Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The role of KRAB zinc-finger proteins in expanding the domestication potential of transposable elements

Abstract

KRAB zinc-finger proteins (KZFPs) are the most abundant family of DNA-binding proteins in humans and primarily induce the epigenetic silencing of transposable elements. While KZFPs use this ability to control the transposition potential of transposable elements, they can also act as epigenetic switches that gate transposable element-derived cis-regulatory modules in a cell context-specific manner. In this way, they participate in the domestication of mobile elements, expanding their ability to establish complex gene regulatory networks. In this Perspective, we discuss emerging evidence that mutations in KZFP genes can explain human disorders and that there is a need to understand the effect of mutations in their transposable element targets. We argue that increased focus on this large yet historically understudied family will greatly contribute to addressing gaps in our understanding of cell lineage specification during development, human phenotypes and related pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KZFPs are the largest family of DNA-binding proteins in the human genome and function to silence TEs.
Fig. 2: KZFPs have evolved rapidly in tetrapods and differ greatly between humans and mice.
Fig. 3: KZFPs facilitate the domestication of TEs.

Similar content being viewed by others

References

  1. Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Imbeault, M., Helleboid, P.-Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Koning, A. P. J., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ecco, G. et al. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues. Dev. Cell 36, 611–623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Almeida, M. V., Vernaz, G., Putman, A. L. K. & Miska, E. A. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet. 38, 529–553 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. De Franco, E. et al. Primate-specific ZNF808 is essential for pancreatic development in humans. Nat. Genet. 55, 2075–2081 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Friedman, J. R. et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10, 2067–2078 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Begnis, M. et al. Clusters of lineage-specific genes are anchored by ZNF274 in repressive perinucleolar compartments. Sci. Adv. 10, eado1662 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosspopoff, O. & Trono, D. Take a walk on the KRAB side. Trends Genet. 39, 844–857 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Rosspopoff, O. et al. Transposable element co-option drives transcription factor neofunctionalization. Preprint at bioRxiv https://doi.org/10.1101/2025.03.01.640934 (2025).

  16. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Dalgaard, K. et al. Trim28 haploinsufficiency triggers bi-stable epigenetic obesity. Cell 164, 353–364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barde, I. et al. A KRAB/KAP1–miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 340, 350–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grassi, D. A., Jönsson, M. E., Brattås, P. L. & Jakobsson, J. TRIM28 and the control of transposable elements in the brain. Brain Res. 1705, 43–47 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Jönsson, M. E. et al. Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO J. 40, e106423 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brattås, P. L. et al. TRIM28 controls a gene regulatory network based on endogenous retroviruses in human neural progenitor cells. Cell Rep. 18, 1–11 (2017).

    Article  PubMed  Google Scholar 

  23. de Tribolet-Hardy, J. et al. Genetic features and genomic targets of human KRAB-zinc finger proteins. Genome Res. 33, 1409–1423 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Helleboid, P.-Y. et al. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification. EMBO J. 38, e101220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bruno, M. et al. Young KRAB-zinc finger gene clusters are highly dynamic incubators of ERV-driven genetic heterogeneity in mice. Nat. Commun. 16, 9608 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolf, G. et al. KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage. eLife 9, e56337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, X. et al. A maternal–zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takahashi, N. et al. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 33, 49–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eggermann, T. et al. Imprinting disorders. Nat. Rev. Dis. Primers 9, 33 (2023).

    Article  PubMed  Google Scholar 

  31. Wang, K. et al. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184, 1362–1376 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Baker, Z. et al. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. eLife 6, e24133 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lorenz, P., Steinbeck, F., Krause, L. & Thiesen, H.-J. The KRAB domain of ZNF10 guides the identification of specific amino acids that transform the ancestral KRAB-A-related domain present in human PRDM9 into a canonical modern KRAB-A domain. Int. J. Mol. Sci. 23, 1072 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacobs, F. M. J. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolf, G. et al. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev. 29, 538–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heras, S. R. et al. The Microprocessor controls the activity of mammalian retrotransposons. Nat. Struct. Mol. Biol. 20, 1173–1181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lewis, S. H. et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat. Ecol. Evol. 2, 174–181 (2018).

    Article  PubMed  Google Scholar 

  38. Berrens, R. V. et al. An endosiRNA-based repression mechanism counteracts transposon activation during global DNA demethylation in embryonic stem cells. Cell Stem Cell 21, 694–703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Enriquez-Gasca, R., Gould, P. A. & Rowe, H. M. Host gene regulation by transposable elements: the new, the old and the ugly. Viruses 12, 1089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seczynska, M. & Lehner, P. J. The sound of silence: mechanisms and implications of HUSH complex function. Trends Genet. 39, 251–267 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Castro-Diaz, N. et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 28, 1397–1409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ecco, G., Imbeault, M. & Trono, D. KRAB zinc finger proteins. Development 144, 2719–2729 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pontis, J. et al. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24, 724–735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iouranova, A. et al. KRAB zinc finger protein ZNF676 controls the transcriptional influence of LTR12-related endogenous retrovirus sequences. Mob. DNA 13, 4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gunasekara, C. J. et al. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol. 24, 2 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Costello, K. R. et al. Sequence features of retrotransposons allow for epigenetic variability. eLife 10, e71104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Derakhshan, M. et al. KZFP-mediated variable DNA methylation of a primate-specific transposon is linked to type I diabetes in humans. Preprint at medRxiv https://doi.org/10.1101/2025.04.22.25326054 (2025).

  48. Buniello, A. et al. Open Targets Platform: facilitating therapeutic hypotheses building in drug discovery. Nucleic Acids Res. 53, D1467–D1475 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mackay, D. J. G. et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Broekema, R. V., Bakker, O. B. & Jonkers, I. H. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Open Biol. 10, 190221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

    Article  CAS  Google Scholar 

  52. Ren, L.-X. et al. A novel ZNF304/miR-183-5p/FOXO4 pathway regulates cell proliferation in clear cell renal carcinoma. Front. Oncol. 11, 710525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wehbi, S. S. & Zu Dohna, H. A comparative analysis of L1 retrotransposition activities in human genomes suggests an ongoing increase in L1 number despite an evolutionary trend towards lower activity. Mob. DNA 12, 26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Damert, A. et al. 5′-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res. 19, 1992–2008 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xing, J. et al. Mobile elements create structural variation: analysis of a complete human genome. Genome Res. 19, 1516–1526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Horváth, V. et al. Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease. Nat. Struct. Mol. Biol. 31, 1543–1556 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tie, C. H. et al. KAP1 regulates endogenous retroviruses in adult human cells and contributes to innate immune control. EMBO Rep. 19, e45000 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jönsson, M. E., Garza, R., Johansson, P. A. & Jakobsson, J. Transposable elements: a common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet. 36, 610–623 (2020).

    Article  PubMed  Google Scholar 

  61. Merenciano, M., Larue, A., Garambois, C., Nunes, W. V. B. & Vieira, C. Exploring the relationship of transposable elements and ageing: causes and consequences. Genome Biol. Evol. 17, evaf088 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burns, K. H. Transposable elements in cancer. Nat. Rev. Cancer 17, 415–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Mendez-Dorantes, C. & Burns, K. H. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev. 37, 948–967 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun, M., Ju, J., Ding, Y., Zhao, C. & Tian, C. The signaling pathways regulated by KRAB zinc-finger proteins in cancer. Biochim. Biophys. Acta Rev. Cancer 1877, 188731 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Martins, F. et al. A cluster of evolutionarily recent KRAB zinc finger proteins protects cancer cells from replicative stress-induced inflammation. Cancer Res. 84, 808–826 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Machnik, M. et al. The expression signature of cancer-associated KRAB-ZNF factors identified in TCGA pan-cancer transcriptomic data. Mol. Oncol. 13, 701–724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Villeponteau, B. The heterochromatin loss model of aging. Exp. Gerontol. 32, 383–394 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. McCarthy, R. L., Zhang, J. & Zaret, K. S. Diverse heterochromatin states restricting cell identity and reprogramming. Trends Biochem. Sci. 48, 513–526 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Greenwood, E. J. D. et al. Promiscuous targeting of cellular proteins by Vpr drives systems-level proteomic remodeling in HIV-1 infection. Cell Rep. 27, 1579–1596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rauwel, B. et al. Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. eLife 4, e06068 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chang, P.-C. et al. Kruppel-associated box domain-associated protein-1 as a latency regulator for Kaposi’s sarcoma-associated herpesvirus and its modulation by the viral protein kinase. Cancer Res. 69, 5681–5689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dominguez-Salas, P. et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oravecz, O. et al. Evolutionary changes in the zinc finger 554 (ZNF554) locus in anthropoid primates: implications for deep placentation and preeclampsia. J. Reprod. Immunol. 159, 104053 (2023).

    Article  Google Scholar 

  74. Fang, L. et al. The Farm Animal Genotype–Tissue Expression (FarmGTEx) Project. Nat. Genet. 57, 786–796 (2025).

    Article  CAS  PubMed  Google Scholar 

  75. Beck, C. R., Garcia-Perez, J. L., Badge, R. M. & Moran, J. V. LINE-1 elements in structural variation and disease. Annu. Rev. Genomics Hum. Genet. 12, 187–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Meyer, T. J., Rosenkrantz, J. L., Carbone, L. & Chavez, S. L. Endogenous retroviruses: with us and against us. Front. Chem. 5, 23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ostertag, E. M., Goodier, J. L., Zhang, Y. & Kazazian, H. H. Jr. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am. J. Hum. Genet. 73, 1444–1451 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mi, S. et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Lavialle, C. et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120507 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3, e181 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Saleh, A., Macia, A. & Muotri, A. R. Transposable elements, inflammation, and neurological disease. Front. Neurol. 10, 894 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pontis, J. et al. Primate-specific transposable elements shape transcriptional networks during human development. Nat. Commun. 13, 7178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schmid, C. D. & Bucher, P. MER41 repeat sequences contain inducible STAT1 binding sites. PLoS ONE 5, e11425 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Kaluscha, S. et al. Evidence that direct inhibition of transcription factor binding is the prevailing mode of gene and repeat repression by DNA methylation. Nat. Genet. 54, 1895–1906 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Derakhshan, M., Kessler, N. J., Hellenthal, G. & Silver, M. J. Metastable epialleles in humans. Trends Genet. 40, 52–68 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Bertozzi, T. M. & Ferguson-Smith, A. C. Metastable epialleles and their contribution to epigenetic inheritance in mammals. Semin. Cell Dev. Biol. 97, 93–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Bertozzi, T. M. et al. Variably methylated retrotransposons are refractory to a range of environmental perturbations. Nat. Genet. 53, 1233–1242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morgan, H. D., Sutherland, H. G. E., Martin, D. I. K. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Imbeault group, past and present, for insightful discussions over the years. The group is funded by the Wellcome Trust Collaborative Award in Science (224600/Z/21/Z).

Author information

Authors and Affiliations

Authors

Contributions

All authors (J.D., D.V., U.C., J.J. and M.I.) contributed substantially to the discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission under the leadership of the first (J.D.) and last (M.I.) authors.

Corresponding authors

Correspondence to Juliette Davis or Michael Imbeault.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Johan Jakobsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables

Supplementary Table 1. List of human protein-coding KZFPs, including genomic location (GRCh38), domain configuration, number of zinc-fingers and zinc-finger signature of DNA-contacting amino acids. Supplementary Table 2. Calculated percentages of KZFP peaks overlapping different genomic categories used to produce Fig. 1c. Supplementary Table 3. Open Targets Platform data for KZFP–phenotype interactions with scores ≥0.5, ordered by score. Data are annotated with the KZFP domain and evolutionary status classification from Supplementary Table 1. Supplementary Table 4. Clustered matrix of Open Targets Platform data for KZFP–phenotype interactions with scores.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, J., Voicu, D., Chitnavis, U. et al. The role of KRAB zinc-finger proteins in expanding the domestication potential of transposable elements. Nat Genet (2026). https://doi.org/10.1038/s41588-025-02498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41588-025-02498-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing