Artificial intelligence (AI) is poised to transform therapeutic science. Therapeutics Data Commons is an initiative to access and evaluate AI capability across therapeutic modalities and stages of discovery, establishing a foundation for understanding which AI methods are most suitable and why.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Combinatorial prediction of therapeutic perturbations using causally inspired neural networks
Nature Biomedical Engineering Open Access 09 September 2025
-
The first South Korean data challenge for drug discovery using human and mouse liver microsomal stability data
Journal of Cheminformatics Open Access 03 September 2025
-
Benchmarking ML in ADMET predictions: the practical impact of feature representations in ligand-based models
Journal of Cheminformatics Open Access 21 July 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



References
Pushpakom, S. et al. Nat. Rev. Drug Discovery 18, 41–58 (2019).
Macarron, R. et al. Nat. Rev. Drug Discovery 10, 188–195 (2011).
Gao, W., Raghavan, P. & Coley, C. W. Nat. Commun. 13, 1–4 (2022).
LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).
Vamathevan, J. et al. Nat. Rev. Drug Discovery 18, 463–477 (2019).
Stokes, J. M. et al. Cell 180, 688–702 (2020).
Gysi, D. M. et al. Proc. Natl Acad. Sci. USA 118, e2025581118 (2021).
Jumper, J. et al. Nature 596, 583–589 (2021).
Schneider, P. et al. Nat. Rev. Drug Discov. 19, 353–364 (2020).
Wilkinson, M. D. et al. Sci. Data 3, 1–9 (2016).
Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D. & Carpenter, A. E. Nat. Rev. Drug Discov. 20, 145–159 (2021).
Sanchez-Lengeling, B. & Aspuru-Guzik, A. Science 361, 360–365 (2018).
Walters, W. P. & Murcko, M. Nat. Biotechnol. 38, 143–145 (2020).
Brown, N., Fiscato, M., Segler, M. H. & Vaucher, A. C. J. Chem. Inf. Model. 59, 1096–1108 (2019).
Gao, W. & Coley, C. W. J. Chem. Inf. Model. 60, 5714–5723 (2020).
Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Chem. Sci. 12, 7866–7881 (2021).
Zhavoronkov, A. et al. Nat. Biotechnol. 37, 1038–1040 (2019).
Townshend, R. J. et al. Science 373, 1047–1051 (2021).
Hodgson, J. Nat. Biotechnol. 19, 722–726 (2001).
Zagidullin, B. et al. Nucleic Acids Res 47, W43–W51 (2019).
Öztürk, H., Özgür, A. & Ozkirimli, E. Bioinformatics 34, i821–i829 (2018).
Huang, K. et al. Preprint at https://doi.org/10.48550/arXiv.2010.03951 (2020).
Urbina, F., Lentzos, F., Invernizzi, C. & Ekins, S. Nat. Mach. Intell. 4, 189–191 (2022).
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 70, 1263–1272 (2017).
Xie, Y. et al. In Proc. 9th International Conference on Learning Representations (Spotlight Proceedings) https://openreview.net/forum?id=kHSu4ebxFXY (2021).
Acknowledgements
K.H. and M.Z. gratefully acknowledge the support of US National Science Foundation (NSF) awards IIS-2030459 and IIS-2033384, US Air Force contract no. FA8702-15-D-0001 and awards from the Harvard Data Science Initiative, Amazon Research, Bayer Early Excellence in Science, AstraZeneca Research and the Roche Alliance with Distinguished Scientists. W.G. was supported by the US Office of Naval Research under grant no. N00014-21-1-2195. C.W.C. was supported by the Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) Consortium. J.S. was supported by NSF awards SCH-2014438, IIS-1838042, US National Institutes of Health (NIH) award 1R01NS107291-01, and OSF Healthcare. J.L. was supported by the US Defense Advanced Research Progress Agency under awards HR00112190039, N660011924033; the Army Research Organization under nos. W911NF-16-1-0342, W911NF-16-1-0171; the NSF under nos. OAC-1835598, OAC-1934578, CCF-1918940; the NIH under no. 3U54HG010426-04S1; and the Stanford Data Science Initiative, the Wu Tsai Neurosciences Institute, Amazon, Docomo, GSK, Hitachi, Intel, JPMorgan Chase, Juniper Networks, KDDI, NEC and Toshiba. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funders.
Author information
Authors and Affiliations
Contributions
K.H., T.F., W.G. and M.Z. designed the data management and computational infrastructure. K.H., T.F., W.H., Y.Z., Y.R. and M.Z. implemented the programming interface and software package. K.H., T.F., W.H. and Y.R. retrieved, processed and harmonized datasets. K.H. and M.Z. designed and implemented the website. K.H., T.F., W.H., Y.Z., Y.R., J.L., C.C, C.X., J.S. and M.Z. wrote and edited the manuscript. M.Z. conceived and supervised the study.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Huang, K., Fu, T., Gao, W. et al. Artificial intelligence foundation for therapeutic science. Nat Chem Biol 18, 1033–1036 (2022). https://doi.org/10.1038/s41589-022-01131-2
Published:
Issue date:
DOI: https://doi.org/10.1038/s41589-022-01131-2
This article is cited by
-
Benchmarking ML in ADMET predictions: the practical impact of feature representations in ligand-based models
Journal of Cheminformatics (2025)
-
Pretraining graph transformers with atom-in-a-molecule quantum properties for improved ADMET modeling
Journal of Cheminformatics (2025)
-
The first South Korean data challenge for drug discovery using human and mouse liver microsomal stability data
Journal of Cheminformatics (2025)
-
Combinatorial prediction of therapeutic perturbations using causally inspired neural networks
Nature Biomedical Engineering (2025)
-
Data splitting to avoid information leakage with DataSAIL
Nature Communications (2025)