number of conserved, molec-
ularly definable spatial ‘niches’ in the human lung. As key cellular 
processes occur in a spatially and temporally coordinated manner, 
conceptualizing these niches as distinct functional units allows for 
directed interrogation of cellular and molecular programs in a specific 
context. We found that there were substantial shifts in the relative 
abundance of a given niche across disease pathology. Perhaps most 
strikingly, even within relatively preserved regions of fibrotic lungs, the 
molecular signature of ‘normal alveoli’ was virtually absent, suggest-
ing that substantial molecular pathology precedes extensive tissue/
architectural remodeling.

We then extended this concept further by developing a new 
approach to segment individual alveoli/airspaces and explore the 
evolution of molecular pathology in progressively more remodeled 
regions. Rather than an initial influx of inflammatory cells or fibroblast 
activation, these results suggest that disruption of the alveolar epithe-
lium and adjacent capillary network are observed before another struc-
tural remodeling is detected. This concept is supported by additional 

evidence that suggests PF risk is mediated primarily through the lung 
epithelium9,41. Other recognized disease-associated features, including 
the emergence of abundant activated fibroblasts and accumulation of 
macrophages, appear to be later events in remodeling. These findings 
imply that precision therapeutic strategies will likely require concur-
rent assessment of which cellular mechanisms are most prominent in 
an individual at a given time. This not only presents potential challenges 
but also raises the possibility of improving outcomes (and minimiz-
ing toxicities) by better-aligning therapeutics with individual patient 
disease biology.

There are several limitations to this study. First, while this is the 
largest imaging-based spatial transcriptomic study of the human lung 
reported to date, this study ultimately reflects a relatively small num-
ber of individuals (n = 35), samples collected from organ donors or 
end-stage disease and participants who were predominantly of Euro-
pean ancestry. Imaging-based spatial transcriptomic platforms are 
also inherently semi-targeted; the probe set used for this study was 
informed by prior scRNA-sequencing datasets and developed specifi-
cally for cell identification and examination of established PF-related 
molecular programs and pathways. Additionally, cell segmentation 
remains a challenge, particularly in organs (including the lung) where 
many cell types have irregular shapes and/or sizes. While emerging 
cell-boundary staining procedures can improve this somewhat, we 
anticipate this will remain a challenge given the 3D structural rela-
tionships in the distal lung. We attempted to mitigate these issues for 
cell-aware analyses by restricting our dataset to transcripts overlying 
nuclei, but some degree of transcript ‘contamination’ from adjacent/
overlying cells remained, requiring post hoc filtering for gene-level 
analyses. Unlike scRNA-seq, this contamination is nonrandom; thus, 
‘denoising’ will require new computational approaches.

In brief, this study provides a comprehensive characterization of 
the cellular diversity and molecular pathology of the adult distal lung 
in both health and PF. The identification of conserved, molecularly 
definable spatial niches and their evolution across disease provides 
insights into PF pathogenesis, and the development of new analytical 
approaches for quantification and interrogation of multicellular niches 
using spatial transcriptomic approaches serves as a valuable resource 
for the lung biology community.
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Methods
Participants and samples
The studies described here comply with ethical regulations as 
approved under local institutional review boards, including pro-
viding written informed consent (Vanderbilt University Medical 
Center (VUMC) Institutional Review Board (060165 and 171657) and 
Western Institutional Review Board (20181836)). Peripheral PF lung 
samples were obtained from lungs removed at the time of lung trans-
plant surgery at VUMC or Norton Thoracic Institute as previously 
described9,18,42. Control lung tissue samples were obtained from lungs 
declined for organ donation. Diagnoses were determined by the local 
treating clinicians and affiliated multidisciplinary committee and 
confirmed by review of explant pathology according to the current 
American Thoracic Society/European Respiratory Society consensus 
guidelines5,43. Sample names were generated based on their collection 
site (Vanderbilt University—‘VU’; Translational Genomics Research 
Institute—‘T’), disease status (healthy donor—‘HD’; interstitial lung 
disease—‘ILD’), unique number assigned to the patient and where 
applicable, whether the sample was taken from a ‘less affected’ or 
‘more affected’ tissue section as determined by percent pathology 
scores described later in the Methods. Replicate healthy samples 
were labeled ‘A’ and ‘B’ to distinguish (for example, VUHD116A and 
VUHD116B), and replicate disease samples with the same ‘less affected’ 
or ‘more affected’ designation were labeled ‘1’ and ‘2’ (for example, 
VUILD105MA1 and VUILD105MA2).

Tissue microarray (TMA) construction
To maximize efficiency per run, multiple samples could be placed on 
a single Xenium slide (10.45 mm × 22.45 mm) using a TMA design. A 
5-µm section of each lung formalin-fixed paraffin-embedded (FFPE) 
block was hematoxylin and eosin (H&E) stained and presented to a 
physician who identified areas of interest and labeled them as less or 
more fibrotic (LF or MF) relative to the sample. For TMAs 1–4, blocks 
were designed in a 3 × 3 or 2 × 2 pattern for 3 mm and 5 mm cores, 
respectively (Supplementary Table 1). Sample cores were punched 
and placed manually using a ‘Quick-Ray Manual Tissue Microarrayer 
Full Set’ and ‘Quick-Ray Molds’, according to the manufacturer’s direc-
tions. Empty core spaces were filled with core punches taken from blank 
paraffin blocks (VWR, 76548-194). Once complete, blocks are placed 
face down on a clean glass slide and briefly heated in a warm drawer 
(~45 °C) to slightly melt the paraffin together and even the block face. 
TMA blocks were then cooled to room temperature, removed from the 
slide, sealed and stored at 4 °C.

An additional TMA was constructed (TMA5) after improvement to 
the 10X Xenium processing and software. TMA5 was designed in a 3 × 6 
pattern of 3 mm cores with the top left core space remaining empty for 
orientation, with 17 samples total. A special 3 mm square tip was cre-
ated by the Arizona State University Instrument Design and Fabrication 
Core to fit the Quick-Ray Manual Tissue Microarrayer and allow us to 
produce square tissue cores. Due to the new core shape, this TMA was 
constructed by placing each core individually on double-sided adhesive 
tape (Gorilla Double-Sided Mounting Tape) in a paraffin block mold44. 
The entire mold is warmed to 37 °C, and a P1000 is used to dispense 
400 μl of melted paraffin wax in the lanes between the cores. As more 
wax was poured into the back of the mold, the mold was gently tapped 
to dislodge air bubbles. Once solidified, the block was extracted from 
the mold, and the tape was removed. TMA5 then underwent the same 
warm drawer and storage conditions as all others.

During TMA preparation, some samples were placed closely 
together such that a subset of transcripts and nuclei could not be dis-
tinguished as belonging specifically to either sample. These transcripts 
and nuclei were removed from downstream analyses.

All samples were processed through the Xenium workflow, and 
four specific samples from TMA5 (one unaffected and three PF) were 
then additionally run through the Visium HD protocol after Xenium 

processing to generate orthogonal data for verifying phenomena of 
interest. Both workflows are described below.

Xenium in situ workflow
Gene panel design. Xenium in situ technology requires the use of 
a predefined gene panel. Each probe contains two paired sequences 
complementary to the targeted mRNA as well as a gene-specific bar-
code. Upon binding of the paired ends, ligation occurs. The now cir-
cular probe is amplified via rolling circle amplification, increasing the 
signal-to-noise ratio for target detection and decoding. A total of 343 
unique genes were included in the analysis of this dataset. A total of 
246 genes came from an early version of the Xenium human lung base 
panel (PD_277) and 97 genes from a custom-designed panel (CVEVZD). 
The custom panel was curated based on human lung single-cell analy-
sis data18, selecting genes useful for cell-type identification and/or 
suspected to be involved in IPF.

Xenium sample preparation. As Xenium in situ technology examines 
RNA, all protocol workstations and equipment were cleaned using 
RNase AWAY (RPI, 147002) followed by 70% isopropanol. All reagents, 
including water, were molecular-grade nuclease-free. Sample prepara-
tion began with rehydrating and sectioning FFPE blocks on a microtome 
(Leica, RM2135). Sections measuring 5 µm were placed onto Xenium 
slides (10X Genomics). Following overnight drying, slides with placed 
samples were stored in a sealed desiccator at room temperature for 
≤10 days. Slides were then placed in imaging cassettes for the remain-
der of the preparation. Tissue deparaffinization and decross-linking 
steps made subcellular RNA targets accessible. Gene panel probe 
hybridization occurred overnight for 18 h at 50 °C (Bio-Rad DNA 
Engine Tetrad 2). Subsequent washes the next day removed unbound 
probes. Ligase was added to circularize the paired ends of bound probes  
(2 h at 37 °C) and followed by enzymatic rolling circle amplification 
(2 h at 30 °C). TMA5 was prepped to include Xenium Multi-Tissue  
Stain (10X Genomics, 1000662) according to 10X Genomics’ Demon-
strated Protocol CG000749. All slides were washed in Tris-EDTA (TE) 
buffer before background fluorescence was chemically quenched; 
autofluorescence is a known issue in lung tissue as well as a byproduct 
of formalin fixation45. Following PBS and PBS-T washes, DAPI was used 
to stain sample nuclei. Finalized slides were stored in PBS-T in the dark 
at 4 °C for ≤5 days until being loaded onto the Xenium Analyzer instru-
ment. Stepwise Xenium FFPE preparation guidelines and buffer recipes 
can be found in 10X Genomics’ Demonstrated Protocols CG000578 
and CG000580.

Xenium Analyzer instrument. The Xenium Analyzer is a fully auto-
mated instrument for decoding subcellular localization of RNA targets. 
The user marks regions for analysis by manually selecting the sample 
location on an initial low-resolution, full-slide image. After loading con-
sumable reagents and a maximum of two slides per run, internal sam-
ple and liquid handling mechanics control experiment progression. 
Data collection occurs in cycles of fluorescently labeled probe bind-
ing, image acquisition and probe stripping. Images of the fluorescent 
probes are taken in 4,240 × 2,960-pixel fields of view (FOVs). Localized 
points of fluorescence intensity detected during the rounds of imaging 
are then defined as potential RNA puncta. Each gene on the panel has 
a unique fluorescence pattern across the image channels. Puncta that 
match a specific pattern is then decoded and labeled according to the 
gene ID. Finally, all image FOVs and associated detected transcripts 
are computationally stitched together via the DAPI-stained image. 
Onboard analysis pipelines present quality values for each detected 
transcript, based on variable confidence in the signal and decoding 
process. Data for TMA1–TMA4 were acquired on instrument software 
version 1.1.2.4 and analysis version xenium-1.1.0.2. Data for TMA5 were 
acquired on instrument software version 2.0.1.0 and analysis version 
xenium-2.0.0.10. TMA5 had additional fluorescent images taken of 
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each Xenium Multi-Tissue Stain channel to allow for cell segmenta-
tion. Detailed instructions on instrument operation and consumable 
preparation can be found in 10X Genomics’ Demonstrated Protocol 
CG000582.

Postrun histology. After the run, slides were removed from the Xenium 
Analyzer instrument and had quencher removed according to 10X 
Genomics’ Demonstrated Protocol CG000613. Immediately following, 
the slides were H&E stained according to the following protocol: xylene 
(x3, 3 min ea), 100% alcohol (x2, 2 min ea), 95% alcohol (x2, 2 min ea), 
70% alcohol (2 min), deionized (DI) water rinse (1 min), hematoxylin 
(1 min; Biocare Medical CATHE), DI water rinse (1 min), bluing solu-
tion (1 min; Biocare Medical HTBLU-M), DI water rinse (3 min), 95% 
alcohol (30 s), eosin (5 s; Biocare Medical HTE-GL), 95% alcohol (10 s), 
100% alcohol (x2, 10 s ea) and xylene (x2, 10 s ea). Coverslipping was 
performed using Micromount (Leica, 3801731) and cured overnight 
at room temperature. Histology images were taken on a ×20 Leica 
Biosystems Aperio CS2.

Data preprocessing
Cell segmentation. Cell segmentation was performed with 10X 
Xenium onboard cell segmentation (10X Genomics). DAPI-stained 
nuclei from the DAPI morphology image were segmented, and bounda-
ries were consolidated to form nonoverlapping objects. For samples 
on TMAs 1–4, nuclear boundaries were expanded by 15 µm or until they 
reached another cell boundary to approximate cell segmentation. For 
samples on TMA5, cells were segmented using a cell boundary stain. 
For all TMAs, nuclear segmentation was used to define cells.

Image registration. Registration was performed between Xenium 
DAPI morphology images (that is, nuclei) and H&E-stained images 
of the same slice with the BigWarp plugin implemented in ImageJ 
(2.14.0)46,47. To place both images in the coordinate space of the DAPI 
morphology image, the H&E stained image was specified as the moving 
image, and the DAPI morphology was specified as the target. Anchors 
were placed on identifiable landmarks on both images (approximately 
200 landmarks per image pair). A thin plate spline warp was then 
applied to align the corresponding anchor points between the two 
images. Registered images were manually reviewed for potential visual 
artifacts resulting from the registration process. These registered 
images were then visualized in Xenium Explorer 3.0.0 software, which 
was used to generate figures showing transcript expression overlain 
on H&E stains.

Quality filtering and data preprocessing. For each sample, Xenium 
generated an output file of transcript information, including x and y 
coordinates, corresponding gene, assigned cell and/or nucleus and 
quality score. Low-quality transcripts (quality value (QV) < 20)) and 
transcripts corresponding to blank probes were removed. Seurat 
v5 was used to perform further quality filtering and visualization 
on nuclei gene expression data32. Nucleus-by-gene count matrices 
were created for each sample based on the expression of transcripts 
that fell within segmented nuclei. A single merged Seurat object was 
created for all samples based on these count matrices and metadata 
files with nuclei coordinates and area. Nuclei were retained accord-
ing to the following criteria: ≥12 transcripts corresponding to ≥10 
unique genes, percentage of high-quality transcripts corresponding 
to negative control probes, negative control codewords, unassigned 
codewords, or the cumulative percentage of these ≤5, and nucleus 
area ≥6 and ≤80 µm. Because Xenium outputs coordinates based on 
each slide, which results in samples with shared coordinates across 
multiple slides, the nuclei coordinates were manually adjusted for 
visualization so that no samples overlapped during plotting. These 
adjusted nucleus coordinates were added to the Seurat object as a 
dimension-reduction object.

Dimensionality reduction, clustering and cell-type annotation. 
Scanpy48 in Python was used to perform dimensionality reduction 
and clustering, while Seurat v5 (ref. 32) in R was used for visualization 
of these results49. Gene expression was normalized per cell using a 
log1p transformation. Dimensionality reduction was performed with 
principal component analysis. Nuclei were clustered using the Leiden 
algorithm50 based on this dimensionality reduction and computing a 
nearest neighbors distance matrix. Uniform Manifold Approximation 
and Projection (UMAP) plots of the data were then generated for visu-
alization. For speed, these calculations were performed using a con-
tainer51 with the RAPIDS (v21.8.1) implementation52 of Scanpy (v1.8.1).

For cell-type annotation, we used both marker genes and spatial 
information. We did not rely solely on gene expression because some 
level of gene ‘contamination’ is expected with spatial data, as transcripts 
located in one cell may be assigned to an adjacent cell in sufficiently 
close proximity. Therefore, we incorporated spatial data including cell 
morphology and histological features to label clusters. Initial Leiden 
clusters were primarily segregated by cell lineage based on marker 
genes assessed using the Seurat v5’s FindMarkers function, including 
PECAM1 (endothelial), EPCAM (epithelial), PTPRC (immune), DCN, LUM 
and COL1A1 (all mesenchymal)32. New Seurat/AnnData objects were 
created for each of the four lineages, and dimensionality reduction 
and clustering were performed again as described above. Clusters 
were then given first-pass cell-type labels based on marker genes. The 
epithelial and immune lineages were further split into sublineages for 
alveolar and airway cells (epithelial) as well as myeloid and lymphoid 
cells (immune), and new Seurat/AnnData objects were generated and 
reprocessed for these sublineages. As lineage and subgroup splitting 
became more accurate, clusters were relabeled with revised annota-
tions. ‘Stray’ clusters that did not belong to the lineage or sublineage 
they were originally assigned to, as well as clusters that were marked 
by genes from more than one lineage, received final annotations based 
on shared marker genes and spatial patterns with confidently labeled 
clusters. Low-quality clusters with extremely low transcript counts and/
or with conflicting marker genes that could not be resolved (similar to 
‘doublets’ in scRNA-seq data) were removed. This resulted in 47 final 
cell types, including 4 endothelial, 12 epithelial, 22 immune and 9 
mesenchymal (Extended Data Figs. 2–5 and Supplementary Table 2).

H&E image annotation
Percent pathology assignment. Percent pathology was assessed by 
visual estimation of the fraction of the total imaged area of the sample 
with architectural remodeling. Disease samples were labeled ‘more 
affected’ if their percent pathology was greater than or equal to 75%. 
All other disease samples were labeled ‘less affected’, and control sam-
ples were labeled ‘unaffected’ regardless of percent pathology score.

Annotation of histological features. We annotated representative 
examples of 27 histological features across all 45 samples, including 12 
epithelial or of likely epithelial origin (normal alveoli, minimally remod-
eled alveoli, hyperplastic AECs, emphysema, remodeled epithelium, 
advanced remodeling, epithelial detachment, remnant alveoli, small 
airway, large airway, microscopic honeycombing and goblet cell meta-
plasia), 3 vascular (artery, muscularized artery and venule), 3 immune 
(granuloma, mixed inflammation and TLS), 5 mesenchymal/interstitial 
(interlobular septum, airway smooth muscle, fibroblastic focus, fibro-
sis and severe fibrosis) and 2 general (multinucleated cell and giant cell) 
feature types. Annotations were marked on the registered H&E images 
using QuPath (v.0.4.3)53. Cells were then assigned to annotated regions 
using a custom Python (v.3.12.3) script. Briefly, annotated regions were 
scaled by a factor of 0.2125 µm per pixel to harmonize units with the 
cell centroid coordinates. Cells were assigned a boolean value for each 
annotated region corresponding to whether the cell centroid fell within 
the annotated region. After filtering to annotations containing at least 
one cell, there were 712 annotations across the 27 histological features.
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Comparison to scRNA-seq datasets
We compared cell lineage recovery from the present spatial dataset 
to two scRNA-seq sources. The first was ref. 9, a recent sc-eQTL study 
from our lab9, and the other was the Human Lung Cell Atlas (HLCA), 
which included aggregated data from multiple lung scRNA-seq stud-
ies12. Studies from the HLCA varied in the disease studied and whether 
the dataset contained control and/or lung disease samples. We nar-
rowed the scope of our comparison to studies (lung atlases) or samples 
(sc-eQTL study) that did not specifically enrich or deplete cells from a 
specific lineage in their preprocessing and did not exclusively contain 
data from nasal samples. We included 47 samples from the sc-eQTL 
study (19 control and 28 ILD) and 14 datasets from the HLCA. For each 
data source, the proportion of cells from each lineage (endothelial, epi-
thelial, immune and mesenchymal) was calculated first for all samples 
and then for control and disease samples separately. If an annotated 
cell type did not have a clear lineage association, it was removed from 
the analysis. Sample-level data from the present study was compared 
to sample-level data from the sc-eQTL study and dataset-level infor-
mation from HLCA.

Post-Xenium Visium HD workflow for select samples
Post-Xenium Visium HD sample preparation. All protocol worksta-
tions and equipment were cleaned using RNase Away (RPI 147002) 
followed by 70% isopropanol. All reagents, including water, were 
molecular-grade nuclease-free. The Xenium slide containing IPFTMA5 
was H&E stained postrun as described in ‘Xenium in situ workflow—
Postrun histology’. The slide was stored for 9 days postcoverslipping 
in a sealed desiccator at 4 °C. The slide was then decoverslipped in 
xylene, loaded into a Visium tissue slide cassette (10X Genomics), and 
destained using 0.1 N HCl. The decross-linking step of the archived slide 
protocol was skipped due to this already being performed as part of the 
Xenium workflow. Stepwise archived slide preparation guidelines and 
buffer recipes can be found in 10X Genomics’ Demonstrated Protocol 
CG000684.

Visium HD CytAssist preparation. The tissue slide within the Visium 
HD tissue cassette was then prepared for loading onto the CytAssist 
instrument. It underwent human probe hybridization (10X Genomics, 
1000466) and a posthybridization wash to remove unbound probes, 
followed by probe ligation and subsequent wash. The Visium HD slide 
containing the probe capture areas was prepared. Both the Visium HD 
slide and the tissue slide were loaded onto the CytAssist instrument 
to enable the probe release and capture. Four samples were targeted 
as a representative subset (one unaffected and three fibrotic) for the 
Visium HD analysis (VUHD049, VUILD49LA, TILD111LA and TILD113LA) 
as it has a smaller capture area than the Xenium slide. Once captured 
on the Visium HD slide, probes were extended, eluted into 0.08 M 
KOH and then transferred into 1 M Tris–HCl (pH 8). Pre-amplification 
cleanup was performed using SPRIselect reagent (Beckman Coulter, 
B23318). The sample was stored at 4 °C overnight. Detailed instructions 
regarding Visium HD CytAssist operation, tissue cassette and Visium 
HD slide preparation can be found in 10X Genomics’ Demonstrated 
Protocol CG000685.

Visium HD library construction and sequencing. The probe-based 
library was constructed using Dual Index Plate TS Set A (10X Genomics, 
1000251) with a sample index PCR cycle number of 16, as determined 
by the Cq value from qPCR (Applied Biosystems QuantStudio 5). A final 
cleanup step with SPRIselect reagent was followed by storage at −20 °C 
until sequencing. Library quality control was performed on an Agilent 
TapeStation 4200. Next-generation sequencing was carried out on Illu-
mina’s NovaSeq X platform using a 10 billion read, 300 cycle flow cell. 
Minimum sequencing recommendations were met using the product of 
tissue coverage percentage estimations and a constant maximum read 
figure of 275 million read pairs. Optimal cluster density was achieved 

with a lane loading concentration of 235 pM. All steps were performed 
according to the instructions found in 10X Genomics’ Demonstrated 
Protocol CG000685.

Visium HD data processing. A high-resolution image was aligned using 
the Visium HD Manual Alignment tool on Loupe Browser (v8.0.0; 10X 
Genomics)54. Five matched landmarks per sample within the capture 
area were selected for the alignment and then algorithmically refined 
by the software. Visium HD sequence data, high-resolution image and 
alignment file were processed using the count function of Spaceranger 
(3.0.0; 10X Genomics)55 with default parameters. Reads were mapped 
against the GRCh38-2020-A reference.

Visium HD data analysis. To compare the Xenium and Visium HD 
outputs, the Loupe Browser (v8.0.0) software was used to visualize 
gene expression over H&E images for the Visium HD data. Composite 
gene expression scores were used to visualize marker gene expression 
of several cell types of interest. These composite scores were created 
by summing the log2-transformed unique molecular identifier (UMI) 
counts of 7–26 genes per cell type that were selected based on the dot-
plot heatmap in Extended Data Fig. 1 and prior literature (KRT5−/KRT17+ 
‘aberrant basaloid’ cells18,19; activated fibrotic fibroblasts56; alveolar 
FABP4+ macrophages24,37; SPP1+ macrophages24,37; Supplementary 
Table 10). Three strong canonical marker genes for KRT5−/KRT17+ cells 
or activated fibroblasts (COL1A1, FN1 and ACTA2) were not included in 
the composite scores for these cell types because they mark both cell 
types (COL1A1 and FN1) or because they strongly mark another cell type 
(ACTA2 marks smooth muscle). For the comparison between alveolar 
macrophages and SPP1+ macrophages (Fig. 6h), genes that were strong 
markers for both macrophage populations in the present Xenium data-
set according to Supplementary Figs. 3 and 6 were excluded from the 
alveolar macrophage marker list, except for PPARG, which is known to 
distinguish these populations in scRNA-seq and had low expression in 
SPP1+ regions in the Visium HD data.

Computational niche identification
Transcript-based niches. Transcript-based niches were characterized 
using a graph neural network model GraphSAGE (implementation in 
StellarGraph v1.2.1 + Python 3.8.0)31,57 that directly modeled detected 
transcripts without cell segmentation. GraphSAGE learns the structures 
in the graph data via sampling and aggregating neighbors, scaling well 
to large graphs. Detected transcripts from each sample were used to 
build a sample graph after removing low-quality transcripts (QV) < 20) 
and blank probes. Each sample graph consisted of nodes represent-
ing individual transcripts, with edges drawn between nodes that had 
Euclidean distances (based on spatial coordinates) smaller than a 
threshold (d = 3.0) similar to a previous study57. Each node was associ-
ated with an input feature vector that was the one-hot encoding of the 
node’s gene label, and small components with nodes with fewer than 
ten nodes were removed (n = 299,018,086 after filtering).

A two-hop GraphSAGE model was applied to learn node embed-
dings. It sampled 20 and 10 neighboring nodes at the first-hop and 
second-hop neighbors, respectively, to learn 50-dimensional embed-
dings at each hop for each node in the graph. To embed all nodes across 
samples into the same embedding space, we trained the model on a 
joined graph consisting of subgraphs from 28 samples (TMAs 1–4) with 
each subgraph containing 5,000 randomly sampled root nodes along 
with their three-hop neighbors as well as the existing edges among 
them. The joined graph contained 18,594,542 nodes and 421,316,086 
edges for model training. The model was trained in an unsupervised 
manner by solving a binary classification task for ‘positive’ and ‘nega-
tive’ node pairs, in which the model predicts whether or not two nodes 
should have an edge connection based on their local neighborhood 
structures. We trained the model with ten epochs, achieving a training 
accuracy of 0.82 (ref. 31).
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Embedding representations of all nodes (transcripts) across the 
28 samples from TMAs 1–4 were obtained using the trained model, 
and we performed unsupervised clustering on all nodes using the 
Gaussian mixture model (k = 12) as implemented in the PyCave library 
(https://github.com/borchero/pycave). We subsequently obtained 
the embeddings of the 17 samples from TMA5 using the same trained 
model and projected their transcripts into the existing 12 transcript 
clusters.

Transcript-based niche plots and assignment of nuclei to niches. We cre-
ated a hexbin summarization plot for each sample using all transcripts 
with a bin width of 5 for generating the transcript-based niche plots to 
overcome overplotting issues. Each bin was labeled and colored with 
the major cluster label among the transcripts falling in the bin area. 
Bins with fewer than ten transcripts were not included in the plots. To 
assign cells to transcript-based niches, we assigned each cell to its clos-
est hexbin by calculating the Euclidean distance of each cell centroid 
to the hexbin centroids.

Cell-based niches
Seurat v5’s32 BuildNicheAssay function was used to partition cells 
into 12 spatial niches using k-means clustering based on the cell-type 
composition of their 25 closest neighboring cells.

Cell-type proximity analysis
To assess proximity between cell types, each cell was anchored, and its 
distance and angular direction were calculated between the anchored 
cells and their neighboring cells within a fixed 60-µm radius circle. 
Only first-degree neighbors were considered proximal to the anchored 
cell. The probability of cell types being proximal to one another was 
assessed using logistic regression by assigning cells to binarized proxi-
mal and nonproximal categories and using cell type as a covariate. This 
analysis was performed both for all samples and cell types and within 
each cell and transcript niche individually.

Differential expression and composition analyses
Differential cell-type composition by disease severity. We trans-
formed the cell-type proportion per sample using logit transformation 
and tested whether the cell-type proportion was different among three 
disease groups (unaffected, less affected and more affected samples) 
using the propeller.anova function implemented in propeller58.

Representative gene detection in transcript-based niches. We used 
the linear model framework implemented in propeller58 and limma59,60 
to test differences in gene proportions across niches and thereby 
identify representative genes of each niche. We first investigated the 
proportion of transcripts assigned to each niche within each sample. 
Samples were excluded from testing for a niche when a few transcripts 
from that sample (proportion < 5 × 10−4) were assigned to the niche. 
Gene proportions were logit-transformed, and a linear model was fit-
ted to each gene that modeled the mean transformed gene proportion 
in each niche while accounting for sample differences. Differentially 
abundant genes were then derived by contrasting the mean gene pro-
portion from one niche with the average mean proportion from the 
other niches.

Differential expression, cell-type composition and niche pro-
portions by percent pathology. We used the same propeller58 and 
limma59,60 frameworks for finding gene, cell type and niche propor-
tions that correlated with changes in percent pathology across sam-
ples. Proportions were logit-transformed, and linear models were fit 
to model the relationship between the transformed proportions and 
percent pathology across samples to find features (that is, genes, cell 
types and niches) that varied significantly with percent pathology 
(FDR < 0.01).

We also performed a cell-type-aware differential gene expression 
along percent pathology across samples by pseudo-bulking gene 
expression per identified cell type. For each cell type, we filtered the 
list of testing genes to remove contamination signals. To identify con-
tamination genes per cell type, we first scaled the gene counts using 
a count-per-1K normalization across cells and kept genes with at least 
five counts in 30% of cells within a cell type for testing. The remaining 
genes per cell type were then tested with the propeller58 and limma59,60 
frameworks.

Differential expression analysis across annotated pathology fea-
tures. We aggregated gene counts from cells included in each pathol-
ogy annotation instance and detected differentially expressed genes 
among pathology annotations by fitting linear models implemented in 
limma59,61. Gene expression was converted to counts per million (CPM) 
and log2-transformed after adding a 0.5 pseudocount. Lowly expressed 
genes (log2(CPM) < 8) in 50% of the annotation instances were excluded. 
The limma voom function was applied to model the mean–variance 
relationship and assign weights to each log2CPM observation value, 
which was subsequently used in the linear regression model to account 
for heteroskedasticity in count data. We controlled for the TMA effects 
by adding TMA origins as a covariate in the linear model. Differentially 
expressed genes for each annotation type were detected by compar-
ing the gene expression per annotation type with the rest. Separately, 
we also compared epithelial annotations to each other to identify 
dysregulated genes in pathologic epithelium.

Lumen segmentation and airspace identification
Initial lumen segmentation. To segment individual lumens from 
the spatial sequencing data, a custom graphics processing unit 
(GPU)-accelerated image processing algorithm was developed using 
scikit-image (v.0.19.3), RAPIDS cuCIM (v.22.12.00) and CuPy (v.11.2.0) 
in Python (v.3.9.7) to assign unique identifiers to lumens in the spatial 
transcriptome data62–64. Briefly, the location of each detected tran-
script, excluding transcripts associated with immune cells, was bina-
rized to a 2D image followed by a series of dilation, erosion and closing 
operations to define the location of the tissue and segment the lumens. 
The outer boundaries of the tissue were defined using Alpha Shapes 
(alphashape package v.1.3.1) on a denoised, closed shape representing 
the entire tissue. Unique identifiers were then assigned to the negative 
space (lumens) using scikit-image, and metrics were calculated for 
each individual lumen. Cell centers (nuclei) within a cutoff distance, 
defined as the thickness of a normal alveolar wall, were then assigned to 
the unique identifier of the closest lumen by searching for the nearest 
label in a restricted zone using the K-D Tree nearest-neighbor lookup 
algorithm implemented in scikit-image. All cells that were not close to 
a lumen were given an identifier of zero.

Quality filtering to isolate alveolar airspaces. Lumens were first 
filtered by size to remove false positive segmentations. We retained 
lumens that contained between 25 and 500 cells, including at least 
5% epithelial cells, for which the maximum distance between any two 
nuclei in the lumen was at least 110 µm. The high cell number and low 
epithelial cell thresholds were selected to retain lumens with large 
macrophage accumulations. For each lumen, the proportion of cells 
belonging to each cell niche was calculated, and the cell niche(s) 
with the highest proportion of cells was recorded as the ‘maximum 
cell niche’. To discard lumens corresponding to endothelial and 
airway structures, lumens were required to have an endothelial 
niche proportion of C10 < 0.3 and C12 < 0.3 along with an airway 
niche proportion of C1 < 0.2. To further isolate lumens likely to be 
alveolar in origin, lumens were retained only if their maximum cell 
niche(s) were C2/C5 (transitional epithelium), C8 (healthy alveolar), 
C3 (KRT5−/KRT17+ fibrotic niche) and/or C11 (airspace macrophage 
accumulation niche).
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Assessing changes in cell types, niches and gene expression along 
pseudotime. Pseudotime analysis was performed on the remaining 
1,747 alveolar airspaces based on the proportion of transcripts over-
lapping nuclei that were assigned to the T4 healthy alveolar niche. This 
allowed us to rank airspaces along a continuum of disease severity and 
tissue remodeling. To find cell types, niches and genes with varied 
abundances or expression along the pseudotime, we applied GAMs 
using the fitGAM function from tradeSeq65 on the aggregated feature 
counts across airspaces under a negative binomial distribution. We 
subsequently applied associationTest65 to test the association of fea-
tures with pseudotime.

Cell-type changes along pseudotime-ordered airspaces. We 
counted the number of each cell type across airspaces and fitted 
a GAM model per cell type against pseudotime with an offset of 
log-transformed total cell counts. We excluded cell types if they were 
not present with at least three counts in at least ten airspaces (36 cell 
types tested). We obtained the list of significant cell types (28 in total) 
using the associationTest65.

Cell-type-based and transcript-based niches. We applied similar 
analysis for cell-type-based and transcript-based niches as for cell-type 
analysis given above. Niches were excluded if they were not present 
with at least three counts in at least 10% of segmented airspaces. We 
obtained the smoothed niche abundance changes along 2,000 time 
points after model fitting and visualized their patterns in heatmaps 
after ordering them by their peak time point. The peak time point for 
each niche was determined using a rolling mean approach (window size, 
n = 100). Features with earlier peak times were plotted in the top rows.

Classifying gene expression patterns along pseudotime. We charac-
terized gene expression patterns along pseudotime-ordered airspaces 
using GAM models by modeling the gene count along pseudotime 
under negative binomial distribution. We added the total number of 
detected transcripts per lumen as an offset term as well as a TMA covari-
ate for controlling TMA effects. With the fitted model, we predicted the 
gene expression along pseudotime and clustered the gene expression 
patterns first using hierarchical clustering (k = 20) after taking z scores 
per gene. Genes were separated into bimodal and unimodal patterns 
by visual inspection of the 20 hierarchical clusters. For the unimodal 
genes, we further clustered them by spectral clustering (k = 4) using 
the R package kernlab66. We ordered the four gene clusters by their 
gene expression peak times and labeled them into four categories, 
including homeostasis, early remodeling, intermediate remodeling 
and late remodeling. The gene expression dynamics of the four gene 
clusters were then visualized in heatmaps.

Altered gene expression along pseudotime within each cell type. 
We tested which genes had altered expression along pseudotime within 
a specific cell type using GAMs as well. We tested 25 cell types that were 
observed with more than three cells in at least 80 airspaces. For each 
cell type, we aggregated their gene expression across segmented air-
spaces. Within a specific cell type, for the expression of each gene μ, 
we fit a negative binomial GAM model to model the gene expression 
across lumens using the gam function with cubic regression splines 
‘bs=“cr”’ implemented in mgcv67 as

log(μ) = s(t) +
15
∑
i=1

s(pi) + log(n) + U,

where t represents pseudotime, pi represents the proportion of cell 
type i, n represents the number of total transcripts per lumen and U 
represents the TMAs. We applied the same strategies in knot selection 
as in tradeSeq65 and selected five knots per smooth term. We included 
proportions of 15 major cell types that had more than three cells in more 

than 300 airspaces in the model to control for the contamination in 
detected gene expression signals. When testing genes for significant 
association with pseudotime per cell type, we restricted genes to the 
set of significant genes in the overall gene association test across all 
cell types. For each cell type, we then tested genes that were detected 
with more than three copies in 50% of the testing airspaces. Genes that 
had significant pseudotime terms after multiple testing corrections 
(FDR < 0.05) were summarized and plotted.

Statistics and reproducibility
Sample sizes were chosen based on sample availability, although data 
generation was randomized with respect to disease and control sam-
ples. The study was unblinded. Any data exclusions are noted above, 
including filtering cells of a large size or unexpectedly low or high gene 
counts based on current best practices. Key findings from Xenium data 
were replicated with orthogonal technology (Visium HD) as described 
above. For figures depicting H&E images of described phenomena  
(for example, cell types in annotations in Fig. 3d and macrophage 
accumulations in Fig. 6c–e,g–h), at least three similar examples were 
observed across samples, and the images shown are intended to be 
representative but not exhaustive. For representative H&E images 
overlain with transcripts or cell types, see the accompanying dotplot 
heatmaps for additional context. Full data are available at the Gene 
Expression Omnibus (GEO), including histopathology, gene expression 
data and cell-type annotations.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed data are deposited at GEO under accession 
GSE250346.

Code availability
Custom R, Python and bash scripts for this project are available 
on GitHub at https://github.com/Banovich-Lab/Spatial_PF and on 
Zenodo68.
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Extended Data Fig. 1 | Marker genes for all cell types. Of the 343 genes, 122 select genes are shown here to demonstrate cell-type annotation of the 47 identified  
cell types.
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Extended Data Fig. 2 | Cell-type annotation for the endothelial lineage 
using UMAP plots and spatial data. a, Lineage-level UMAP for endothelial 
cells generated after final cell-type annotation. Cell types are colored based 
on the legend in b. b, Proportion of the total number of endothelial cells by 
disease state (unaffected, less affected or more affected). Capillary cells are 
the majority endothelial cell type in unaffected samples, but capillary cells are 
lost in PF. c,d, Select cell-type gene markers visualized in UMAP space across all 
endothelial cells (c) and split by cell type (d). e, An example spatial plot of sample 

VUILD107MF (IPF diagnosis). Each point represents a cell, colored by cell type. 
Smooth muscle cells (SMCs)/pericytes of the mesenchymal lineage are included 
to provide additional spatial context for the location of endothelial cells. f, Plots 
of the same sample showing expression of select endothelial cell marker genes. 
Only endothelial cells are included in these plots. For d and f, boxes indicate 
the cell type of the gene marks. Gray-dashed lines indicate general endothelial 
lineage markers.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Cell-type annotation for the epithelial lineage using 
UMAP plots. a, Lineage-level UMAP for epithelial cells generated after final 
cell-type annotation. b, Select cell-type gene markers visualized in UMAP space 
across epithelial cells. c,e, UMAPs were additionally visualized for alveolar (c) 
and airway cell types (e) separately. Please note that KRT5−/KRT17+ cells were 
arbitrarily grouped with alveolar cell types, although they are found in PF in 

both remodeled airways and alveoli. d,f, Specific gene markers for alveolar (d) 
and airway cell types (f) visualized in UMAP space. For b, d and f, the specific 
cell types or groups of cells marked by each gene are listed near the gene name. 
‘Transitional’ refers to general transitional epithelial marker genes, except where 
noted as a specific marker for only the transitional AT2 cell type.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Cell-type annotation for the immune lineage using 
UMAP plots and spatial data. a, Lineage-level UMAP for immune cells generated 
after final cell-type annotation. b, Select cell-type gene markers visualized in 
UMAP space across immune cells. c,e, UMAPs were additionally visualized for 
lymphoid (c) and myeloid cell types (e) separately. d,f, Specific gene markers for 
lymphoid (d) and myeloid cell types (f) visualized in UMAP space. For b, d and f, 
the specific cell types or groups of cells marked by each gene are listed near the 
gene name. g,h, Individual examples of Langerhans cells (g) and neutrophils (h) 

indicated by white arrows with individual transcripts overlain onto H&E tissue 
stains. g, Langerhans cells in sample TILD117MA1 (IPF diagnosis) expressing 
immune marker PTPRC, dendritic cell markers CD1C and HLA-DQA1, and specific 
Langerhans cell markers CD1A and FCGBP in a remodeled airspace marked by 
SFTPC. h, Neutrophils in unaffected sample VUHD116B expressing general 
myeloid/monocytic markers FCGR3A, S100A8, S100A9 and S100A12 in addition 
to specific neutrophil marker SLC25A37. See Extended Data Fig. 1 for a dotplot 
heatmap showing expression of marker genes in each cell type.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Cell-type annotation for the mesenchymal lineage using 
UMAP plots. a, Lineage-level UMAP for mesenchymal cells generated after final 
cell-type annotation. b, Proportion of the total number of mesenchymal cells 
by disease state (unaffected, less affected or more affected). Alveolar fibroblast 
cells are the majority mesenchymal cell type across all groups, although the 

proportion of disease-associated, activated fibrotic fibroblasts increases 
in PF. c,d, Select cell-type gene markers visualized in UMAP space across all 
mesenchymal cells (c) and split by cell type (d). For c and d, boxes indicate  
the cell type the gene marks. Gray-dashed lines indicate general mesenchymal 
lineage markers.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Localization of key cell types. a–c, Representative 
examples of (a) pathologic SCGB3A2+/SCGB1A1− airways near airways with mixed 
populations of SCGB3A2−/SCGB1A1+ and SCGB3A2+/SCGB1A1+ (RASC) dual-
positive cells and SCGB3A+/SFTPC+ (transitional AT2) cells in remodeled alveoli; 
(b,c) WNT5A+ myofibroblasts surrounding conducting airways; (c) PI1+/MFAP5+ 
adventitial fibroblasts near vasculature. Transcript expression is overlain on H&E 

images. d, Density plots showing expression of disease-enriched endothelial 
marker COL15A1 and pan-endothelial marker PECAM1 in representative 
unaffected and PF samples. Samples depicted are as follows: (a) VUILD78MA 
(IPAF diagnosis), (b–d) TILD175MA (IPF) and (d) VUHD095 (unaffected).  
Scale bars represent 20 µm.

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | The molecular and cellular basis of clinically relevant 
PF histopathologies. a, Each sample was assigned a pathology score based on 
a semiquantitative scale assessing the number/severity of pathologic features. 
Here we show a representative sample (VUILD107MA; IPF diagnosis) with 
annotated features. Features are represented by colors and symbols as shown: §, 
hyperplastic airway epithelial cells (AECs); ̂ , remodeled epithelium; #, epithelial 
detachment; †, large airway; $, goblet cell metaplasia; *, mixed inflammation; ‖, 
muscularized artery; Δ, fibroblastic focus; ‡, fibrosis; =, severe fibrosis. b, Cell 
types significantly associated with pathology score are labeled in the volcano 
plot. The horizontal and vertical dashed lines show the significance threshold 
(FDR < 0.01) and split the plot into cell types negatively and positively associated 
with pathology score, respectively. Cell types on the right are present in higher 

proportions in samples with high pathology scores. c, The cell-type composition 
of select annotations of interest, as a proportion of the number of cells across 
an annotation (each column sums to 1; columns indicated by gray lines). See 
Supplementary Fig. 17a for an expanded version of this plot with all cell types 
and annotations. d, Examples of select annotations on semi-transparent H&E 
images overlain with cell types in the annotated region. Each point represents 
a cell centroid. Cell-type colors are matched to b. Scale bars represent 20 µm. 
Example annotations were taken from the following samples: granuloma—
VUILD96MA (sarcoidosis); tertiary lymphoid structure (TLS)—VUILD110LA 
(CTD-ILD); microscopic honeycombing (partial)—VUILD78MA (IPAF); goblet 
cell metaplasia—VUILD104MA2 (IPF); hyperplastic AECs—VUILD107MA (IPF); 
fibroblastic focus—VUILD104MA1 (IPF).
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Extended Data Fig. 8 | Epithelial detachment on a serial section that did not 
undergo Xenium processing. To verify that the epithelial detachment feature 
was not an artifact of Xenium processing, we took serial sections approximately 
45 µm from the processed tissue section. H&E stains, shown here for sample 

VUILD48LA (NSIP diagnosis), show areas of epithelial detachment are present 
on both the original section (a,b) and the section that did not undergo 
Xenium processing (c,d). b and d show the areas marked with boxes in a and c, 
respectively. Brackets denote epithelial detachment. Scale bars represent 50 µm.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02080-x

Extended Data Fig. 9 | Additional examples of epithelial detachment. The 
majority of epithelial detachment annotations contained KRT5−/KRT17+ cells (a), 
basal (KRT5+/KRT17+) cells (b) and AT2-like (SFTPC+/SCGB3A2+) cells (c). A select 
set of examples are shown for these groups. For each example, an H&E stain is 

shown with brackets denoting areas of epithelial detachment, side-by-side with 
transcript expression for the listed genes overlain on H&E images. Scale bars 
in the bottom left of each H&E image represent 20 µm. Sample names for the 
depicted annotations are noted on each H&E.

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | KRT5−/KRT17+ cell detachment in matched Xenium 
and Visium HD data. a,b, Examples of KRT5−/KRT17+ cells detaching from the 
basement membrane are shown for two samples (a, VUILD49LA—cHP diagnosis; 
b, TILD113LA—IPF) that were processed with both Xenium and Visium HD. For 
each panel, an H&E stain is shown with brackets denoting areas of epithelial 
detachment. Scale bars represent 20 µm. For Xenium images (top), select 

transcripts are shown to mark KRT5−/KRT17+ cells (left) and activated fibrotic 
fibroblasts (right). Each transcript is a point or other shape, colored by gene 
as listed in the legend. For Visium HD images (bottom), the sum of the log2 
expression of a list of genes (Supplementary Table 11) is shown as a density map 
overlain on the H&E.

http://www.nature.com/naturegenetics


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Nicholas Banovich

Last updated by author(s): Nov 25, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Xenium instrument versions 1.1.2.4 and 2.0.1.0 
Xenium Analyzer versions xenium-1.1.0.2 and xenium-2.0.0.10 
Xenium Explorer 3.0.0 
CytAssist instrument version 2.0.1.6 
10X Genomics Loupe Browser v8.0.0 
10X Genomics SpaceRanger 3.0.0

Data analysis Github code link: https://github.com/Banovich-Lab/Spatial_PF 
 
ImageJ 2.14.0 
RStudio Server 2023.06.0+421 "Mountain Hydrangea" Release and RStudio Server 2023.12.1+402 “Ocean Storm” Release 
R 4.3.0-4 and 4.2.1 
Python 3.9.7 and 3.12.3 
Seurat 5.0.1 
Scanpy v1.8.1 
RAPIDS v21.8.1 
RAPIDS cuCIM version 22.12.00 
CuPy version 11.2.0 
scikit-image version 3.9.7 
Alpha shape version 1.3.1 
QuPath version 0.4.3 



2

nature portfolio  |  reporting sum
m

ary
April 2023

GraphSAGE implementation in stellargraph(v1.2.1+python3.8.0) 
PyCave (python3.8.4+pycave3.2.1) 
propeller 0.99.0 
limma 3.50.1 
SingleCellExperiment 1.16.0 
tradeSeq 1.8.0 
kernlab 0.9-32

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data from this study are fully available as supplementary tables or in raw/processed format on GEO: GSE250346. This includes all image data and necessary 
accompanying files needed to interact with data outputs on the 10X Genomics Explorer software.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Clinically annotated genetic sex was available for 34 of the 35 individuals in the study. Of the reported sex, 14 were female 
and 20 were male.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Self reported race/ethnicity was available for 34 of the 35 individuals in the study. Of the reported race/ethnicities, 3 
reported as African American, 1 as American Indian, and 1 as Hispanic. The remaining subjects reported European ancestry.

Population characteristics Of the 35 samples, 9 were individuals unaffected by lung disease (declined organ donors). The remaining 26 samples had a 
form of pulmonary fibrosis including IPF (n = 12), ILD (n = 4), CTD-ILD (n = 2), cHP (n = 4), CPFE (n = 1), NSIP (n = 1), IPAF (n = 
1) and Sarcoidosis (n = 1). Ages ranged between 31-64 for controls and 47-70 for pulmonary fibrosis patients. Approximately 
half (48.6%) of PF patients reported current or prior tobacco use.

Recruitment Participants were patients of the Clinical Investigator scheduled for a lung transplant surgery. The Clinical Investigator or a 
member of his research staff approached individuals to discuss the study and invite them to participate.

Ethics oversight Studies were approved by the local Institutional Review Boards (Vanderbilt IRB nos. 060165 and 171657 and Western IRB no. 
20181836)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The final sample size was 45 samples from 35 donors, consisting of 9 unaffected controls and 26 samples with pulmonary fibrosis. Sample size 
calculations were not performed. Sample size was chosen based on sample availability and the number of samples feasible to run together in 
the same Xenium runs. While this dataset contains a relatively small number of individuals, it is the largest imaging-based spatial 
transcriptomic study of the human lung reported to date and was sufficient to generate a large dataset containing more than 1.6 million cells.

Data exclusions Cells with a large size, low number of counts, or unexpectedly high numbers of counts were filtered out based on current best practices.

Replication Key findings from Xenium data were replicated with orthogonal technology - Visium HD.

Randomization Data generation was randomized with respect to disease and control samples.



3

nature portfolio  |  reporting sum
m

ary
April 2023

Blinding This study was unblinded. Blinding would not be possible because major differences in histology are readily observable both between control 
and disease and between different disease diagnoses.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants


	Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibros ...
	Results

	Diverse cellular landscape of the lung

	Niche analyses reveal disease-emergent cellular interactions

	Disease-emergent macrophages accumulate in airspaces

	A timeline of alveolar dysregulation


	Discussion

	Online content

	Fig. 1 Outline of spatial transcriptomics processing and analysis pipeline.
	Fig. 2 Cell-type composition of unaffected and PF lung tissue determined using marker gene expression and spatial information.
	Fig. 3 Complementary spatial niche analyses provide comprehensive annotation of tissue remodeling in PF.
	Fig. 4 KRT5−/KRT17+ cells detach at sites of active fibrosis identified by spatial niches.
	Fig. 5 FABP4+ and SPP1+ macrophages accumulate in PF airspaces and are characterized by a spatial niche.
	Fig. 6 Alveolar remodeling at airspace resolution.
	Extended Data Fig. 1 Marker genes for all cell types.
	Extended Data Fig. 2 Cell-type annotation for the endothelial lineage using UMAP plots and spatial data.
	Extended Data Fig. 3 Cell-type annotation for the epithelial lineage using UMAP plots.
	Extended Data Fig. 4 Cell-type annotation for the immune lineage using UMAP plots and spatial data.
	Extended Data Fig. 5 Cell-type annotation for the mesenchymal lineage using UMAP plots.
	Extended Data Fig. 6 Localization of key cell types.
	Extended Data Fig. 7 The molecular and cellular basis of clinically relevant PF histopathologies.
	Extended Data Fig. 8 Epithelial detachment on a serial section that did not undergo Xenium processing.
	Extended Data Fig. 9 Additional examples of epithelial detachment.
	Extended Data Fig. 10 KRT5−/KRT17+ cell detachment in matched Xenium and Visium HD data.




