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Quantitative characterization of tissue  
states using multiomics and ecological 
spatial analysis
 

Daisy Yi Ding1,11, Zeyu Tang    2,11, Bokai Zhu3,4,11, Hongyu Ren5, 
Alex K. Shalek    3,4,6,7,8, Robert Tibshirani1,9,12 & Garry P. Nolan    10,12 

The spatial organization of cells in tissues underlies biological function, and 
recent advances in spatial profiling technologies have enhanced our ability 
to analyze such arrangements to study biological processes and disease 
progression. We propose MESA (multiomics and ecological spatial analysis), 
a framework drawing inspiration from ecological concepts to delineate 
functional and spatial shifts across tissue states. MESA introduces metrics 
to systematically quantify spatial diversity and identify hot spots, linking 
spatial patterns to phenotypic outcomes, including disease progression. 
Furthermore, MESA integrates spatial and single-cell multiomics data to 
facilitate an in-depth, molecular understanding of cellular neighborhoods 
and their spatial interactions within tissue microenvironments. Applying 
MESA to diverse datasets demonstrates additional insights it brings over 
prior methods, including newly identified spatial structures and key 
cell populations linked to disease states. Available as a Python package, 
MESA offers a versatile framework for quantitative decoding of tissue 
architectures in spatial omics across health and disease.

The spatial organization of cells in tissues critically influences bio-
logical processes from embryonic development to disease progres-
sion. Because cells do not operate in isolation, their functionality and 
behaviors are intrinsically linked to their local microenvironments. 
Advances in spatial profiling technologies1–6 have enhanced our abil-
ity to analyze cellular characteristics within native tissue context and 
derive mechanistic insights7–10. Computational algorithms have been 
developed for spatial omics to explore cellular interactions and their 
spatial dependencies, providing tools to analyze cellular neighbor-
hoods and tissue niches10–16.

However, it is still challenging to analyze spatial-omics data 
systematically and robustly. Methods are needed to quantitatively 

assess spatial distributions and structures across dynamic ranges  
(for example, 50 μm to 1 mm) and identify associations with functional 
outcomes. Current approaches focus on visualization in examining 
cellular diversity, with limited systematic metrics for characteriz-
ing spatial patterns related to phenotypic outcomes such as disease 
progression10–16. This limitation presents a gap in the analytical toolkit 
for spatial-omics data.

Inspired by ecology, we recognize an opportunity to enable an 
analogy between species biodiversity and cellular diversity. Ecolo-
gists have developed metrics to quantify species distributions across 
spatial scales and habitats17,18, and recent studies have begun applying 
them to spatial-omics data19–21. Adapting ecology metrics for cellular 
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of using a cell type as a predesignated entity, MESA assesses average 
protein and mRNA levels of cells in a region to determine neighborhood 
compositions (Fig. 1a(ii)). This process allows MESA to take advantage 
of the dynamic range of proteins as a proxy for cell states that previ-
ously has been ignored by traditional clustering or gating algorithms 
and is therefore more sensitive to coregulated protein and mRNA levels 
across cells in a region.

Subsequently, MESA uses k-means clustering37 to identify con-
served neighborhood patterns, followed by DE analysis and gene 
set enrichment analysis (GSEA) to explore functional pathways and 
implications (Fig. 1a(iii)). These analyses are enabled by the multiom-
ics approach and can uncover nuanced functional pathways within 
complex cellular environments.

The second component of MESA uses systematic metrics to quan-
tify cellular diversity (Fig. 1b). First, we propose an MDI to evaluate 
diversity variations across spatial scales (Fig. 1b(i)). MDI functions by 
dividing tissue sections into patches of varying sizes, assessing diver-
sity within each patch, and computing an average diversity score for 
the corresponding scale. MDI is derived as the slope of a linear regres-
sion line fitted to these diversity scores across scales, and therefore a 
measure of how cellular diversity fluctuates as scale changes. Lower 
MDI values indicate consistent diversity across scales, whereas higher 
values signal more pronounced shifts (Fig. 1b(i)). For instance, tissues 
with uniform cell-type distributions would maintain consistent diver-
sity across scales. Conversely, tissues with disproportionately distrib-
uted cell types would exhibit more pronounced diversity fluctuations 
across scales. To represent this, MESA generates a diversity heatmap 
by calculating the diversity of local patches within a tissue sample 
(Fig. 1b(ii)). We use this to derive the global diversity index (GDI), which 
assesses whether patches of similar diversity are spatially adjacent, and 
the local diversity index (LDI), which distinguishes regions by their 
diversity patterns and identifies ‘hot spots’ (clusters of patches with 
high diversity) and ‘cold spots’ (clusters of patches with low diversity).

This approach parallels biodiversity hot spots and cold spots in 
geo-ecology. MESA assesses the hot spots and cold spots by analyz-
ing the abundance and cohabitation of cell types in these regions, 
uncovering signals not evident in whole-tissue analysis. Of note, these 
spatial compartments differ from tissue neighborhoods/niches14,15,38,39, 
which are conventionally defined by cellular identity instead of cellular 
diversity. Furthermore, the diversity proximity index (DPI) evaluates 
spatial relationships among hot/cold spots (Fig. 1b(iii)). This concept 
parallels ecological studies where habitat size and proximity affect 
species dynamics. As in ecology, where larger and proximate habitats 
enhance species interactions, higher DPI values suggest spots that are 
closer and larger and could indicate more dynamic cellular interactions. 
Conversely, lower DPI values reflect smaller, dispersed spots, which 
could suggest fewer cell–cell interactions. MESA’s quantitative met-
rics enable the exploration of associations between cellular diversity 
and phenotypic outcomes like disease progression. We provide more 
details on the MESA framework in the Methods section.

Multiomics analysis enhances tonsil niche characterization
To demonstrate how multiomics enhances niche characterization, 
we applied MESA to a tonsil CODEX dataset32 integrated with tonsil 
scRNA-seq data40. MESA facilitated the delineation of distinct cel-
lular interactions and neighborhoods beyond those observable by 
traditional analysis techniques and revealed DE patterns of protein 
and mRNA between neighborhoods. Figure 2a shows the tonsil tissue 
sample with cells color-coded by cell type. Figure 2b presents neighbor-
hood characterization based on cellular composition (commonly used 
in prior techniques33,36; left), average protein expression (middle) and 
mRNA expression (right) using in silico multiomics fusion.

We observed enhanced spatial delineation of neighborhoods 
(labeled as neighborhoods 0, 1 and 3 in Fig. 2b middle and right panels) 
that consistently emerge within germinal centers, which was initially 

environments allows us to quantify tissue spatial structures and iden-
tify their associations with functional outcomes.

By analyzing the biology across various omics views, we can 
uncover insights hidden in a single spatial-omics modality. A well- 
implemented multiomics approach can harness the wealth of avail-
able single-cell data, such as data from single-cell RNA sequenc-
ing (scRNA-seq) technologies, by integrating them with spatial 
omics to enrich the information captured. Recent data integration 
algorithms22–31 enable high-throughput scRNA-seq measurements of 
thousands of genes to inform spatial-omics data, such of those from 
CODEX, which retains tissue spatial context. Fusing these approaches 
maps proteins and RNAs at the single-cell level within tissues. In 
silico-unified multiomics data, combined with multiscale perspectives 
on cellular diversity, provide a more holistic characterization of cellular 
landscape and would pave the way for an enhanced understanding of 
complex biological systems.

We present MESA (multiomics and ecological spatial analysis), a 
framework combining ecological principles and multiomics integra-
tion to decode tissue remodeling. Drawing inspiration from ecology, 
MESA adapts diversity metrics traditionally used to gauge biodiversity 
for spatial omics, creating tools for systematic quantification of cellular 
diversity. We introduce a multiscale diversity index (MDI), alongside 
global and local diversity indices, to capture not only tissue overarching 
diversity but also localized patterns and dependencies. Furthermore, 
MESA uses a multiomics approach to spatial-omics analyses. MESA in 
silico amalgamates cross-modality single-cell data to enrich the context 
of spatial-omics observations. With the additional layers of informa-
tion brought to bear by multiomics, MESA facilitates an extended view 
of cellular neighborhoods and their spatial interactions within tissue 
microenvironments. MESA’s approach, incorporating differential 
expression (DE), gene set enrichment and ligand-receptor interac-
tion (LRI) analyses within these spatially defined cellular assemblies, 
further enhances a mechanistic understanding of tissue remodeling 
across disease states.

Applying MESA to datasets of CODEX human tonsil32, mouse 
spleen2, human intestine33 and CosMx SMI human liver34 revealed key 
cellular components, spatial structures and functionalities linked to 
tissue disease states, which were not discerned with prior techniques. 
Thus, this quantitative approach to spatial pattern analysis and multi-
omics integration advances our understanding of tissue remodeling 
and its functional implications in diseases and therapies. MESA (https://
github.com/Feanor007/MESA) is available as a Python package.

Results
Overview of the MESA pipeline
MESA integrates spatial omics with corresponding single-cell datasets 
(for example, scRNA-seq) from the same tissue type and disease con-
dition (Fig. 1a). It matches cells across modalities through MaxFuse22, 
enriching spatial-omics data with single-cell information for spatial 
analyses (Fig. 1a(i)). The framework leverages available single-cell data 
resources, reducing the need to conduct all omics experiments directly. 
Based on in silico-created multiomics profiles, MESA characterizes the 
local neighborhood of each cell to identify conserved, distinct cellular 
neighborhoods (Fig. 1a(ii)). This process aggregates multiomics infor-
mation from spatially determined neighbors (for example, 20 cells) to 
capture the cellular environment.

In prior publications, we determined cellular neighborhoods10,33,35 
using a sliding window that determines local cell compositions wherein 
cell types are defined using clustering or other approaches. In such 
approaches, cell types are binned as univariate entities (that is, CD4+ 
FOXP3+ regulatory T cells (Treg cells) or B220+CD20+ B cells)33,36, and the 
expression of any given protein on those cells can exist within a range. 
However, MESA does not use cell designations as such but goes beyond 
this by incorporating multiomics information, such as protein and 
mRNA expression levels (or any other omics data that pertain). Instead 
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identified as neighborhood 1 (left panel). Figure 2c zooms into one such 
germinal center (circled by dotted lines) to illustrate these distinctions. 
Composed mainly of B cells (i), the germinal center corresponds to 
neighborhood 1 (orange; ii). MESA subdivides it into distinct neigh-
borhoods (orange, red and blue; iii and iv), a pattern seen consistently 
across multiple germinal centers, revealing distinct subniches unde-
tected by previous algorithms.

The granularity of niche characterization was assessed using Shan-
non entropy. Higher entropy values indicate finer delineation: protein 
and mRNA-based methods (3.1 and 3.0) outperformed cellular com-
position (2.7), supporting our visual observations and demonstrating 
MESA’s capability to identify more nuanced neighborhoods. Although 
minor inconsistencies between protein and mRNA-based results occur 
at compartment boundaries or transitional regions (Fig. 2b,c and 
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a    Multiomics neighborhood spatial analyses

0
5

10

15

20
25

–5–10 0 5 10

Multiomics 
data fusion 

Neighborhood
identification

Neighborhood 
characterization

DE across 
neighborhoods

GSEA of 
neighborhoods

CODEX
MIBI

MERFISH
SMI

IMC

Spatial 
omics data

Cell1

Neighbors of cell1
Cellular composition

Local 
neighborhood 

of cell

Protein expression

RNA expression

Clustering of local neighborhoods

1

2

3

MDI: 
Rate of change in diversity across scales

Hot spots
Cold spots

 Diversity heatmap

Diversity
(entropy)

Scale
2,000 µm × 2,000 µm 1,000 µm × 1,000 µm 50 µm × 50 µm

X

Y

1

2

3 4
5

Relative abundance in 
diversity hot spots
1
2
3
4
5Entropy of 

local patches
1

2

3 4
5

...

...

Scale

D
iv

er
si

ty

0

1

2

3

1.0 2.0 ... r

Scale

D
iv

er
si

ty

0

1

2

3

1.0 2.0 r

Scale

D
iv

er
si

ty

0

1

2

3

1.0 2.0 r

...

Single-cell 
data

scRNA-seq
scATAC-seq

Low MDI: Diversity 
remains consistent 
across scales

High MDI: Diversity
changes significantly
across scales

Tissue

 Diversity hot spots
and cold spots

GDI: 
Diversity patch adjacency patterns

DPI:
Hot or cold spot proximity patterns

Medium MDI: Diversity 
exhibits noticeable 
changes across scales

...

...

Enabled by 
MaxFuse

MESA
metrics

Phenotypic
outcome

(i.e. disease
progression)

Cell

i ii iii

i

ii iii

Fig. 1 | MESA overview. a, Multiomics neighborhood spatial analysis integrates 
spatial-omics data (for example, CODEX, MIBI, IMC and MERFISH) with single-
cell datasets (for example, scRNA-seq and scATAC-seq) using algorithms like 
MaxFuse22. The framework is designed to be versatile, allowing the utilization 
of various other data integration methods to accommodate different 
analytical needs. This integration enriches spatial-omics data and creates an 
in silico multiomics spatial profiling for downstream analysis. Neighborhood 
identification follows, with multiomics information aggregated from each cell’s 
k-nearest neighbor (k-NN) into Neighborhood Feature Vector (NFV), capturing 
the local cellular environment. The k-NN is determined based on spatial distance. 
Different types of NFVs are computed, including cellular composition, local 
average protein expression and local average RNA expression (by in silico 
matching of scRNA-seq data). These NFVs serve as the basis for clustering to 
identify distinct, conserved cellular neighborhoods. MESA conducts DE analysis 
and GSEA to gain functional insights into the identified cellular neighborhoods. 
b, Ecology-inspired spatial analyses use the MDI to quantify variations in diversity 

across spatial scales. It works by dividing a tissue sample into patches of varying 
sizes, evaluating diversity within each patch, and subsequently calculating a 
mean diversity score corresponding to each scale. The MDI measures the rate 
of change in diversity across scales: low MDI values indicate consistent cellular 
diversity across scales, and higher values signal more pronounced diversity 
shifts, which may imply a disproportionate distribution of certain cell types 
within the tissue. To represent this, MESA generates a diversity heatmap by 
computing the entropy of local patches. Based on the diversity heatmap, the GDI 
evaluates spatial adjacency of patches sharing similar diversity levels, whereas 
the LDI identifies diversity hot spots (regions characterized by high diversity) 
and cold spots (regions characterized by low diversity). MESA analyzes hot spots 
and cold spots by examining cell-type prevalence and cohabitation within these 
regions, with the potential to reveal patterns that might not be evident when 
considering the entire tissue. The DPI measures the spatial proximity and size 
relationships between hot spots and cold spots, with higher values indicating 
larger and more proximate diversity spots. Created in BioRender.
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Supplementary Fig. 1), overall compartment structures remain consist-
ent. To demonstrate MESA’s robustness, we integrated tonsil CODEX 
data with another tonsil scRNA-seq dataset41, yielding highly consistent 
results that preserved key spatial structures (Extended Data Fig. 1).

To assess the generalizability of our proposed multiomics frame-
work, we evaluated three additional clustering methods—BIRCH42, 
hierarchical clustering43 and FlowSOM44—alongside k-means. Results 
consistently showed improved neighborhood delineation using mul-
tiomics information (Supplementary Fig. 2). Comparison with marker 
intensity-based neighborhood characterization methods, including 
BANKSY45, CellCharter16 and UTAG15, provided finer characterization 
than cellular composition-based approaches, but MESA more effec-
tively delineated nuanced neighborhoods (Extended Data Fig. 2). 
Finally, while applying more granular cell-type annotations enhanced 
composition-based methods, MESA’s integration of continuous multi-
omics expression and spatial context provided deeper insights (Sup-
plementary Fig. 3).

The cellular composition, protein and mRNA expression across 
neighborhoods were visualized in Fig. 2d. All 46 CODEX protein mark-
ers and top 50 variable mRNA genes revealed distinct expression pat-
terns despite similar cellular compositions across neighborhoods. For 
example, neighborhoods 1, 0 and 3 (red box) showed similar cellular 
makeups but different expression levels of proteins Ki67, CD21 and 
CD22 and mRNAs CD74 and TUBA1B, consistent with known markers 
of distinct B cell subpopulations in germinal centers46–48.

Furthermore, DE and GSEA revealed functional distinctions 
between the finer-grained neighborhoods (Fig. 2e and Supplemen-
tary Fig. 4). Neighborhood 0 showed significant enrichment for path-
ways including E2F targets, G2M checkpoint and DNA repair, whereas 
neighborhood 3 for TNFA signaling via nuclear factor κB (NF-κB), 
IL-2 STAT5 signaling and interferon-gamma response. These findings 
align with germinal center dark and light zones’ distinct functions in B 
cell proliferation versus selection and antigen presentation49. MESA’s 
analysis reflects this segregation, revealing molecular profiles con-
sistent with literature expectations. This enhanced characterization 
demonstrated MESA’s capability to uncover vital cellular dynamics 
within complex tissue structures. These types of insights will be useful 
for elucidating the mechanisms of immune surveillance and response 
within lymphoid tissues.

Eco-spatial analysis reveals autoimmune tissue remodeling
We applied MESA’s eco-spatial framework to a CODEX spleen dataset of 
healthy and MRL/lpr (a murine model of systemic autoimmune disease) 
mice2. Tissues were segmented into 30 μm × 30-μm patches. Figure 3a 
shows the cell-type map (top), diversity heatmap (middle; red: higher, 
blue: lower) and diversity hot/cold spots (bottom).

High-diversity regions align with the marginal zone and red 
pulp, whereas low-diversity regions correspond to B follicles and 

periarteriolar lymphoid sheath (PALS). MESA revealed notable shifts 
in cellular diversity patterns during disease progression. MRL/lpr 
tissues show higher MDI versus healthy tissues (Fig. 3b, left). This dif-
ference reflects the spatial arrangement of homogeneous regions in 
healthy spleen tissues, which maintain consistent cell-type diversity 
across spatial scales. These regions, predominantly B follicles and PALS, 
are crucial for spleen immune functions. In MRL/lpr tissues, disease 
progression disrupts this organization through marginal zone dissipa-
tion, PALS disintegration and erythroblast invasion of the red pulp2.

Via MESA, these latter changes are seen to disrupt previously 
organized tissue structures, producing mosaic-like patterns and 
diversity fluctuations across scales. Healthy spleen tissues have 
higher GDI (Fig. 3b, middle), indicating distinct segregation of high 
and low diversity regions and more organized compartments. In 
contrast, diseased tissues show lower GDI and more blended pat-
terns, indicating disrupted spleen functionality. Furthermore, using 
LDI, regions identified as hot/cold spots showed differential spatial 
proximity in healthy versus diseased samples. Healthy tissues show 
higher DPI with more expansive and proximate hot spots (Fig. 3b, 
right). In healthy tissues, hot spots align with red pulp (containing 
erythrocytes, F4/80+ macrophages, stromal cells), whereas cold 
spots associate with B follicles (B cells) and PALS (T cells). In diseased 
tissues, hot spots shift to restructured PALS and invasion fronts, with 
cold spots in remaining B follicles.

To demonstrate MESA’s unique capability in discovering these 
important spatial compartments beyond prior neighborhood/niche 
methods, we compared it with Spatial-LDA14, UTAG15 and CellCharter16. 
MESA’s diversity hot/cold spots did not align with regions identified 
by these conventional neighborhood/niche methods (Extended Data 
Fig. 3a), underscoring its distinct advantage.

Among limited quantitative metrics for spatial omics, CellCharter 
introduces shape metrics gaining traction in spatial analysis, including 
curl, elongation, linearity and purity16. MESA’s metrics outperformed 
CellCharter’s in distinguishing MRL/lpr from healthy tissues (Extended 
Data Fig. 3b). MESA also showed superior performance compared to 
established spatial ecology metrics like fractal dimension index50 and 
shape index51 (Supplementary Fig. 5). In addition, we incorporated 
global and local Getis-Ord Gi/Gi* statistics52,53 into our benchmarking, 
with MESA demonstrating better performance (Supplementary Fig. 6), 
and as additional options in the MESA package.

We analyzed the cellular composition and cohabitation in hot 
spots between healthy and diseased spleens to identify characteristic 
cell types or combinations associated with disease. B cells significantly 
declined in frequency in both whole tissue and hot spots of diseased 
spleens (Fig. 3c, left). However, hot spots uniquely showed increased 
B220+, DN T cells, and CD106+CD16/32+CD31+ stromal populations 
(Fig. 3c, middle/right and Supplementary Figs. 7–9), highlighting the 
utility of hot-spot-focused analysis in detecting nuanced changes. 

Fig. 2 | Multiomics spatial analysis enhances niche characterization in tonsil 
tissues. a, Tonsil tissue sample with cells color-coded by cell type. b, Niche 
characterization results based on cellular composition (left), local average 
protein expression (middle), and local average RNA expression (right, enabled by 
the fusion algorithm MaxFuse). We observed enhanced spatial delineation of 
neighborhoods, labeled as neighborhoods 0 (blue), 1 (orange) and 3 (red) in the 
middle and right panels, that consistently emerge within the germinal centers, 
which are identified only as neighborhood 1 (orange) in the left panel. c, A 
zoom-in visualization at one of the germinal centers (circled by dotted lines). The 
entropy values (calculated as the Shannon diversity index: H = −∑p(x) logp(x), 
where p(x) is the proportion of cells in each neighborhood) quantify the 
granularity of neighborhood characterization, with higher values indicating 
increased delineation. Primarily composed of B cells, as shown in subpanel i, this 
germinal center corresponds to the neighborhood labeled as 1 and colored 
orange in subpanel ii. MESA reveals that it can be subdivided into more granular 
neighborhoods, colored orange, red and blue in subpanels iii and iv, and this 

pattern emerges consistently across multiple germinal centers. d, Heatmap 
visualizing cellular composition versus protein and mRNA expression levels.  
The red box highlights that, despite comparable cellular makeups in 
neighborhoods 0, 1 and 3, notable variances exist in protein and mRNA 
expression profiles. The values are normalized to 0 and 1 for visualization.  
e, DE and GSEA were conducted on the newly emerged neighborhoods (0 and 3), 
revealing distinct B cell developmental states within the germinal center’s dark 
and light zones. DE analysis was performed using two-sided exact test with  
P values adjusted for multiple testing using the Benjamini–Hochberg (BH) 
procedure. The adjusted P value threshold was set at 0.05, and the effect size  
(log fold-change) threshold at 0.1. In the GSEA plot, the pathways colored  
blue are significantly enriched in neighborhood 0, red in neighborhood 3  
and gray indicates no statistical significance after false delivery rate (FDR) 
correction. GSEA was conducted using normalized enrichment scores with 
permutation-based two-sided tests and P values adjusted using the BH 
procedure. The adjusted P value threshold was set at 0.05.
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Visualization of cell-type composition across hot/cold spots (Extended 
Data Fig. 5) revealed spatial heterogeneity within and across samples. 
In terms of cohabitation, diseased samples showed increased cohabi-
tation between CD8+ T cells and both CD106+CD16/32+CD31−Ly6c− 
stromal cells (Fig. 3d, left) and ERTR7+ stromal cells (Fig. 3d, middle).

Such patterns emerged only in hot spots, not whole tissues (Fig. 3d, 
Extended Data Fig. 4 and Supplementary Fig. 10). Enhanced spatial 
association between ERTR7+ stromal cells and CD8+ T cells suggests 
ERTR7+ stromal cells actively facilitate T cell movement and possibly 
activation in diseased states54. In contrast, healthy samples showed 
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increased CD8+ T cell and F4/80+ macrophage cohabitation (Fig. 3d, 
right), consistent with F4/80+ macrophages’ role in immunoregu-
lation and autoimmune prevention55. These differences were more 
pronounced in hot spots versus whole tissues across all cases studied, 
achieving statistical significance with lower P values. Fig. 3e shows CD8+ 
T cell and F4/80+ macrophage distribution in hot spots, with zoomed-in 
hot spot regions and corresponding CODEX images showing higher 
frequency in healthy versus diseased spleens. These alterations in cel-
lular frequencies and interactions signify major restructuring of spleen 

tissue architecture and altered immune landscape, shedding light on 
mechanisms driving disease progression and immune dysregulation.

MESA improves prognostic capabilities for CRC
Prior research on colorectal cancer (CRC) identified spatial patterns 
linked to two subtypes: Crohn’s-like reaction (CLR) and diffuse inflam-
matory infiltration (DII)33. These patterns, however, were previously not 
systematically quantified. Tissue samples from the previously analyzed 
CODEX patients with CRC were segmented into 50 μm × 50-μm patches. 
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Fig. 3 | Eco-spatial analysis reveals distinct tissue remodeling in autoimmune 
disease. a, Side-by-side visualization of tissue sections from BALBc-1 (healthy 
control) and MRL-8 (MRL/lpr) mice showing (1) the cell-type map (top); (2) the 
diversity heatmap (middle), with varying shades indicating cellular diversity 
levels (red representing higher diversity and blue lower diversity); and (3) the 
map of the diversity hot spots and cold spots (bottom). DC, dendritic cell.  
b, Quantitative evaluation of MESA diversity metrics, including MDI, GDI and 
DPI, highlighting statistically significant differences in spatial diversity patterns 
between healthy (n = 3) and MRL/lpr tissues (n = 6; same sample size for b–d). 
Standard box plot metrics were used throughout: median (center line), quartiles 
(box), and whiskers (1.5 × IQR). Each point in b–d corresponds to an individual 
tissue sample. Healthy tissues show higher values of GDI (P < 0.001) and DPI  
(P = 0.014), whereas diseased MRL/lpr tissues exhibit a higher value of MDI  

(P = 0.002). Statistical comparisons were conducted across different tissue 
samples using two-sided Welch’s t-test. c, Distribution of cell types as a 
percentage of total cell population in healthy and diseased spleen tissues. 
Comparisons were conducted using two-sided Welch’s t-test and adjusted 
for FDR correction using the BH procedure. Notably, the differences in cell 
frequency between healthy and diseased tissues are more pronounced within the 
diversity hot spots than within the whole tissue. d, Cohabitation of different cell 
types in healthy and diseased tissues. Comparisons were conducted using a two-
sided Welch’s t-test and adjusted for FDR correction using the BH procedure.  
As before, the differences are more pronounced within the diversity hot 
spots than the entire tissue, with lower P values. e, Side-by-side visualization 
contrasting the cohabitation patterns of CD8+ T cells and F4/80+ macrophages in 
healthy and diseased tissues, with the corresponding CODEX images.
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Figure 4a shows the cell-type map (top), diversity heatmap (middle; 
red: higher, blue: lower) and diversity hot/cold spots (bottom).

Applying MESA metrics to the CRC dataset revealed notable 
differences between CLR and DII subtypes (Fig. 4b). CLR patients 
showed higher MDI with more dynamic variations in cellular diversity 
across scales (Fig. 4b, left), higher GDI indicating distinct segregation 
of high and low diversity regions (middle), and higher DPI reflecting 
larger, proximate hot spots (right). In contrast, DII patients displayed 
more intermixed patterns and smaller, dispersed hot spots. MESA’s 
metrics quantitatively characterize CRC tissue organization and 
outperform CellCharter’s metrics in distinguishing disease states 
(Supplementary Fig. 11).

We used MESA diversity metrics to model CRC patient survival 
outcomes, outperforming traditional CLR/DII annotations by patholo-
gists. This demonstrates the value of these automatic metrics in patient 
stratification. A Cox proportional hazards model based on spatial 
diversity stratified patients into two groups with significantly different 
Kaplan–Meier curves (P < 0.0001). Notably, diversity-based stratifi-
cation showed greater Kaplan–Meier curve separation than CLR/DII 
annotations (Fig. 4c, left/middle). Our model also achieved higher 
predictive accuracy, increasing the concordance index (C-index) from 
0.717 to 0.734. Combining diversity metrics with CLR/DII annotations 
further improved prognostic power (C-index: 0.763; Fig. 4c, right).

We analyzed cellular composition and cohabitation within hot 
spots to identify cell types and their combinations associated with 
CLR and DII subtypes (Fig. 4d and Supplementary Figs. 11–14). Cell 
frequency shifts between CLR and DII patients matched findings from 
Schürch et al.33, with more pronounced differences in hot spots versus 
whole tissue. For instance, B cell frequency was higher in CLR than DII, 
especially pronounced in hot spots versus whole tissue (Fig. 4d, left).

More interestingly, Treg cells were more abundant in DII patients 
specifically within hot spots, supporting hypotheses from Schürch 
et al.33 that lacked statistical backing in their original analysis. Treg 
cell frequency differences between DII and CLR became significant 
only in hot spots, not in whole tissue (Fig. 4d, middle). These Treg cells 
frequently co-occurred with CD68+CD163+ macrophages (M2-like) 
(Fig. 4d, right), aligning with the notion that Treg cells, alongside 
M2-like macrophages, may promote immunosuppression56,57 within 
tumor microenvironments, potentially driving poorer outcomes in 
DII patients.

Additionally, DII hot spots showed reduced cohabitation of B 
cells and CD4+ T cells CD45RO (Supplementary Fig. 14), consistent 
with studies linking these cells to lower CRC risk58. Figure 4e illustrates 
cellular cohabitation in CLR and DII across whole tissues (left) and hot 
spots (right), where node size indicates cell-type abundance and color 
shows edge counts (redder indicates more). Edge thickness represents 
cohabitation frequency, with edges below 0.01 excluded for visual clar-
ity. The cohabitation patterns with significant differences between CLR 
and DII—exclusively within hot spots (green edges)—include Treg cells 

with M2-like macrophages and CD8+ T cells, B cells with CD4+ T cells 
CD45RO+, and granulocytes with M2-like macrophages (pointed out by 
arrows in Fig. 4e, right). These localized cohabitation patterns revealed 
subtype differences not detected in whole-tissue analyses.

Lastly, using MESA’s multiomics framework, we analyzed func-
tional differences of cells based on spatial locations (Fig. 4f and 
Supplementary Fig. 15). Integrating CRC scRNA-seq59 with CODEX 
using MaxFuse22, we performed DE on CD68+CD163+ macrophages 
in hot versus cold spots (Fig. 4f, left). Cold spot macrophages 
expressed higher LYVE1, a marker for lymphatic/vessel-related 
M2-like macrophages60–62. Hot-spot macrophages showed elevated 
interferon-stimulated genes (ISG20, ISG15) and cytokines (CXCL10, 
CCL5), suggesting tumor-associated phenotypes63–67. GSEA showed 
hot-spot macrophages upregulated interferon responses, IL-2/TNF 
signaling, and complement pathways (Fig. 4f, right). MESA revealed 
distinct functional states of cells in hot spots versus cold spots.

MESA augments functional analysis for liver cancer
To demonstrate MESA’s versatility, we applied it to a CosMx SMI spatial 
transcriptomics dataset of human liver tissues34, analyzing LRIs in tissue 
remodeling across disease states. The dataset includes samples from 
healthy and hepatocellular carcinoma (HCC) liver tissues, each contain-
ing over 300,000 cells. Due to limited samples (one per condition), we 
implemented random subsampling to facilitate statistical comparisons, 
generating 10 representative subsamples (1,600 μm × 1,600 μm, ~12, 
000 cells) for each condition with preserved cellular composition 
(Supplementary Fig. 16). Analysis of the full dataset showed consist-
ent patterns (Supplementary Fig. 17). Subsamples were divided into 
50 μm × 50-μm patches. Figure 5a presents healthy and HCC samples 
showing cell-type map (top), diversity heatmap (middle; red: higher, 
blue: lower) and diversity hot/cold spots (bottom).

MESA metrics revealed statistically significant differences between 
healthy and HCC samples (Fig. 5b). Normal liver tissues showed higher 
MDI, reflecting heterogeneous cell-type diversity across scales due 
to their complex structure of lobules with hepatocytes, Kupffer cells, 
stellate cells and endothelial cells68. HCC tissues showed lower MDI due 
to homogeneous tumor regions with consistent diversity across scales 
(Fig. 5b, left). HCC tissues also showed higher GDI, indicating distinct 
segregation of high and low diversity areas, whereas the blended pat-
tern in healthy tissues reflects heterogeneous zonation supporting 
diverse metabolic functions69 (Fig. 5b, middle). Additionally, HCC 
tissues had higher DPI, with more expansive and proximate hot spots 
compared to healthy tissues (Fig. 5b, right).

Diversity hot spots showed distinct cellular composition and 
cohabitation patterns between healthy and HCC tissues (Fig. 5c, 
Extended Data Fig. 6 and Supplementary Figs. 18–20). HCC hot spots 
showed higher inflammatory macrophage abundance (Fig. 5c, upper 
left), and increased cohabitation with B cells (Fig. 5c, lower left) 
and non-inflammatory macrophages (Fig. 5c, lower right), as well 

Fig. 4 | Multiomics and eco-spatial analysis improves prognostic capabilities 
for CRC. a, Visualization of tissue samples from CLR and DII patients: (1) the 
cell-type map (top), (2) the diversity heatmap (middle, red: higher diversity, 
blue: lower diversity) and (3) the map of the diversity hot spots and cold spots 
(bottom). b, Quantitative assessment of MESA diversity metrics in CLR (n = 17) 
and DII (n = 18) tissues (same sample size for b and d). Standard box plot metrics 
were used throughout. The analysis highlighted significant differences in spatial 
diversity patterns, with CLR tissues showing higher MDI (P = 0.018), GDI  
(P = 0.006) and DPI (P = 0.046), indicative of distinct spatial patterns between 
the two CRC subtypes. Statistical comparisons are conducted using two-sided 
Welch’s t-test. c, Kaplan–Meier survival curves stratify CRC patients using 
pathologist-annotated CLR/DII classification and MESA diversity metrics. 
Two-sided log-rank tests show significant stratification for both approaches, 
with MESA metrics demonstrating a lower P value. Cox proportional hazards 
models demonstrate improved performance using MESA metrics based on the 

concordance index (C-index: 0.734 ± 0.106) over CLR/DII annotation (0.717 ± 
0.088), with further improvement when combined (0.763 ± 0.085). d, Abundance 
of B cells, Treg cells and Treg cell cohabitation frequencies with CD68+CD163+ 
macrophages in CLR and DII tissues. Notably, the distinctions between CLR and 
DII are more pronounced within hot spots versus whole tissue, achieving lower 
P values based on two-sided Welch’s t-test with BH FDR correction. e, Circos 
plots illustrate cellular abundance and cohabitation frequencies, where nodes 
represent distinct cell types and edges represent cohabitation relationships. 
Node size corresponds to cell-type abundance, whereas edge thickness denotes 
cohabitation strength. f, DE and gene set enrichment analyses reveal unique gene 
expression patterns distinguishing CD68+CD163+ macrophages located in hot 
spots versus cold spots. DE was performed with a two-sided exact test and GSEA 
with a two-sided permutation-based tests; all P values have been adjusted using 
the BH procedure. The adjusted P value threshold in DE was set at 0.05 and the 
effect size (log fold-change) threshold at 0.1.
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as increased T cell and noninflammatory macrophage cohabitation 
(Fig. 5c, upper right). These hot-spot patterns within hot spots were 
statistically significant and identified macrophages as keystone spe-
cies in HCC. Notably, these patterns were not detected in whole-tissue 
analyses, highlighting the value of hot-spot-focused approaches.

To explore cell–cell communication, we performed LRI analysis 
using the mRNA modality with SpatialDM package70. Figure 5d shows a 
heatmap of LRI pathways (rows) across samples (columns). Normal and 
HCC samples are distinctly clustered, revealing differential LRI profile 
characteristics. Similar to hot-spot analysis, macrophage-related LRI 

pathways, including SPP1-related LRIs71–73, were significantly different 
between healthy and HCC tissues, reinforcing the importance of mac-
rophages in HCC. Additionally, we calculated an LRI communication 
score for each cell based on significant LRI counts, visualized by color 
intensity in Fig. 5e. Notably, high LRI-scoring regions overlapped with 
diversity hot spots, particularly in HCC tissues (highlighted in the last 
row of Fig. 5a,e).

However, analyzing LRIs with the 1,000-gene panel from CosMx 
SMI may not capture the full spectrum of interactions. MESA’s mul-
tiomics component integrates the CosMx SMI data with scRNA-seq 
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data from liver cancer samples74 using MaxFuse to extend LRI analysis 
to the full transcriptome. Given the importance of macrophages and 
T cells in HCC tumor microenvironments, as identified in previous 
analyses, we focused on LRIs between these cell types. Figure 5f shows 
a Venn diagram of expanded LRI analysis from MESA’s multiomics 
component, with 44 of 62 core LR pairs preserved across pre- and post- 
integration analyses.

Post-integration revealed 68 new LR pairs, extending the num-
ber of interactions beyond those captured pre-integration. The his-
togram in Fig. 5f illustrates the number of detected LRIs before and 
after multiomics integration across subsamples, highlighting the 
expanded scope of whole transcriptome analysis for characterizing 
cellular interactions. Figure 5g ranks top LR pairs by the percentage of 
cell pairs exhibiting specific interactions in each HCC subsample, with 
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Fig. 5 | MESA extends to spatial transcriptomics and augments functional 
analysis of liver cancer. a, Visualization of healthy and HCC liver tissue 
subsamples showing: (1) the cell-type map (top), (2) the diversity heatmap 
(middle, red: higher diversity, blue: lower diversity) and (3) the map of the 
diversity hot spots and cold spots (bottom). b, Quantitative assessment of MESA 
diversity metrics, highlighting significant differences in spatial diversity patterns 
between healthy (n = 10) and HCC (n = 10) tissue subsamples (same sample size 
for panels b, c and g). Standard box plot metrics were used throughout. The 
HCC tissue shows higher values of GDI (P = 0.001) and DPI (P = 0.033), whereas 
the healthy tissue exhibits higher MDI value (P = 0.007). Statistical comparisons 
are conducted using two-sided Welch’s t-test. c, Distribution of cell types and 
cellular cohabitation frequency in healthy and HCC liver tissues. The differences 
are more pronounced within hot spots versus whole tissue, achieving statistical 
significance with lower p-values (two-sided Welch’s t-test with BH adjustment).  
d, Cluster heatmap showing differentially expressed LRI pathways  

(columns: samples, rows: pathways). Only pathways with differentially  
expressed LRIs in more than half of the samples are shown. Color intensity 
represents P values obtained from two-sided permutation tests, adjusted using 
BH procedure. e, Cells colored by their communication scores (number of  
detected LRIs), with hot spots marked in light gray. Notably, regions of 
high communication scores overlap with diversity hot spots. f, The Venn 
diagram illustrates the number of significant LRIs between tumor-associated 
macrophages and T cells, identified before and after the integration of the 
CosMx data with the scRNA-seq data using MaxFuse. Bar plot provides a detailed 
breakdown of LRIs identified in each subsample, demonstrating an improved 
analysis spectrum on LRIs with multiomics integration. g, Bubble plot showing 
detected LR pairs between tumor-associated macrophages and T cells (mean 
percentage ± 95% confidence interval). Bubble size indicates the number of 
subsamples in which the corresponding LRI was detected.
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pink dots representing pairs that are post-integration only and gray 
dots showing pairs detected both pre- and post-integration. The most 
prevalent LRI between macrophages and T cells was MIF-ACKR3. ACKR3 
(CXCR7) promotes macrophage migration and immune escape in HCC75, 
whereas MIF correlates with tumor size and patient outcomes in HCC76. 
These findings underscore the critical role of T cell-macrophage inter-
actions in HCC progression. Notably, MIF-ACKR3 was undetectable in 
the original 1,000-gene panel, highlighting the importance of whole 
transcriptome integration.

Discussion
The development and implementation of MESA merges ecological 
principles with multiomics integration to decode the complex spatial 
arrangements of tissue environments. This analytical framework sys-
tematically quantifies cellular diversity, leveraging multiscale diversity 
indices to explore the association between cellular heterogeneity and 
phenotypic outcomes, such as disease progression. The application of 
MESA across various datasets was validated via its utility in uncovering 
previously unrecognized spatial structures and key cellular popula-
tions but also facilitated a deeper understanding of the relationships 
between cellular diversity and disease mechanisms.

In synthesizing the results, MESA’s ability to enrich spatial-omics 
data with additional single-cell information has revealed granular 
insights into the spatial organization of cells. MESA enabled the iden-
tification of nuanced cellular neighborhoods, which were critically 
linked to functional phenotypic outcomes. The use of diversity indices 
to systematically assess spatial patterns underscores the intricacy of 
tissue microenvironments and the pivotal role of cellular heterogeneity 
in biological and pathological processes. Through integrated analysis 
of DE, gene set enrichment and LRI within these spatially defined cellu-
lar assemblies, MESA offers mechanistic insights on tissue remodeling 
across disease states.

MESA’s two components (multiomics integration-enabled func-
tional analysis of tissue compartments and ecology-inspired quan-
titative measurements of tissue states) can enhance spatial-omics 
analysis both independently and synergistically. For the multiomics 
component, we demonstrated its ability to facilitate delineation of 
distinct cellular interactions that were not observable using tradi-
tional techniques through the tonsil example, enhance functional 
understanding of tissue compartments through the CRC example 
and augment LRI analysis through the HCC example. Its effectiveness 
depends on the availability and quality of additional single-cell modali-
ties, along with the integration method implemented. Modalities such 
as CycIF (typically containing 10–20 markers) may present greater 
integration challenges than CODEX or CosMx (containing more than 
50 features)77. Additionally, while we used MaxFuse22, alternative inte-
gration methods can be implemented24–31,78. Although computational 
integration expands analytical capabilities and generates hypotheses, 
experimental studies remain crucial for validation.

The ecological component is compatible with most single-cell 
spatial-omics technologies, as MESA metrics and hot/cold spot iden-
tification only require single-cell-level cell-type information and 
spatial locations. MESA’s combination of multiomics and ecological 
components enables detailed mapping of cellular interactions and 
tissue environments, offering insights into tissue organization, disease 
mechanisms and therapeutic opportunities.

MESA application should extend beyond the datasets explored, 
with the potential to add further insights into the study of many tissue 
types or disease states characterized by complex cellular arrange-
ments. MESA, coupled with the integration of emerging spatial profil-
ing technologies and single-cell datasets, will likely expand its utility, 
enabling researchers to navigate the spatial complexities of biological 
systems with unprecedented precision and depth. As such, MESA offers 
a scalable and versatile toolset for studying the spatial architectures 
of tissues in health and disease.
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Methods
No new biological experiments were performed in this study, and thus 
no ethical regulations were required.

Multiomics spatial analyses
Multiomics data fusion with MaxFuse. We integrated spatial-omics 
data (for example, CODEX, MIBI, IMC and CosMx) with single-cell data 
(for example, scRNA-seq and scATAC-seq) using algorithms like Max-
Fuse. The detailed process of MaxFuse has been previously described 
in22, and the relevant code used in this study has been deposited. In 
brief, for the given dataset input (single-cell spatial and sequencing 
data), we first identified ‘shared’ features across modalities (for exam-
ple, CD3 protein in CODEX and CD3-related mRNAs in scRNA-seq). The 
shared features were used to calculate a cross-modality distance matrix 
based on Pearson correlation, and subsequently, a round of initial 
matching (via linear assignment) was employed to create first-round 
single-cell level pairing information. Afterward, Canonical Correla-
tion Analysis (CCA) was implemented to produce a cross-modality 
distance matrix based on the CCA embeddings which incorporates the 
information from all features, and then a second round of matching 
was performed via linear assignment. When constructing the distance 
matrices in the initial and secondary matching, a smoothing process 
based on the global cell population structure was performed to boost 
the correlation between the weakly linked features. Finally, cell pairs 
with low scores (based on the CCA embeddings) were removed, so 
only high-quality matching pairs were used for downstream analysis. 
The details on hyperparameters used in the MaxFuse process for each 
dataset can be found in the deposited code.

Neighborhood identification. Local cellular neighborhoods were 
defined using the k nearest neighbors of each cell based on spatial 
distance, where k was set to 20 in our analyses. This value of k balances 
cellular resolution with sufficient spatial context of local interactions, 
consistent with previous studies10. Empirical validation across various 
tissue types and spatial profiling technologies suggests that k values 
between 10 and 30 yield robust results.

For each cell i, we aggregated information from its k nearest neigh-
bors, focusing on three key types of information: cellular composition, 
protein expression and mRNA expression (via in silico multiomics 
fusion). This aggregation process involved computing the average of 
these features, resulting in a Neighborhood Feature Vector (NFV) for 
each cell, denoted as NFVi. The NFV for a feature f in the neighborhood 
of cell i is calculated as:

NFVi( f ) =
1
K

K
∑
k=1
fk,

where fk represents the feature vector of the k-th nearest neighbor. If 
the feature of interest is cellular composition, with M distinct cell types, 
fi is an M-dimensional binary vector indicating cell-type identity. If the 
feature of interest is protein or mRNA expression, fi is a p-dimensional 
vector representing expression level, where p is the number of protein 
or mRNA markers.

We identified conserved, distinct cellular neighborhoods by apply-
ing k-means clustering to these NFVs. The optimal number of clusters 
was determined using the elbow method based on within-cluster sum of 
squares79, which quantifies cluster compactness through total squared 
distances between points and their respective cluster centroids.

Neighborhood characterization. To characterize molecular signa-
tures and functional pathways in identified neighborhoods, we per-
formed DE analysis and GSEA. We conducted DE using two-sided exact 
tests to identify differentially expressed genes between cellular neigh-
borhoods (edgeR v.3.36.0), with P values adjusted for multiple testing 
using the Benjamini–Hochberg (BH) procedure. GSEA was performed 

using two-sided permutation-based tests on normalized enrichment 
scores (fgsea v.1.20.0) with hallmark gene sets80 to identify enriched 
pathways. The integration of scRNA-seq data with spatial-omics data 
was critical for this step. Multiomics integration enriched the spatial 
data by providing more comprehensive gene expression profiles, 
thereby enabling deeper characterization of functional states of dis-
tinct tissue microenvironments.

Ecological spatial analyses
Tissue samples are dissected into gridded patches across a range of 
scales, denoted as a series (1/2)n (n = 0, 1, 2, …), to facilitate multiscale 
analysis. At each scale, we compute diversity indices for individual 
patches and average them to obtain the scale’s overall diversity. The 
MDI is then derived by calculating the slope of a linear regression 
line fitted to these scale-specific diversity indices, quantifying how 
diversity shifts across spatial scales. To examine the spatial structure 
of cellular diversity, we perform spatial autocorrelation analyses 
using a diversity heatmap. We generate this heatmap by partition-
ing samples into patches of approximately 50 μm × 50 μm in size, 
with each patch containing roughly 10 to 20 cells. The GDI and LDI 
are derived from this heatmap, capturing broad-scale and localized 
diversity patterns. Using the LDI, we identify regions of high diversity 
(hot spots) and low diversity (cold spots). This delineation enables 
an in-depth examination of cell-type composition and cohabitation 
patterns within these defined regions, providing a different per-
spective of cellular interactions and distribution dynamics beyond 
whole-tissue analyses. Each of these analytical steps is detailed in 
the following sections.

Spatial tessellation. Given a tissue sample S of dimensions m × n, we 
partition it into a set of non-overlapping rectangles, denoted as {si}

t
i=1, 

at a predefined scale ϵ, with t representing the total number of  
rectangle patches. Each rectangle si has dimensions m

ϵ
× n

ϵ
,  

where si ∩ s j, j≠i = ∅ , ⋃t
i si = S , ensuring complete coverage without 

overlap. Each rectangle si within the sample is defined as 
si = {(x, y) ∈ ℝ2 ∶ a ≤ x ≤ a + m

ϵ
,b ≤ y ≤ b + n

ϵ
} , where (a, b) represents 

the lower left corner coordinates in ℝ2. The choice of scale depends 
on the spatial density of cells in the dataset: for the CODEX mouse 
spleen dataset, the scale is set to ϵ = 64, resulting in a grid of patches 
of size around 30 μm × 30 μm; for the CODEX CRC dataset, the scale 
is set to ϵ = 32, leading to patches with a larger size of around 50 μm 
× 50 μm; for the CosMx spatial transcriptomic dataset of human liver 
tissues, the scale is set to ϵ = 32, yielding a grid of patches of size 
around 50 μm × 50 μm. Detailed guidance on spatial tessellation scale 
selection is available in MESA’s tutorial: https://mesa-py.readthedocs.
io/en/latest/index.html.

Shannon diversity index. The Shannon diversity index81, denoted as 
H, is a measure originated in information theory but has been widely 
adopted across fields, including ecology. This index quantifies the 
uncertainty or entropy in predicting the category of an individual data 
point randomly sampled from a dataset, and is defined as:

H = −
S
∑
i=1
pi logpi (1)

where, in the context of cellular diversity based on cell-type informa-
tion, S represents the total number of distinct cell types and pi denotes 
the proportion of cells belonging to the ith cell type. Higher H values 
indicate greater cell-type diversity and more heterogeneous cellular 
composition.

MDI. Let ϵ > 0 be a scale parameter and N(ϵ) denote the number of 
patches at scale ϵ. For each patch n = 1, 2, …, N(ϵ), we denote C(n, ϵ) as the 
number of distinct cell types in patch n at scale ϵ. Let pc(n, ϵ) represent 
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the proportion of cell type c in patch n at scale ϵ, where c = 1, 2, …,  
C(n, ϵ). We define the diversity index at scale ϵ as

ID(ϵ) = − 1
N(ϵ)

N(ϵ)
∑
n=1

C(n,ϵ)
∑
c=1

pc(n, ϵ) log( pc(n, ϵ)). (2)

This formulation computes the average entropy across all patches at 
scale ϵ, quantifying cellular diversity at each spatial resolution. The 
MDI is derived as the slope of the linear regression between ID(ϵ) and 
log(ϵ), quantifying the rate of change in cellular diversity across spatial 
scales within tissues.

GDI and LDI. Following our spatial tessellation procedure, we parti-
tion tissue samples into nonoverlapping patches at scale ϵ. Within 
each patch, we calculate the Shannon diversity index, which is then 
used to assemble a diversity heatmap for the tissue sample. The GDI is 
derived by applying Moran’s I statistic to this heatmap, which quanti-
fies spatial autocorrelation as discussed in the next section. The LDI 
is computed using local Moran’s I statistics and identifies significant 
spatial clustering patterns in cellular diversity. Using LDI, we identify 
diversity hot spots (regions of high diversity values surrounded by 
similarly high values) and cold spots (regions of low diversity values 
surrounded by low values).

Moran’s I. Moran’s I is a measure of spatial autocorrelation that quanti-
fies the degree to which a variable, such as cellular diversity, correlates 
with itself across space82. For a variable x at location i (for example, 
cellular diversity), we calculate its deviation from the mean as zi = xi − ̄x, 
where ̄x  is the mean across all locations. Moran’s I is defined as:

I = N
𝒲𝒲

∑N
i=1∑

N
j=1, j≠i wijziz j

∑N
i=1 z

2
i

, (3)

where N is the number of patches and 𝒲𝒲 = ∑N
i=1∑

N
j=1 wij  is the sum of  

all spatial weights wij, which quantify the spatial relationship 
between patch i and patch j. In our study, we set wij = 1 if patch i and 
patch j are spatial neighbors, and wij = 0 otherwise. The spatial 
weight matrix, 𝒲𝒲, is constructed by representing the diversity heat-
map as a 2D grid, where connectivity between spatial units is typi-
cally established using a rook structuring element, which considers 
two units as neighbors if they share an edge. Alternative choices of 
structuring elements include bishop (sharing a vertex) or queen 
(sharing an edge or a vertex), depending on desired spatial contigu-
ity criteria. Values range from − 1 (complete dispersion) to 1 (perfect 
correlation), with positive values indicating spatial clustering, nega-
tive values dispersion, and zero no spatial autocorrelation.

Local Moran’s I. Local Moran’s I measures spatial autocorrelation at 
the location-specific level83. The Local Moran’s I for patch i is defined as:

Ii = zi∑
j
wijz j, (4)

where wij are elements of the spatial weight matrix 𝒲𝒲 defining spatial 
connectivity between patch i and j, and zi and zj are the deviations from 
the mean as defined above. To assess the statistical significance of the 
observed local Moran’s I values, a permutation approach is used, with 
the number of permutations set to 999 in our analyses.

Hot spots and cold spots—defined as the spatial clustering of 
high or low local Moran’s I values surrounded by similar values—are 
identified based on a predetermined significance threshold: P = 0.01 
for the spleen and liver datasets, and P = 0.05 for the CRC dataset due 
to the lower cell density observed in some CRC tissues. For practical 
usage, we recommend visualizing tissues using the significance map, 
where each patch is annotated by the significance level of local Moran’s 

I value (Supplementary Fig. 21). Although a P value threshold of 0.01 
generally yields robust results, the threshold can be relaxed to 0.05 for 
sparse cell distributions. LDI quantifies local spatial autocorrelation 
and enables the identification of diversity hot spots and cold spots, 
whereas GDI measures tissue-wide spatial autocorrelation to reveal 
broad-scale diversity patterns.

DPI. We identify contiguous ‘islands’ of diversity by grouping proxi-
mate hot spots or cold spots using connected components labeling 
with rook contiguity (ndimage.label, scipy, v.1.11.2). Drawing inspira-
tion from island biogeography84, we introduce the DPI:

DPI =
N
∑
i=1

Si
di
, (5)

where Si quantifies the area of each identified island and di denotes the 
shortest distance from island i to its nearest neighboring island. Lower 
DPI values indicate smaller, more dispersed islands, whereas higher 
DPI values reflect larger, more proximate islands.

Bray–Curtis dissimilarity. We assess the cellular composition between 
two islands using the Bray–Curtis dissimilarity85, which is defined as:

BCD =
∑n
i=1 |xi − yi|

∑n
i=1(xi + yi)

where xi represents the count of the i-th cell type in island x, and yi 
represents the count of the i-th cell type in island y (spatial.distance.
braycurtis, scipy v.1.11.2).

Cell-type frequency and cohabitation. We analyze cellular composi-
tion by quantifying the frequency of each cell type and the cohabita-
tion frequencies of cell-type pairs within diversity hot spots and cold 
spots, and across the entire tissue. The frequency of a particular cell 
type i is calculated as Ni/Ntotal, where Ni is the cell count of type i, and 
Ntotal is the total cell count in the region of interest. Specifically, for the 
whole-tissue analysis, Ntotal is the sum of all cells across the tissue sam-
ple, whereas for the hot-spot and cold-spot analysis, Ntotal corresponds 
to the cell count within these delineated regions.

Cohabitation frequency for cell types i and j is defined as:

Fij,total =
Nij

Npatches,total

for whole-tissue analysis, where Nij is the number of patches contain-
ing both cell types and Npatches,total is the total number of patches in the 
entire tissue. For the hot spots and cold spots analysis, Nij, hot spots or 
Nij, cold spots is the number of patches that contain both cell types i and j 
within those spots, respectively. We divide this value by the total count 
of patches identified as hot spots or cold spots, denoted as Npatches,hotspots 
or Npatches,coldspots:

Fij,hot spots or cold spots =
Nij,hot spots orNij,cold spots

Npatches,hot spots orNpatches,cold spots

This provides a normalized measure of cell cohabitation and enables 
standardized comparison across tissue regions with varying cell dis-
tributions. Statistical significance is assessed using Welch’s t-test for 
comparing cell-type frequencies and cohabitation patterns between 
conditions, with P values adjusted using BH procedure for false dis-
covery rate control.

Survival analysis. We assessed the prognostic value of diversity 
metrics for CRC patient survival using the Cox proportional hazards 
regression model (lifelines, v.0.27.7). The model was fitted using the 
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diversity indices across scales with fivefold cross-validation. Model 
performance was assessed using the concordance index (C-index), 
which quantifies predictive accuracy in ranking patient survival times. 
We compared C-index values across cross-validation folds for models 
based on pathologist-annotated CLR/DII subtypes, automatically 
calculated diversity indices, and a combination of both.

Spatial cell–cell communication. We identified spatially significant 
LRIs in the spatial transcriptomics dataset from human liver tissues34 
using SpatialDM (v.0.2.0)70. SpatialDM takes a curated LRI database 
as input, such as CellChatDB86 by default, and extracts LR pairs that 
appear in the sample for downstream hypothesis testing. It involves 
computing the bi-variate Moran’s I statistic for each LR pair. Statistical 
significance was assessed using a permutation test, with the number of 
permutations set to 500. LRIs are considered significant if they achieve 
a P value of less than 0.05 after FDR correction with the BH procedure.

Benchmarking analysis. To evaluate MESA’s ability to discover spa-
tial compartments, we compared it with three established methods: 
Spatial-LDA14, UTAG15 and CellCharter16. We implemented CellCharter 
(v.0.2.1), Spatial-LDA (v.0.1.3) and UTAG (v.0.1.1) following their official 
documentation (https://cellcharter.readthedocs.io/en/latest/, https://
github.com/calico/spatial_lda, https://github.com/ElementoLab/utag/
tree/main, respectively). Spatial-LDA was applied using cell-type anno-
tations and cell spatial coordinates as inputs. CellCharter and UTAG 
analyses were conducted using protein expression data and cell spatial 
coordinates. All methods were implemented using default parameters 
as specified in their tutorials.

Moreover, we benchmarked MESA’s metrics (MDI, GDI and 
DPI) against other quantitative metrics previously proposed for 
spatial-omics data, including linearity, curl, elongation and purity 
from CellCharter16, on their effectiveness in differentiating tissue 
states. The shape metrics were calculated following CellCharter’s 
default parameters (https://cellcharter.readthedocs.io/en/latest/). 
All analyses used cell-type annotations and cell spatial coordinates as 
inputs, with P values adjusted using the BH procedure.

Statistics and reproducibility. All data used in this study were gener-
ated from other studies, and therefore no statistical method was used 
to predetermine the sample size. Similarly, no data were excluded 
from the original dataset for analysis. Since no new experiment was 
performed, randomization of study design or blinding is irrelevant to 
this study. During data analysis, randomization was performed when 
relevant, and the researcher was blinded to the outcome until the 
visualization of results.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this manuscript are publicly available via the following 
links. CODEX tonsil data32: https://doi.org/10.1002/eji.202048891; 
scRNA-seq tonsil data40: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE165860; CODEX mouse spleen data2: https://doi.
org/10.1016/j.cell.2018.07.010; CODEX CRC data33: https://doi.
org/10.1016/j.cell.2020.07.005; scRNA-seq CRC data59: https://doi.
org/10.1016/j.cell.2021.08.003; CosMx liver data34: https://doi.
org/10.1038/s41587-022-01483-z; scRNA-seq liver data74: https://doi.
org/10.1016/j.jhep.2021.06.028; CellChatDB database86: https://doi.
org/10.1038/s41467-021-21246-9.

Code availability
MESA code87 can be accessed via https://mesa-py.readthedocs.io/en/
latest/ and on GitHub via https://github.com/Feanor007/MESA.
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Extended Data Fig. 1 | MESA demonstrates robust neighborhood 
characterization results across distinct scRNA-seq datasets of tonsil tissues 
for multiomics integration. (A) mRNA-based neighborhood characterization 
results obtained from integrating the tonsil CODEX data with the scRNA-seq data 
from40, as in the analysis shown in Fig. 2. The top panel shows the tonsil tissue 
with MESA-identified neighborhoods displayed in distinct colors. The bottom 

panel provides a magnified view of a representative germinal center region. 
(B) Neighborhood characterization results from integrating the tonsil CODEX 
data with an independent scRNA-seq data from41. While there are some minor 
differences between the two analyses, the consistency in key spatial patterns  
and structures demonstrates MESA’s robustness across different scRNA-seq  
data sources.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Benchmarking results of neighborhood 
characterization methods in tonsil tissue. (1A) Cellular composition-based 
neighborhood characterization. (1B) MESA: Protein-based neighborhood 
characterization. (1C) MESA: mRNA-based neighborhood characterization. 
(2A) BANKSY neighborhood characterization45. (2B) CellCharter neighborhood 
characterization16. (2C) UTAG neighborhood characterization15. Each panel shows 
the full tonsil tissue sample (top) and a zoom-in view of a representative germinal 
center (bottom), with distinct colors denoting different neighborhoods. As 
compared to the approach based solely on cellular composition (1A), BANKSY 
(2A) and CellCharter (2B) showed finer-grained neighborhood characterization; 

however, MESA (1B and 1C) enables more granular neighborhood delineation. For 
example, in the germinal centers, BANKSY identified two distinct neighborhoods 
(labeled as 0 and 1); UTAG characterized a single neighborhood (labeled as 1); 
CellCharter produced results most similar to MESA, with three neighborhoods 
labeled as 0, 1, and 3. These comparative analyses highlight the advantage 
of incorporating multiomics information in niche identification. Methods 
leveraging the dynamic range of protein measurements as a proxy for cell states 
show enhanced sensitivity to spatially coregulated protein and mRNA expression 
patterns, enabling enhanced neighborhood identification.
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Extended Data Fig. 3 | MESA’s ecological framework demonstrates enhanced 
performance in tissue state characterization compared to existing spatial 
analysis methods. (A) Comparison of MESA with other neighborhood 
identification methods in the mouse spleen CODEX data. Left panel: MESA-
derived diversity heatmap showing spatial heterogeneity (red: high diversity; 
blue: low diversity) with the identified diversity hot spots (dark red) and cold 
spots (dark blue). Right panel: Cellular neighborhood/niche identified by 
CellCharter16, Spatial-LDA14 and UTAG14 in the same tissue sample. Distinct 
colors denote different neighborhoods. MESA-identified hot spots and cold 
spots reveal diversity patterns not captured by conventional neighborhood/
niche methodologies. (B) Comparative analysis of MESA’s ecological metrics 
versus CellCharter’s metrics in mouse spleen CODEX data of healthy (n = 3) and 

MRL/lpr (n = 36) samples. The CellCharter’s metrics include a set of quantitative 
measures to characterize spatial patterns: (1) curl, which quantifies the degree 
of curvature or twisting in a shape; (2) elongation, measured as the proportion 
between the longest and shortest axes; (3) linearity, which evaluates how closely 
a shape follows a straight path; and (4) purity, assessing the homogeneity of cell 
types within a defined cluster region. Standard box plot metrics were used, with 
points representing individual tissue samples. Two-sided Welch’s t-test is used to 
compute the P values, which have been adjusted using the BH procedure for FDR 
correction. The plot shows only valid CellCharter results for cell types and shape 
metrics (linearity, curl, elongation, and purity), excluding cases where default 
settings produced null values.
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Extended Data Fig. 4 | Visualization of cellular abundance and cohabitation 
patterns in healthy (BALBc) and MRL/lpr mouse spleen tissues. (A) Circos plots 
illustrate cellular abundance and cohabitation frequencies in whole tissue. Nodes 
represent distinct cell types and edges cohabitation relationships. Node size 
corresponds to cell-type abundance, while edge thickness denotes cohabitation 

strength. (B) Analysis focused on the identified diversity hot spots, with green 
edges highlighting cohabitation patterns unique to these regions. These 
cohabitation relationships, while not significantly different between healthy and 
MRL in whole-tissue analysis (two-sided Welch’s t-test with BH correction for FDR 
control), emerged as distinctive features within hot spots.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Spatial heterogeneity analysis of cellular composition  
in hot spots and cold spots during mouse spleen disease progression.  
(A) Spatial distribution of hot-spot (red) and cold-spot (blue) islands  
(connected components) in three representative samples spanning disease 
progression: healthy (BALBc-1), intermediate stage of disease (MRL-4), and 
late stage of disease (MRL-8). (B) Hot-spot island characterization. Top: 
Cell-type composition of individual hot-spot islands. Each row represents a 
non-contiguous hot-spot island, where colors denote different cell types and 
bar lengths indicate their counts. Bottom: Bray–Curtis dissimilarity85 indices 
between hot-spot islands, quantifying compositional dissimilarity between 

islands, ranging from 0 (identical composition) to 1 (completely different 
composition). (C) Cold spot island characterization, following panel (B) format. 
Interestingly, hot-spot islands in healthy tissues (BALBc) show similar cellular 
compositions, reflected by relatively low Bray–Curtis dissimilarity indices. 
Disease progression correlates with increasing dissimilarity indices among 
hot-spot islands, indicating greater spatial heterogeneity. This analysis allows 
us to assess the degree of compositional variation across hot spots and cold 
spots within each sample, providing insights into systematic changes in tissue 
organization during disease progression.
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Extended Data Fig. 6 | Visualization of cellular abundance and cohabitation 
patterns in healthy and HCC liver tissues. (A) Circos plots illustrate cellular 
abundance and cohabitation frequencies in whole tissue. Nodes represent 
distinct cell types and edges cohabitation relationships. Node size corresponds 
to cell-type abundance, while edge thickness denotes cohabitation strength. 

(B) Analysis focused on the identified diversity hot spots, with green edges 
highlighting cohabitation patterns unique to these regions. These cohabitation 
relationships, while not significantly different between healthy and HCC in 
whole-tissue analysis (two-sided Welch’s t-test with BH correction for FDR 
control), emerged as distinctive features within hot spots.
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Feanor007/MESA. Other software tools used include Python (version 3.11) and R (version 4.2) for general programming and analysis, 
FlowSOM (version 2.2.0) for niche characterization, scikit-learn (version 1.5.0) for clustering algorithms including K-means, hierarchical 
clustering, and BIRCH, Spatial-LDA (version 0.1.3), BANKSY (version 1.1.1), CellCharter (version 0.2.1) and UTAG (version 0.1.1) for spatial 
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- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data utilized in this study are obtained from previously published studies and are all publicly accessible. The links are listed here: 
CODEX tonsil data: https://onlinelibrary.wiley.com/doi/10.1002/eji.202048891; 
scRNA-Seq tonsil data: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165860; 
CODEX mouse spleen data: https://doi.org/10.1016/j.cell.2018.07.010; 
CODEX CRC data: https://doi.org/10.1016/j.cell.2020.07.005; 
scRNA-Seq CRC data: https://doi.org/10.1016/j.cell.2021.08.003; 
CosMx liver data: https://doi.org/10.1038/s41587-022-01483-z; 
scRNA-Seq liver data: https://doi.org/10.1016/j.jhep.2021.06.028; 
CellChatDB database: https://doi.org/10.1038/s41467-021-21246-9.
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performed in this study. 
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performed in this study. 
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Sample size All data utilized in this manuscript are obtained from previously published studies, with datasets listed in the Data Availability section. 
Therefore, the sample sizes were predetermined by the original peer-reviewed studies. Our computational analysis utilized all available 
samples from these established datasets. For the liver CosMx dataset, with only one sample each for healthy and hepatocellular carcinoma 
tissues, we performed random subsampling to facilitate statistical comparisons. We generated 10 subsampled patches per condition, a 
number chosen to balance statistical power while preserving original tissue characteristics, ensuring that the cellular composition of each 
subsampled patch closely matched that of the original sample. The robustness of this approach was validated by confirming consistent 
patterns when analyzing the entire dataset. 

Data exclusions No data were excluded from the analyses. All data utilized in this manuscript are obtained from previously published studies. All analyses and 
comparisons were performed within tissue samples, using all available data points from the investigated tissue regions. 
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