Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune drivers of pain resolution and protection

Abstract

Immune cells are involved in the pathogenesis of pain by directly activating or sensitizing nociceptor sensory neurons. However, because the immune system also has the capacity to self-regulate through anti-inflammatory mechanisms that drive the resolution of inflammation, it might promote pain resolution and prevention. Here, we describe how immune cell-derived cytokines can act directly on sensory neurons to inhibit pain hypersensitivity and how immune-derived endogenous opioids promote analgesia. We also discuss how immune cells support healthy tissue innervation by clearing debris after nerve injury, protecting against axon retraction from target tissues and enhancing regeneration, preventing the development of chronic neuropathic pain. Finally, we review the accumulating evidence that manipulating immune activity positively alters somatosensation, albeit with currently unclear molecular and cellular mechanisms. Exploration of immune-mediated analgesia and pain prevention could, therefore, be important for the development of novel immune therapies for the treatment of clinical pain states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endogenous immune signaling can reduce peripheral sensitization in nociceptors.
Fig. 2: Opioid peptides released by immune cells act on nociceptors to promote analgesia.
Fig. 3: Immune cells modulate tissue innervation by sensory neurons by promoting nerve repair and protecting against neuropathic pain.

Similar content being viewed by others

References

  1. Jain, A., Hakim, S. & Woolf, C. J. Immune drivers of physiological and pathological pain. J. Exp. Med. 221, e20221687 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 6, 521–532 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. Yang, J. X. et al. Potential neuroimmune interaction in chronic pain: a review on immune cells in peripheral and central sensitization. Front. Pain. Res. 3, 946846 (2022).

    Article  Google Scholar 

  4. Talbot, S., Foster, S. L. & Woolf, C. J. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-041015-055340 (2016).

  5. Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

    Article  PubMed  Google Scholar 

  6. Alvarez, P., Bogen, O., Green, P. G. & Levine, J. D. Nociceptor interleukin 10 receptor 1 is critical for muscle analgesia induced by repeated bouts of eccentric exercise in the rat. Pain 158, 1481–1488 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Laumet, G. et al. Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain 161, 2344–2352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sun, Q. et al. IRG1/itaconate increases IL-10 release to alleviate mechanical and thermal hypersensitivity in mice after nerve injury. Front. Immunol. 13, 1012442 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Üçeyler, N., Topuzoǧlu, T., Schießer, P., Hahnenkamp, S. & Sommer, C. IL-4 deficiency is associated with mechanical hypersensitivity in mice. PLoS ONE 6, e28205 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Celik, M., Labuz, D., Keye, J., Glauben, R. & Machelska, H. IL-4 induces M2 macrophages to produce sustained analgesia via opioids. JCI Insight 5, e133093 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Prado, J. et al. Cytokine receptor clustering in sensory neurons with an engineered cytokine fusion protein triggers unique pain resolution pathways. Proc. Natl Acad. Sci. USA 118, e2009647118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. Defaye, M. et al. Induction of antiviral interferon-stimulated genes by neuronal STING promotes the resolution of pain in mice. J. Clin. Invest. 134, e176474 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Donnelly, C. R. et al. STING controls nociception via type I interferon signalling in sensory neurons. Nature 591, 275–280 (2021). In this study, the authors found that neuron-intrinsic innate immune signaling via the IFN–STING pathway is important for controlling nociception in mice, and exogenous activation of this pathway suppressed excitability of nociceptors and reduced pain thresholds.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang, K. et al. STING suppresses bone cancer pain via immune and neuronal modulation. Nat. Commun. 12, 4558 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Binshtok, A. M. et al. Nociceptors are interleukin-1β sensors. J. Neurosci. 28, 14062 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liu, X. J. et al. Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Res. 24, 1374–1377 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jain, A. et al. Nociceptor-immune interactomes reveal insult-specific immune signatures of pain. Nat. Immunol. 25, 1296–1305 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kim, J. H., Park, J. S. & Park, D. Anti-allodynic effect of interleukin 10 in a mouse model of complex regional pain syndrome through reduction of NK1 receptor expression of microglia in the spinal cord. J. Pain. Res. 11, 1729–1741 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mitsui, K. et al. Role of macrophage autophagy in postoperative pain and inflammation in mice. J. Neuroinflammation 20, 102 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. de Souza, S. et al. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. Preprint at bioRxiv https://doi.org/10.1101/2024.08.05.606617 (2024).

  24. Starkl, P. et al. Mast cell-derived BH4 and serotonin are critical mediators of postoperative pain. Sci. Immunol. 9, 98 (2024).

    Article  Google Scholar 

  25. Van Der Vlist, M. et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron https://doi.org/10.1016/j.neuron.2021.11.020 (2022).

  26. Fischer, R. et al. TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes. Proc. Natl Acad. Sci. USA 116, 17045–17050 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hu, R., Zhang, J., Liu, X., Huang, D. & Cao, Y. Q. Low-dose interleukin-2 and regulatory T cell treatments attenuate punctate and dynamic mechanical allodynia in a mouse model of sciatic nerve injury. J. Pain. Res. 14, 893–906 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Austin, P. J., Kim, C. F., Perera, C. J. & Moalem-Taylor, G. Regulatory T cells attenuate neuropathic pain following peripheral nerve injury and experimental autoimmune neuritis. Pain 153, 1916–1931 (2012).

    Article  PubMed  CAS  Google Scholar 

  29. Laumet, G., Edralin, J. D., Dantzer, R., Heijnen, C. J. & Kavelaars, A. Cisplatin educates CD8+ T cells to prevent and resolve chemotherapy-induced peripheral neuropathy in mice. Pain 160, 1459–1468 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Singh, S. K. et al. CD8+ T cell-derived IL-13 increases macrophage IL-10 to resolve neuropathic pain. JCI Insight 7, e154194 (2022).

  31. Parisien, M. et al. Genome-wide association studies with experimental validation identify a protective role for B lymphocytes against chronic post-surgical pain. Br. J. Anaesth. 133, 360–370 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Parisien, M. et al. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci. Transl. Med. 14, eabj9954 (2022). In individuals with resolved low back pain, there was an enrichment in neutrophil gene signatures compared to those with persistent pain, suggesting neutrophils promote resolution of pain. This was further shown in mice where administration of neutrophils promoted the resolution of inflammatory pain. In addition, the data in this study showed that the chronic use of nonsteroidal anti-inflammatory drugs was associated with persistent pain, which was recapitulated in animals.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Corder, G., Castro, D. C., Bruchas, M. R. & Scherrer, G. Endogenous and exogenous opioids in pain. Annu. Rev. Neurosci. 41, 453–473 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sobczak, M., Sałaga, M., Storr, M. A. & Fichna, J. Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: current concepts and future perspectives. J. Gastroenterol. 49, 24–45 (2014).

    Article  PubMed  Google Scholar 

  35. Cabot, P. J., Carter, L., Schäfer, M. & Stein, C. Methionine-enkephalin- and dynorphin A-release from immune cells and control of inflammatory pain. Pain 93, 207–212 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. Pannell, M. et al. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides. J. Neuroinflammation 13, 262 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shi, J. T. et al. Local analgesia of electroacupuncture is mediated by the recruitment of neutrophils and released β-endorphins. Pain 164, 1965–1975 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wu, H. Y. et al. Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain Behav. Immun. 73, 504–519 (2018).

    Article  PubMed  CAS  Google Scholar 

  39. Wu, H. Y., Tang, X. Q., Mao, X. F. & Wang, Y. X. Autocrine interleukin-10 mediates glucagon-like peptide-1 receptor-induced spinal microglial β-endorphin expression. J. Neurosci. 37, 11701–11714 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wu, H. Y., Mao, X. F., Fan, H. & Wang, Y. X. p38 β mitogen-activated protein kinase signaling mediates exenatide-stimulated microglial β-endorphin expression. Mol. Pharmacol. 91, 451–463 (2017).

    Article  PubMed  CAS  Google Scholar 

  41. Apryani, E. et al. The spinal microglial IL-10/β-endorphin pathway accounts for cinobufagin-induced mechanical antiallodynia in bone cancer pain following activation of α7-nicotinic acetylcholine receptors. J. Neuroinflammation 17, 75 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Han, Q. Q. et al. Cynandione A alleviates neuropathic pain through α7-nAChR-dependent IL-10/β-endorphin signaling complexes. Front. Pharm. 11, 614450 (2021).

    Article  Google Scholar 

  43. Basso, L. et al. Mobilization of CD4+ T lymphocytes in inflamed mucosa reduces pain in colitis mice: toward a vaccinal strategy to alleviate inflammatory visceral pain. Pain 159, 331–341 (2018).

    Article  PubMed  CAS  Google Scholar 

  44. Rosen, S. F. et al. T-cell mediation of pregnancy analgesia affecting chronic pain in mice. J. Neurosci. 37, 9819–9827 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rosen, S. F. et al. Increased pain sensitivity and decreased opioid analgesia in T-cell-deficient mice and implications for sex differences. Pain 160, 358–366 (2019).

    Article  PubMed  CAS  Google Scholar 

  46. Midavaine, É. et al. Regulatory T cell-derived enkephalin imparts pregnancy-induced analgesia. Preprint at bioRxiv https://doi.org/10.1101/2024.05.11.593442 (2024).

  47. Starowicz, K. & Finn, D. P. Cannabinoids and pain: sites and mechanisms of action. Adv. Pharm. 80, 437–475 (2017).

    Article  CAS  Google Scholar 

  48. Finn, D. P. et al. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain 162, S5–S25 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sagar, D. R. et al. Endocannabinoid regulation of spinal nociceptive processing in a model of neuropathic pain. Eur. J. Neurosci. 31, 1414–1422 (2010).

    Article  PubMed  Google Scholar 

  50. Xu, J. et al. Activation of cannabinoid receptor 2 attenuates mechanical allodynia and neuroinflammatory responses in a chronic post-ischemic pain model of complex regional pain syndrome type I in rats. Eur. J. Neurosci. 44, 3046–3055 (2016).

    Article  PubMed  Google Scholar 

  51. Xu, J. J. et al. Spinal gene expression profiling and pathways analysis of a CB2 agonist (MDA7)-targeted prevention of paclitaxel-induced neuropathy. Neuroscience 260, 185–194 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Wu, J., Hocevar, M., Bie, B., Foss, J. F. & Naguib, M. Cannabinoid type 2 receptor system modulates paclitaxel-induced microglial dysregulation and central sensitization in rats. J. Pain. 20, 501–514 (2019).

    Article  PubMed  CAS  Google Scholar 

  53. Carrier, E. J. et al. Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol. Pharmacol. 65, 999–1007 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. Ydens, E. et al. Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nat. Neurosci. 23, 676–689 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lindborg, J. A., Mack, M. & Zigmond, R. E. Neutrophils are critical for myelin removal in a peripheral nerve injury model of Wallerian degeneration. J. Neurosci. 37, 10258–10277 (2017). While macrophages were thought to be required for myelin clearance following nerve injury, this study showed that macrophages were not required and that, instead, neutrophils are capable of compensating for lack of macrophage infiltration and are in fact necessary for proper myelin removal and, therefore, proper regeneration following injury.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Talsma, A. D., Niemi, J. P. & Zigmond, R. E. Neither injury induced macrophages within the nerve, nor the environment created by Wallerian degeneration is necessary for enhanced in vivo axon regeneration after peripheral nerve injury. J. Neuroinflammation 21, 134 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Stratton, J. A. et al. Macrophages regulate Schwann cell maturation after nerve injury. Cell Rep. https://doi.org/10.1016/j.celrep.2018.08.004 (2018).

  58. Niehaus, J. K., Taylor-Blake, B., Loo, L., Simon, J. M. & Zylka, M. J. Spinal macrophages resolve nociceptive hypersensitivity after peripheral injury. Neuron 109, 1274–1282.e6 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hakim, S. et al. Macrophages protect against sensory axon degeneration in diabetic neuropathy. Preprint at bioRxiv https://doi.org/10.1101/2024.01.30.577801 (2024).

  60. Davies, A. J. et al. Natural killer cells degenerate intact sensory afferents following nerve injury article natural killer cells degenerate intact sensory afferents following nerve injury. Cell 176, 716–728 (2019). In this study, the authors found that NK cells infiltrate damaged sciatic nerves following injury and recognize injured axons by binding to RAE1 via NKG2D. NK cells are then critical for the clearance of damaged axons, allowing functional regeneration, and preventing the development of chronic pain.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron 108, 128–144 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Feng, R., Saraswathy, V. M., Mokalled, M. H. & Cavalli, V. Self-renewing macrophages in dorsal root ganglia contribute to promote nerve regeneration. Proc. Natl Acad. Sci. USA 120, e2215906120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kwon, M. J. et al. Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J. Neurosci. 33, 15095–15108 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jha, M. K. et al. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J. Clin. Invest. 131, e141964 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jerome, A. D. et al. Cytokine polarized, alternatively activated bone marrow neutrophils drive axon regeneration. Nat. Immunol. 25, 957–968 (2024).

    Article  PubMed  CAS  Google Scholar 

  67. Wang, X. et al. Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNγ-cGAS-STING axis. Neuron 111, 236–255 (2023).

    Article  PubMed  CAS  Google Scholar 

  68. Gangadharan, V. et al. Neuropathic pain caused by miswiring and abnormal end organ targeting. Nature 606, 137–145 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kupari, J. & Ernfors, P. Molecular taxonomy of nociceptors and pruriceptors. Pain 164, 1245–1257 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Qi, L. et al. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 187, 1508–1526 (2024).

    Article  PubMed  CAS  Google Scholar 

  71. Megat, S. et al. Differences between dorsal root and trigeminal ganglion nociceptors in mice revealed by translational profiling. J. Neurosci. 39, 6829–6847 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. O’Brien, D. E., Brenner, D. S., Gutmann, D. H. & Gereau, R. W. IV Assessment of pain and itch behavior in a mouse model of neurofibromatosis type 1. J. Pain. 14, 628–637 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kaser, A., Zeissig, S. & Blumberg, R. S. Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573–621 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Drewes, A. M. et al. Gastrointestinal pain. Nat. Rev. Dis. Primers 6, 1 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by National Institutes of Health (NIH) grants R35 NS105076 to C.J.W., F31NS127357 to S.H. and 1K99AR083482-01 to A.J.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and A.J. equally contributed to the conceptualization and writing of this manuscript. C.J.W. supervised the organization and scope of the review and contributed to its writing.

Corresponding author

Correspondence to Clifford J. Woolf.

Ethics declarations

Competing interests

C.J.W. is a founder of Nocion Therapeutics, Quralis and Blackbox Bio, and a Scientific Advisory Board member of Lundbeck, Axonis and Tafalgie Therapeutics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Brian Kim, De’Broski Herbert, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ioana Staicu, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakim, S., Jain, A. & Woolf, C.J. Immune drivers of pain resolution and protection. Nat Immunol 25, 2200–2208 (2024). https://doi.org/10.1038/s41590-024-02002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-024-02002-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing