Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The rewired immune microenvironment in leukemia

Abstract

Leukemias are a class of human cancers that originate from hematopoietic progenitors and are characterized by extensive remodeling of the immune microenvironment. Leukemic cells, on transformation, acquire the ability to evade immune recognition but, despite undergoing genetic and epigenetic changes, retain their characteristic immature immune signature. For this and other reasons, leukemias are often refractory to immune therapies. In the present Review, we cover these areas as a means of improving outcomes from a deeper understanding of immune rewiring, inflammatory signaling and the barriers to successful implementation of immune therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hematopoiesis and malignant transformation lead to distinct types of acute leukemia.
Fig. 2: Remodeling of the BM microenvironment.
Fig. 3: Mechanisms of immunotherapy resistance in human leukemia.

Similar content being viewed by others

References

  1. Sperling, A. S., Gibson, C. J. & Ebert, B. L. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat. Rev. Cancer 17, 5–19 (2017).

    Article  PubMed  CAS  Google Scholar 

  2. Corces, M. R., Chang, H. Y. & Majeti, R. Preleukemic hematopoietic stem cells in human acute myeloid leukemia. Front. Oncol. 7, 263 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kantarjian, H. et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 11, 41 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Litzow, M. R. et al. Blinatumomab for MRD-negative acute lymphoblastic leukemia in adults. N. Engl. J. Med. 391, 320–333 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Witkowski, M. T., Lasry, A., Carroll, W. L. & Aifantis, I. Immune-tased therapies in acute leukemia. Trends Cancer 5, 604–618 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lasry, A. et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat. Cancer 4, 27–42 (2023).

    PubMed  CAS  Google Scholar 

  9. Kumar, B. et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 32, 575–587 (2018).

    Article  PubMed  CAS  Google Scholar 

  10. Witkowski, M. T. et al. Extensive remodeling of the immune microenvironment in B cell acute lymphoblastic leukemia. Cancer Cell 37, 867–882 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rodriguez-Hernandez, G. et al. Infectious stimuli promote malignant B-cell acute lymphoblastic leukemia in the absence of AID. Nat. Commun. 10, 5563 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Saint Fleur-Lominy, S. et al. STIM1 and STIM2 mediate cancer-induced inflammation in T cell acute lymphoblastic leukemia. Cell Rep. 24, 3045–3060 (2018).

    Article  PubMed Central  Google Scholar 

  13. Hormaechea-Agulla, D. et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 28, 1428–1442 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen, D. W. et al. Inflammatory recruitment of healthy hematopoietic stem and progenitor cells in the acute myeloid leukemia niche. Leukemia 38, 741–750 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Swaminathan, S. et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat. Immunol. 16, 766–774 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nelde, A. et al. Immune surveillance of acute myeloid leukemia is mediated by HLA-presented antigens on leukemia progenitor cells. Blood Cancer Discov. 4, 468–489 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dufva, O. et al. Immunogenomic landscape of hematological malignancies. Cancer Cell 38, 424–428 (2020).

    Article  PubMed  CAS  Google Scholar 

  18. Toffalori, C. et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat. Med. 25, 603–611 (2019).

    Article  PubMed  CAS  Google Scholar 

  19. Chen, X. et al. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell 186, 3903–3920 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Linde, M. H. et al. Reprogramming cancer into antigen-presenting cells as a novel immunotherapy. Cancer Discov. 13, 1164–1185 (2023).

    Article  PubMed  CAS  Google Scholar 

  21. Antohe, I. et al. The MHC-II antigen presentation machinery and B7 checkpoint ligands display distinctive patterns correlated with acute myeloid leukaemias blast cells HLA-DR expression. Immunobiology 226, 152049 (2021).

    Article  PubMed  CAS  Google Scholar 

  22. D’Souza, A. et al. Current use of and trends in hematopoietic cell transplantation in the United States. Biol. Blood Marrow Transplant. 26, e177–e182 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sung, A. D. & Chao, N. J. Concise review: acute graft-versus-host disease: immunobiology, prevention, and treatment. Stem Cells Transl. Med. 2, 25–32 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013).

    Article  Google Scholar 

  25. Yanada, M. et al. Allogeneic hematopoietic cell transplantation for patients with acute myeloid leukemia not in remission. Leukemia 38, 513–520 (2024).

    Article  PubMed  CAS  Google Scholar 

  26. Jimbu, L. et al. Is there a place for PD-1–PD-L blockade in acute myeloid leukemia? Pharmaceuticals 14, 288 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Krupka, C. et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 30, 484–491 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Abbas, H. A. et al. Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nat. Commun. 12, 6071 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ali, M. et al. T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nat. Biotechnol. 40, 488–498 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Feucht, J. et al. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget 7, 76902–76919 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gleason, M. K. et al. CD16×CD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123, 3016–3026 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Giannakopoulou, E. et al. A T cell receptor targeting a recurrent driver mutation in FLT3 mediates elimination of primary human acute myeloid leukemia in vivo. Nat. Cancer 4, 1474–1490 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Comazzetto, S., Shen, B. & Morrison, S. J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell 56, 1848–1860 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mendez-Ferrer, S. et al. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 20, 285–298 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell 129, 1097–1110 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ho, Y. H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mendelson, A. & Frenette, P. S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20, 833–846 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2019).

    Article  Google Scholar 

  40. Arranz, L. et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78–81 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Grockowiak, E. et al. Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms. Nat. Cancer 4, 1193–1209 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li, R. et al. TET2 loss dysregulates the behavior of bone marrow mesenchymal stromal cells and accelerates Tet2−/−-driven myeloid malignancy progression. Stem Cell Rep. 10, 166–179 (2018).

    Article  CAS  Google Scholar 

  43. Zhang, P. et al. Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discov. 4, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. SanMiguel, J. M. et al. Distinct tumor necrosis factor α receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis. Cancer Discov. 12, 2763–2773 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hanoun, M. et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15, 365–375 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Welner, R. S. et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell 27, 671–681 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kleppe, M. et al. JAK–STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 5, 316–331 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rios de Los Rios, J. et al. Acute lymphoblastic leukemia-secreted miRNAs induce a proinflammatory microenvironment and promote the activation of hematopoietic progenitors. J. Leukoc. Biol. 112, 31–45 (2022).

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Balandran, J. C. et al. Pro-inflammatory-related loss of CXCL12 niche promotes acute lymphoblastic leukemic progression at the expense of normal lymphopoiesis. Front. Immunol. 7, 666 (2016).

    PubMed  Google Scholar 

  51. Agarwal, P. et al. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell 24, 769–784 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Laperrousaz, B. et al. Primitive CML cell expansion relies on abnormal levels of BMPs provided by the niche and on BMPRIb overexpression. Blood 122, 3767–3777 (2013).

    Article  PubMed  CAS  Google Scholar 

  54. Oyajobi, B. O. et al. Dual effects of macrophage inflammatory protein-1α on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 102, 311–319 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. Decker, M. et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat. Cell Biol. 19, 677–688 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Schneider, R. K. et al. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell 20, 785–800 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Medyouf, H. et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 14, 824–837 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Barbier, V. et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat. Commun. 11, 2042 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Passaro, D. et al. CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell 27, 769–779 (2015).

    Article  PubMed  CAS  Google Scholar 

  61. Pitt, L. A. et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27, 755–768 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schmidt, T. et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1+ leukemia. Cancer Cell 19, 740–753 (2011).

    Article  PubMed  CAS  Google Scholar 

  63. Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bruck, O. et al. Immune profiles in acute myeloid leukemia bone marrow associate with patient age, T-cell receptor clonality, and survival. Blood Adv. 4, 274–286 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bandyopadhyay, S. et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 187, 3120–3140 (2024).

    Article  PubMed  CAS  Google Scholar 

  67. Passaro, D. et al. Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia. Cancer Cell 32, 324–341 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Munn, D. H., Mellor, A. L., Rossi, M. & Young, J. W. Dendritic cells have the option to express IDO-mediated suppression or not. Blood 105, 2618 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. Mussai, F. et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 122, 749–758 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Serra, S. et al. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 118, 6141–6152 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dulphy, N. et al. Contribution of CD39 to the immunosuppressive microenvironment of acute myeloid leukaemia at diagnosis. Br. J. Haematol. 165, 722–725 (2014).

    Article  PubMed  Google Scholar 

  72. Diaz de la Guardia, R. et al. Detailed characterization of mesenchymal stem/stromal cells from a large cohort of AML patients demonstrates a definitive link to treatment outcomes. Stem Cell Rep. 8, 1573–1586 (2017).

    Article  CAS  Google Scholar 

  73. Carey, A. et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Rep. 18, 3204–3218 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Uhl, F. M. et al. Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. Sci. Transl. Med. 12, eabb8969 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mishra, S. K., Millman, S. E. & Zhang, L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood 141, 1119–1135 (2023).

    Article  PubMed  CAS  Google Scholar 

  76. Vallet, N. et al. Azithromycin promotes relapse by disrupting immune and metabolic networks after allogeneic stem cell transplantation. Blood 140, 2500–2513 (2022).

    Article  PubMed  CAS  Google Scholar 

  77. Wang, Z. H., Peng, W. B., Zhang, P., Yang, X. P. & Zhou, Q. Lactate in the tumour microenvironment: from immune modulation to therapy. eBioMedicine 73, 103627 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fischer, K. et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819 (2007).

    Article  PubMed  CAS  Google Scholar 

  79. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sari, I. et al. Disturbance of pro-oxidative/antioxidative balance in allogeneic peripheral blood stem cell transplantation. Ann. Clin. Lab. Sci. 38, 120–125 (2008).

    PubMed  CAS  Google Scholar 

  81. Sabuncuoglu, S., Oztas, Y., Cetinkaya, D. U., Ozgunes, N. & Ozgunes, H. Oxidative protein damage with carbonyl levels and nitrotyrosine expression after chemotherapy in bone marrow transplantation patients. Pharmacology 89, 283–286 (2012).

    Article  PubMed  CAS  Google Scholar 

  82. Kong, H. & Chandel, N. S. Regulation of redox balance in cancer and T cells. J. Biol. Chem. 293, 7499–7507 (2018).

    Article  PubMed  CAS  Google Scholar 

  83. Christopher, M. J. et al. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med. 379, 2330–2341 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Noviello, M. et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat. Commun. 10, 1065 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jain, P. et al. Over-expression of PD-1 does not predict leukemic relapse after allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 25, 216–222 (2019).

    Article  PubMed  CAS  Google Scholar 

  86. Kong, Y. et al. PD-1hiTIM-3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J. 5, e330 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Williams, P. et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 125, 1470–1481 (2019).

    Article  PubMed  CAS  Google Scholar 

  88. van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and iImmunity. Cell 176, 1265–1281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yeaton, A. et al. The impact of inflammation-induced tumor plasticity during myeloid transformation. Cancer Discov. 12, 2392–2413 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Guo, R. et al. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark. Res. 9, 15 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mundy-Bosse, B. L. et al. MicroRNA-29b mediates altered innate immune development in acute leukemia. J. Clin. Invest. 126, 4404–4416 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mumme, H. et al. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat. Commun. 14, 6209 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sekeres, M. A. & Taylor, J. Diagnosis and treatment of myelodysplastic syndromes: a review. JAMA 328, 872–880 (2022).

    Article  PubMed  Google Scholar 

  94. Makishima, H. et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat. Genet. 49, 204–212 (2017).

    Article  PubMed  CAS  Google Scholar 

  95. Shastri, A., Will, B., Steidl, U. & Verma, A. Stem and progenitor cell alterations in myelodysplastic syndromes. Blood 129, 1586–1594 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wei, Y. et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia 27, 1832–1840 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Dimicoli, S. et al. Overexpression of the Toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syndromes. PLoS ONE 8, e71120 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Rhyasen, G. W. et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 24, 90–104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ganan-Gomez, I. et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 29, 1458–1469 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Stirewalt, D. L. et al. Tumour necrosis factor-induced gene expression in human marrow stroma: clues to the pathophysiology of MDS? Br. J. Haematol. 140, 444–453 (2008).

    Article  PubMed  CAS  Google Scholar 

  101. Mian, S. A. et al. Ectopic humanized mesenchymal niche in mice enables robust engraftment of myelodysplastic stem cells. Blood Cancer Discov. 2, 135–145 (2021).

    Article  PubMed  CAS  Google Scholar 

  102. Guess, T. et al. Distinct patterns of clonal evolution drive myelodysplastic syndrome progression to secondary acute myeloid leukemia. Blood Cancer Discov. 3, 316–329 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Campillo-Marcos, I. et al. Single-cell multiomics analysis of myelodysplastic syndromes and clinical response to hypomethylating therapy. Cancer Res. Commun. 4, 365–377 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rodriguez-Sevilla, J. J. & Colla, S. T-cell dysfunctions in myelodysplastic syndromes. Blood 143, 1329–1343 (2024).

    Article  PubMed  CAS  Google Scholar 

  105. Platzbecker, U. et al. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial. Lancet 402, 373–385 (2023).

    Article  PubMed  CAS  Google Scholar 

  106. Vadillo, E., Dorantes-Acosta, E., Pelayo, R. & Schnoor, M. T cell acute lymphoblastic leukemia (T-ALL): new insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev. 32, 36–51 (2018).

    Article  PubMed  CAS  Google Scholar 

  107. Polonen, P. et al. The genomic basis of childhood T-lineage acute lymphoblastic leukaemia. Nature 632, 1082–1091 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Girard, L. et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 10, 1930–1944 (1996).

    Article  PubMed  CAS  Google Scholar 

  109. King, B. et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153, 1552–1566 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Roderick, J. E. et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 123, 1040–1050 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  PubMed  CAS  Google Scholar 

  112. Belver, L. & Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16, 494–507 (2016).

    Article  PubMed  CAS  Google Scholar 

  113. Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49, 1211–1218 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Triplett, T. A. et al. Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation. Proc. Natl Acad. Sci. USA 113, E1016–E1025 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Lyu, A. et al. Tumor-associated myeloid cells provide critical support for T-ALL. Blood 136, 1837–1850 (2020).

    Article  PubMed  Google Scholar 

  116. Maganti, H. et al. Plerixafor in combination with chemotherapy and/or hematopoietic cell transplantation to treat acute leukemia: a systematic review and metanalysis of preclinical and clinical studies. Leuk. Res. 97, 106442 (2020).

    Article  PubMed  CAS  Google Scholar 

  117. Lyu, A. et al. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia. Nat. Commun. 14, 6270 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Caron, M. et al. Publisher correction: single-cell analysis of childhood leukemia reveals a link between developmental states and ribosomal protein expression as a source of intra-individual heterogeneity. Sci. Rep. 11, 5414 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Good, Z. et al. Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat. Med. 24, 474–483 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Contreras-Trujillo, H. et al. Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses. Nat. Commun. 12, 6522 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Meyers, S. et al. Monitoring of leukemia clones in B-cell acute lymphoblastic leukemia at diagnosis and during treatment by single-cell DNA amplicon sequencing. Hemasphere 6, e700 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Brady, S. W. et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genet. 54, 1376–1389 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zhao, Y. et al. Tumor-intrinsic and -extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood 137, 471–484 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Wang, X. et al. Single-cell RNA-seq of T cells in B-ALL patients reveals an exhausted subset with remarkable heterogeneity. Adv. Sci. 8, e2101447 (2021).

    Article  Google Scholar 

  125. Hohtari, H. et al. Immune cell constitution in bone marrow microenvironment predicts outcome in adult ALL. Leukemia 33, 1570–1582 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hunter, R. et al. B-cell acute lymphoblastic leukemia promotes an immune suppressive microenvironment that can be overcome by IL-12. Sci. Rep. 12, 11870 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Duault, C. et al. Activated natural killer cells predict poor clinical prognosis in high-risk B- and T-cell acute lymphoblastic leukemia. Blood 138, 1465–1480 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bailur, J. K. et al. Risk-associated alterations in marrow T cells in pediatric leukemia. JCI Insight 5, e140179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kumar, A. et al. Intrinsic suppression of type I interferon production underlies the therapeutic efficacy of IL-15-producing natural killer cells in B-cell acute lymphoblastic leukemia. J. Immunother. Cancer 11, e006649 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Smeets, M. W. E. et al. B-cell precursor acute lymphoblastic leukemia elicits an interferon-α/β response in bone marrow-derived mesenchymal stroma. Haematologica 109, 2073–2084 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Swaminathan, S. et al. MYC functions as a switch for natural killer cell-mediated immune surveillance of lymphoid malignancies. Nat. Commun. 11, 2860 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Magenau, J. M. et al. Type 1 interferon to prevent leukemia relapse after allogeneic transplantation. Blood Adv. 5, 5047–5056 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Mathew, N. R. et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat. Med. 24, 282–291 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Alpdogan, O. et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 105, 865–873 (2005).

    Article  PubMed  CAS  Google Scholar 

  135. de Smith, A. J. et al. The role of KIR genes and their cognate HLA class I ligands in childhood acute lymphoblastic leukemia. Blood 123, 2497–2503 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Valenzuela-Vazquez, L. et al. Functional characterization of NK cells in Mexican pediatric patients with acute lymphoblastic leukemia: report from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia. PLoS ONE 15, e0227314 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Stiff, A. et al. Multiomic profiling identifies predictors of survival in African American patients with acute myeloid leukemia. Nat. Genet. 56, 2434–2446 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Landau, D. A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 526, 525–530 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Galletti, G. et al. Targeting macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits disease progression. Cell Rep. 14, 1748–1760 (2016).

    Article  PubMed  CAS  Google Scholar 

  140. Knisbacher, B. A. et al. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat. Genet. 54, 1664–1674 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Wang, L. et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell 30, 750–763 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Burkle, A. et al. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood 110, 3316–3325 (2007).

    Article  PubMed  Google Scholar 

  143. Bachireddy, P. et al. Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy. Cell Rep. 42, 113011 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Purroy, N. et al. Single-cell analysis reveals immune dysfunction from the earliest stages of CLL that can be reversed by ibrutinib. Blood 139, 2252–2256 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Yassine, F. et al. Efficacy of allogeneic hematopoietic cell transplantation in patients with chronic phase CML resistant or intolerant to tyrosine kinase inhibitors. Hematol. Oncol. Stem Cell Ther. 15, 36–43 (2022).

    Article  PubMed  Google Scholar 

  146. Molldrem, J. J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med. 6, 1018–1023 (2000).

    Article  PubMed  CAS  Google Scholar 

  147. Giustacchini, A. et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 23, 692–702 (2017).

    Article  PubMed  CAS  Google Scholar 

  148. Kinstrie, R. et al. CD93 is expressed on chronic myeloid leukemia stem cells and identifies a quiescent population which persists after tyrosine kinase inhibitor therapy. Leukemia 34, 1613–1625 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Huuhtanen, J. et al. IFN-α with dasatinib broadens the immune repertoire in patients with chronic-phase chronic myeloid leukemia. J. Clin. Invest. 132, e152585 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Balandran, J. C., Lasry, A. & Aifantis, I. The role of inflammation in the initiation and progression of myeloid neoplasms. Blood Cancer Discov. 4, 254–266 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Boettcher, S. & Manz, M. G. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 38, 345–357 (2017).

    Article  PubMed  CAS  Google Scholar 

  153. Luciano, M., Krenn, P. W. & Horejs-Hoeck, J. The cytokine network in acute myeloid leukemia. Front. Immunol. 13, 1000996 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Beer, P. A. et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 115, 2891–2900 (2010).

    Article  PubMed  CAS  Google Scholar 

  155. Barreyro, L., Chlon, T. M. & Starczynowski, D. T. Chronic immune response dysregulation in MDS pathogenesis. Blood 132, 1553–1560 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Xie, J. et al. STING activation in TET2-mutated hematopoietic stem/progenitor cells contributes to the increased self-renewal and neoplastic transformation. Leukemia 37, 2457–2467 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Hofmann, W. K. et al. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 100, 3553–3560 (2002).

    Article  PubMed  CAS  Google Scholar 

  158. Pellagatti, A. et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 24, 756–764 (2010).

    Article  PubMed  CAS  Google Scholar 

  159. Perner, F., Perner, C., Ernst, T. & Heidel, F. H. Roles of JAK2 in aging, inflammation, hematopoiesis and malignant transformation. Cells 8, 854 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Gummadi, V. R. et al. Discovery of CA-4948, an orally bioavailable IRAK4 inhibitor for treatment of hematologic malignancies. ACS Med. Chem. Lett. 11, 2374–2381 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Bennett, J. et al. Paralog-specific signaling by IRAK1/4 maintains MyD88-independent functions in MDS/AML. Blood 142, 989–1007 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 580–584 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Cull, A. H., Snetsinger, B., Buckstein, R., Wells, R. A. & Rauh, M. J. Tet2 restrains inflammatory gene expression in macrophages. Exp. Hematol. 55, 56–70 (2017).

    Article  PubMed  CAS  Google Scholar 

  164. Wang, F. et al. Targeting IL-17A enhances imatinib efficacy in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia. Nat. Commun. 15, 203 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Beneforti, L. et al. Pro-inflammatory cytokines favor the emergence of ETV6-RUNX1-positive pre-leukemic cells in a model of mesenchymal niche. Br. J. Haematol. 190, 262–273 (2020).

    Article  PubMed  CAS  Google Scholar 

  166. Xu, X. et al. PD-1 signalling defines and protects leukaemic stem cells from T cell receptor-induced cell death in T cell acute lymphoblastic leukaemia. Nat. Cell Biol. 25, 170–182 (2023).

    Article  PubMed  CAS  Google Scholar 

  167. Pastorczak, A., Domka, K., Fidyt, K., Poprzeczko, M. & Firczuk, M. Mechanisms of immune evasion in acute lymphoblastic leukemia. Cancers 13, 1536 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Sanmamed, M. F. & Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 176, 677 (2019).

    Article  PubMed  CAS  Google Scholar 

  169. Hegde, N. R., Chevalier, M. S. & Johnson, D. C. Viral inhibition of MHC class II antigen presentation. Trends Immunol. 24, 278–285 (2003).

    Article  PubMed  CAS  Google Scholar 

  170. Bayer-Santos, E. et al. The Salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC II molecules and inhibits T cell activation. Cell Host Microbe 20, 584–595 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Eagle, K. et al. Transcriptional plasticity drives leukemia immune escape. Blood Cancer Discov. 3, 394–409 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Saini, S. K. et al. Neoantigen reactive T cells correlate with the low mutational burden in hematological malignancies. Leukemia 36, 2734–2738 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Terwilliger, T. & Abdul-Hay, M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 7, e577 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Jansen, M. W. et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 21, 633–641 (2007).

    Article  PubMed  CAS  Google Scholar 

  175. Batista, F. D. & Harwood, N. E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9, 15–27 (2009).

    Article  PubMed  CAS  Google Scholar 

  176. Rapino, F. et al. C/EBPα induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity. Cell Rep. 3, 1153–1163 (2013).

    Article  PubMed  CAS  Google Scholar 

  177. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  PubMed  CAS  Google Scholar 

  178. McClellan, J. S., Dove, C., Gentles, A. J., Ryan, C. E. & Majeti, R. Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages. Proc. Natl Acad. Sci. USA 112, 4074–4079 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Zhou, Y. et al. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP. Immunity 52, 357–373 (2020).

    Article  PubMed  CAS  Google Scholar 

  180. Moore, J. A. et al. LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation. J. Clin. Invest. 132, e153157 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Pinho, S. et al. VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells. Nat. Cell Biol. 24, 290–298 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Gomez-Llobell, M., Peleteiro Raindo, A., Climent Medina, J., Gomez Centurion, I. & Mosquera Orgueira, A. Immune checkpoint inhibitors in acute myeloid leukemia: a meta-analysis. Front. Oncol. 12, 882531 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Kim, M. Y. et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173, 1439–1453 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Sheykhhasan, M., Manoochehri, H. & Dama, P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Ther. 29, 1080–1096 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  PubMed  CAS  Google Scholar 

  187. Witkowski, M. T. et al. NUDT21 limits CD19 levels through alternative mRNA polyadenylation in B cell acute lymphoblastic leukemia. Nat. Immunol. 23, 1424–1432 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Asnani, M. et al. Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia 34, 1202–1207 (2020).

    Article  PubMed  Google Scholar 

  189. Park, S. H. et al. Increased expression of immune checkpoint programmed cell death protein-1 (PD-1) on T cell subsets of bone marrow aspirates in patients with B-Lymphoblastic leukemia, especially in relapse and at diagnosis. Cytometry B Clin. Cytom. 98, 336–347 (2020).

    Article  PubMed  CAS  Google Scholar 

  190. Mardiros, A. et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122, 3138–3148 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Wang, J. et al. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J. Hematol. Oncol. 11, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Petty, N. E. et al. Efficient long-term multilineage engraftment of CD33-edited hematopoietic stem/progenitor cells in nonhuman primates. Mol. Ther. Methods Clin. Dev. 31, 101121 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Casirati, G. et al. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature 621, 404–414 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Bhagwat, A. S. et al. Cytokine-mediated CAR T therapy resistance in AML. Nat. Med. 30, 3697–3708 (2024).

    Article  PubMed  CAS  Google Scholar 

  195. Albinger, N. et al. Manufacturing of primary CAR-NK cells in an automated system for the treatment of acute myeloid leukemia. Bone Marrow Transplant. 59, 489–495 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Marin, D. et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat. Med. 30, 772–784 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Mansour, A. G. et al. Off-the-shelf CAR-engineered natural killer cells targeting FLT3 enhance killing of acute myeloid leukemia. Blood Adv. 7, 6225–6239 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Yang, X., Ma, L., Zhang, X., Huang, L. & Wei, J. Targeting PD-1/PD-L1 pathway in myelodysplastic syndromes and acute myeloid leukemia. Exp. Hematol. Oncol. 11, 11 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Taghiloo, S. & Asgarian-Omran, H. Immune evasion mechanisms in acute myeloid leukemia: a focus on immune checkpoint pathways. Crit. Rev. Oncol. Hematol. 157, 103164 (2021).

    Article  PubMed  Google Scholar 

  201. Taghiloo, S. & Asgarian-Omran, H. Current approaches of immune checkpoint therapy in chronic lymphocytic leukemia. Curr. Treat. Options Oncol. 24, 1408–1438 (2023).

    Article  PubMed  Google Scholar 

  202. Fan, H. et al. Single-cell chromatin accessibility profiling of acute myeloid leukemia reveals heterogeneous lineage composition upon therapy-resistance. Commun. Biol. 6, 765 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Laszlo, G. S. et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood 123, 554–561 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Laszlo, G. S. et al. Relationship between CD33 expression, splicing polymorphism, and in vitro cytotoxicity of gemtuzumab ozogamicin and the CD33/CD3 BiTE AMG 330. Haematologica 104, e59–e62 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Hoseini, S. S. & Cheung, N. K. Acute myeloid leukemia targets for bispecific antibodies. Blood Cancer J. 7, e522 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Sumit Gupta, P. D. et al. Blinatumomab in standard-risk B-cell acute lymphoblastic leukemia in children. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2411680 (2024).

  207. Zhu, M. et al. Blinatumomab, a bispecific T-cell engager (BiTE) for CD-19 targeted cancer immunotherapy: clinical pharmacology and its implications. Clin. Pharmacokinet. 55, 1271–1288 (2016).

    Article  PubMed  CAS  Google Scholar 

  208. Wiernik, A. et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 × 33 bispecific killer cell engager and ADAM17 inhibition. Clin. Cancer Res. 19, 3844–3855 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Kolb, H. J. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112, 4371–4383 (2008).

    Article  PubMed  CAS  Google Scholar 

  210. Stolzel, F. et al. Clonal evolution including partial loss of human leukocyte antigen genes favoring extramedullary acute myeloid leukemia relapse after matched related allogeneic hematopoietic stem cell transplantation. Transplantation 93, 744–749 (2012).

    Article  PubMed  Google Scholar 

  211. Masuda, K. et al. Loss or down-regulation of HLA class I expression at the allelic level in freshly isolated leukemic blasts. Cancer Sci. 98, 102–108 (2007).

    Article  PubMed  CAS  Google Scholar 

  212. Mathioudaki, A. et al. The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature. Blood 143, 1269–1281 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Mushtaq, M. U. et al. Impact of natural killer cells on outcomes after allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Front. Immunol. 13, 1005031 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Wang, D. et al. GARP-mediated active TGF-β1 induces bone marrow NK cell dysfunction in AML patients with early relapse post-allo-HSCT. Blood 140, 2788–2804 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Saliba, R. M. et al. Impact of graft composition on outcomes of haploidentical bone marrow stem cell transplantation. Haematologica 106, 269–274 (2021).

    Article  PubMed  Google Scholar 

  216. Ciurea, S. O. et al. Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia 36, 155–164 (2022).

    Article  PubMed  CAS  Google Scholar 

  217. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  219. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Zeiser, R. & Vago, L. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood 133, 1290–1297 (2019).

    Article  PubMed  CAS  Google Scholar 

  224. Karpova, D. et al. Continuous blockade of CXCR4 results in dramatic mobilization and expansion of hematopoietic stem and progenitor cells. Blood 129, 2939–2949 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Yang, Z. et al. Targeted desialylation and cytolysis of tumour cells by fusing a sialidase to a bispecific T-cell engager. Nat. Biomed. Eng. 8, 499–512 (2024).

    Article  PubMed  CAS  Google Scholar 

  226. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  PubMed  CAS  Google Scholar 

  227. Fernandez, H. F. et al. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 361, 1249–1259 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. C. Balandrán and P. E. Rovatti for critical reading of the manuscript and all the members of the Aifantis laboratory for helpful discussions. I.A. is supported by the National Cancer Institute, the National Institutes of Health, the Vogelstein Foundation, the EvansMDS Foundation, the Department of Defense (grant no. BM210043), the MPN Research Foundation and St. Baldricks Foundation. V.P. was supported by an EMBO postdoctoral fellowship (grant no. EMBO ALTF-742-2020).

Author information

Authors and Affiliations

Authors

Contributions

I.A. developed the concept of the manuscript and oversaw and finalized the Review. Z.C. and V.P. contributed equally to the writing of the manuscript.

Corresponding author

Correspondence to Iannis Aifantis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Saar Gill, Srividya Swaminathan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Nick Bernard, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciantra, Z., Paraskevopoulou, V. & Aifantis, I. The rewired immune microenvironment in leukemia. Nat Immunol 26, 351–365 (2025). https://doi.org/10.1038/s41590-025-02096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-025-02096-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer