Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biosynthesis of peptide–nucleobase hybrids in ribosomal peptides

Abstract

The main biopolymers in nature are oligonucleotides and polypeptides. However, naturally occurring peptide–nucleobase hybrids are rare. Here we report the characterization of the founding member of a class of peptide–nucleobase hybrid natural products with a pyrimidone motif from a widely distributed ribosomally synthesized and post-translationally modified (RiPP) biosynthetic pathway. This pathway features two steps where a heteromeric RRE–YcaO–dehydrogenase complex catalyzes the formation of a six-membered pyrimidone ring from an asparagine residue on the precursor peptide, and an acyl esterase selectively recognizes this moiety to cleave the C-terminal follower peptide. Mechanistic studies reveal that the pyrimidone formation occurs in a substrate-assisted catalysis manner, requiring a His residue in the precursor to activate asparagine for heterocyclization. Our study expands the chemotypes of RiPP natural products and the catalytic scope of YcaO enzymes. This discovery opens avenues to create artificial biohybrid molecules that resemble both peptide and nucleobase, a modality of growing interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: YcaO-catalyzed enzymatic reactions and spy BGC.
Fig. 2: MALDI-TOF mass spectral analysis of in vivo reaction catalyzed by SpyB, SpyC and SpyD.
Fig. 3: Structural elucidation of the peptide–nucleobase hybrid product Δ12SpyABCDE.
Fig. 4: In vitro reconstitution and mechanistic studies of pyrimidone modification.
Fig. 5: In vitro assay of protease NmSpyE.
Fig. 6: LC–MS analysis of pyrimidone-containing molecules.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are presented in the main text and Supplementary Information file. NCBI (https://www.ncbi.nlm.nih.gov/) accessions and PDB (https://www.rcsb.org/) codes are referenced in the Supplementary Information file, and publicly accessible on the respective websites. Source data are provided with this paper. mzML versions of the LC–MS/MS files used for metabolomics are available from the MassIVE repository with accession MSV000094563 (ftp://massive.ucsd.edu/v07/MSV000094563/). Data is available from the corresponding author upon request.

References

  1. Runnels, C. M. et al. Folding, assembly, and persistence: the essential nature and origins of biopolymers. J. Mol. Evol. 86, 598–610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stephanopoulos, N. Peptide-oligonucleotide hybrid molecules for bioactive nanomaterials. Bioconjugate Chem. 30, 1915–1922 (2019).

    Article  CAS  Google Scholar 

  3. Freitag, J. S. et al. Integration of functional peptides into nucleic acid-based nanostructures. Nanoscale 15, 7608–7624 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Habibi, N., Kamaly, N., Memic, A. & Shafiee, H. Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11, 41–60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Swenson, C. S. & Heemstra, J. M. Peptide nucleic acids harness dual information codes in a single molecule. Chem. Commun. 56, 1926–1935 (2020).

    Article  CAS  Google Scholar 

  6. MacCulloch, T., Buchberger, A. & Stephanopoulos, N. Emerging applications of peptide-oligonucleotide conjugates: bioactive scaffolds, self-assembling systems, and hybrid nanomaterials. Org. Biomol. Chem. 17, 1668–1682 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Pomplun, S., Gates, Z. P., Zhang, G. W., Quartararo, A. J. & Pentelute, B. L. Discovery of nucleic acid binding molecules from combinatorial biohybrid nucleobase peptide libraries. JACS 142, 19642–19651 (2020).

    Article  CAS  Google Scholar 

  8. He, Y. D. et al. Selective targeting of guanine-vacancy-bearing G-quadruplexes by G-quartet complementation and stabilization with a guanine–peptide conjugate. JACS 142, 11394–11403 (2020).

    Article  CAS  Google Scholar 

  9. Swenson, C. S., Velusamy, A., Argueta-Gonzalez, H. S. & Heemstra, J. M. Bilingual peptide nucleic acids: encoding the languages of nucleic acids and proteins in a single self-assembling biopolymer. J. Am. Chem. Soc. 141, 19038–19047 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Z., Lichtor, P. A., Berliner, A. P., Chen, J. C. & Liu, D. R. Evolution of sequence-defined highly functionalized nucleic acid polymers. Nat. Chem. 10, 420–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  PubMed  Google Scholar 

  12. Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, L., Do, T. & Link, A. J. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J. Ind. Microbiol. Biotechnol. 48, kuab005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller, R. D. et al. Computational identification of a systemic antibiotic for gram-negative bacteria. Nat. Microbiol. 7, 1661–1672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imai, Y. et al. A new antibiotic selectively kills gram-negative pathogens. Nature 576, 459–464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burkhart, B. J., Schwalen, C. J., Mann, G., Naismith, J. H. & Mitchell, D. A. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem. Rev. 117, 5389–5456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pei, Z. F., Zhu, L. Y. & Nair, S. K. Core-dependent post-translational modifications guide the biosynthesis of a new class of hypermodified peptides. Nat. Commun. 14, 7734 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dunbar, K. L., Tietz, J. I., Cox, C. L., Burichart, B. J. & Mitchell, D. A. Identification of an auxiliary leader peptide-binding protein required for azoline formation in ribosomal natural products. JACS 137, 7672–7677 (2015).

    Article  CAS  Google Scholar 

  20. Dunbar, K. L., Melby, J. O. & Mitchell, D. A. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol. 8, 569–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Travin, D. Y. et al. Biosynthesis of translation inhibitor klebsazolicin proceeds through heterocyclization and N-terminal amidine formation catalyzed by a single YcaO enzyme. JACS 140, 5625–5633 (2018).

    Article  CAS  Google Scholar 

  22. Schwalen, C. J. et al. In vitro biosynthetic studies of bottromycin expand the enzymatic capabilities of the YcaO superfamily. JACS 139, 18154–18157 (2017).

    Article  CAS  Google Scholar 

  23. Franz, L., Adam, S., Santos-Aberturas, J., Truman, A. W. & Koehnke, J. Macroamidine formation in bottromycins is catalyzed by a divergent YcaO enzyme. JACS 139, 18158–18161 (2017).

    Article  CAS  Google Scholar 

  24. Liu, A. D. et al. Functional elucidation of TfuA in peptide backbone thioamidation. Nat. Chem. Biol. 17, 585–592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahanta, N., Liu, A. D., Dong, S. H., Nair, S. K. & Mitchell, D. A. Enzymatic reconstitution of ribosomal peptide backbone thioamidation. Proc. Natl. Acad. Sci. USA 115, 3030–3035 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clark, K. A. & Seyedsayamdost, M. R. Bioinformatic atlas of radical SAM enzyme-modified RiPP natural products reveals an isoleucine–tryptophan crosslink. JACS 144, 17876–17888 (2022).

    Article  CAS  Google Scholar 

  27. Zheng, Y. W. & Nair, S. K. YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis. Nat. Chem. Biol. 19, 111–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Russell, A. H., Vior, N. M., Hems, E. S., Lacret, R. & Truman, A. W. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Chem. Sci. 12, 11769–11778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. M., Milne, J. C., Madison, L. L., Kolter, R. & Walsh, C. T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: Microcin B17 synthase. Science 274, 1188–1193 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Dunbar, K. L. et al. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat. Chem. Biol. 10, 823–829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koehnke, J. et al. Structural analysis of leader peptide binding enables leader-free cyanobactin processing. Nat. Chem. Biol. 11, 558–563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghilarov, D. et al. Architecture of microcin B17 synthetase: an octameric protein complex converting a ribosomally synthesized peptide into a DNA gyrase poison. Mol. Cell 73, 749–762 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong, S. H., Liu, A., Mahanta, N., Mitchell, D. A. & Nair, S. K. Mechanistic basis for ribosomal peptide backbone modifications. ACS Cent. Sci. 5, 842–851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bewley, K. D. et al. Capture of micrococcin biosynthetic intermediates reveals C-terminal processing as an obligatory step for in vivo maturation. Proc. Natl Acad. Sci. USA 113, 12450–12455 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bresler, M. M., Rosser, S. J., Basran, A. & Bruce, N. C. Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp strain MB1. Appl. Environ. Microbiol. 66, 904–908 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larsen, N. A. et al. Crystal structure of a bacterial cocaine esterase. Nat. Struct. Mol. Biol. 9, 17–21 (2002).

    Article  CAS  Google Scholar 

  38. Zhang, M. et al. Biosynthesis of C-nucleoside antibiotics in actinobacteria: recent advances and future developments. Micro. Cell Fact. 21, 2 (2022).

    Article  CAS  Google Scholar 

  39. Shiraishi, T. & Kuzuyama, T. Recent advances in the biosynthesis of nucleoside antibiotics. J. Antibiot. (Tokyo) 72, 913–923 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, L. Y. et al. Glycopeptide antitumor antibiotic zorbamycin from Streptomyces flavoviridis ATCC 21892: strain improvement and structure elucidation. J. Nat. Prod. 70, 402–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galm, U. et al. Antitumor antibiotics: bleomycin, endiynes, and mitomycin. Chem. Rev. 105, 739–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Shen, B. et al. Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC15003. J. Nat. Prod. 65, 422–431 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Du, L. C., Sánchez, C., Chen, M., Edwards, D. J. & Shen, B. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem. Biol. 7, 623–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Dall’Acqua, W. & Carter, P. Substrate-assisted catalysis: molecular basis and biological significance. Protein Sci. 9, 1–9 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ekici, Ö. D., Paetzel, M. & Dalbey, R. E. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci. 17, 2023–2037 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radisky, E. S., Lee, J. M., Lu, C. J. K. & Koshland, D. E. Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates. Proc. Natl Acad. Sci. USA 103, 6835–6840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cogan, D. P. et al. Structure and mechanism for iterative amide N-methylation in the biosynthesis of channel-forming peptide cytotoxins. Proc. Natl Acad. Sci. USA 119, e2116578119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K. P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474, 350–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Pei, Z. F., Zhu, L., Sarksian, R., van der Donk, W. A. & Nair, S. K. Class V lanthipeptide cyclase directs the biosynthesis of a stapled peptide natural product. J. Am. Chem. Soc. 144, 17549–17557 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, M. X. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GM079038 to S.K.N.) and the Biotechnology and Biological Sciences Research Council via an institute strategic program grant (BB/X01097X/1) and research grant (BB/V016024/1) to A.W.T. and N.M.V. The Bruker UltrafleXtreme MALDI-TOF/TOF mass spectrometer was purchased in part with a grant from the National Institutes of Health (S10RR027109A). We thank J.S. Griffitts of Department of Microbiology and Molecular Biology at Brigham Young University for providing the DNA plasmids for the production of tclE/tclI/tclJ/tclN.

Author information

Authors and Affiliations

Authors

Contributions

Z.P. and S.K.N. designed the studies. Z.P. performed the experiments, and L.Z. acquired and interpreted the NMR data. N.M.V. and A.W.T. performed the metabolic analysis. All authors analyzed data and assisted in the writing and editorial process. S.K.N. conceived and supervised the project.

Corresponding author

Correspondence to Satish K. Nair.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Somayah Elsayed and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–40, Supplementary Tables 1–6.

Reporting Summary

Supplementary Data 1

Supporting data for Supplementary Fig. 28.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, ZF., Vior, N.M., Zhu, L. et al. Biosynthesis of peptide–nucleobase hybrids in ribosomal peptides. Nat Chem Biol 21, 143–154 (2025). https://doi.org/10.1038/s41589-024-01736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-024-01736-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing