Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbiota-mediated mechanisms of mucosal immunity across the lifespan

Abstract

The microbiota has a fundamental role in regulating homeostasis and inflammation across the barrier surfaces of the body. The gut is a unique bioreactor where the high concentration of microorganisms, microbial and dietary metabolites, microbial-derived molecular structures, immune cells, stroma and neurons form a complex, highly interactive and precisely regulated system. The mucosal immune system in the gut has profound local and systemic effects, influencing both health and disease. A critical period of immune imprinting occurs early in life, shaped by the neonatal microbiota and nutrition, to influence immune development and long-term disease susceptibility. Microbiota-derived metabolites have crucial roles in immune modulation, influencing epithelial integrity, oral tolerance and inflammatory responses. This Review explores the interactions between the microbiota and the mucosal immune system from infancy to adulthood, highlighting the impact on health and disease. We also discuss therapeutic interventions, including microbiota-derived molecules, dietary metabolites and emerging microbiome-based co-therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of mucosal immunity circuits by gut microbiota and dietary components.
Fig. 2: Mechanisms of cell death.
Fig. 3: The intestinal microbiota is a critical regulator of inflammation and antitumor immunity.

Similar content being viewed by others

References

  1. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Healy, D. B. Clinical implications of preterm infant gut microbiome development. Nat. Microbiol. 7, 22–33 (2022).

    CAS  PubMed  Google Scholar 

  3. Dhariwala, M. O. & Scharschmidt, T. C. Baby’s skin bacteria: first impressions are long-lasting. Trends Immunol. 42, 1088–1099 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Gensollen, T. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Bain, C. C. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–937 (2014).

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Ennamorati, M. Intestinal microbes influence development of thymic lymphocytes in early life. Proc. Natl Acad. Sci. USA 117, 2570–2578 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Suo, C. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

    Google Scholar 

  8. Connors, T. J. Site-specific development and progressive maturation of human tissue-resident memory T cells over infancy and childhood. Immunity 56, 1894–1909 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Aversa, Z. Association of infant antibiotic exposure with childhood health outcomes. Mayo Clin. Proc. 96, 66–77 (2021).

    PubMed  Google Scholar 

  10. Kronman, M. P. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130, 794–803 (2012).

    Google Scholar 

  11. Azad, M. B. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int. J. Obes. 38, 1290–1298 (2014).

    CAS  Google Scholar 

  12. Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Husso, A. et al. Impacts of maternal microbiota and microbial metabolites on fetal intestine, brain, and placenta. BMC Biol. 21, 207 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Pessa-Morikawa, T. et al. Maternal microbiota-derived metabolic profile in fetal murine intestine, brain and placenta. BMC Microbiol. 22, 46 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Li, N. et al. Memory CD4+ T cells are generated in the human fetal intestine. Nat. Immunol. 20, 301–312 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    PubMed  Google Scholar 

  18. Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).

    CAS  PubMed  Google Scholar 

  19. Singhal, R. & Shah, Y. M. Oxygen battle in the gut: hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J. Biol. Chem. 295, 10493–10505 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Sanidad, K. Z. & Zeng, M. Y. Neonatal gut microbiome and immunity. Curr. Opin. Microbiol. 56, 30–37 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Chong, C. Y. L., Bloomfield, F. H. & O’Sullivan, J. M. Factors affecting gastrointestinal microbiome development in neonates. Nutrients 10, 274 (2018).

  22. Al Nabhani, Z. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276–1288 (2019).

    CAS  PubMed  Google Scholar 

  23. Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080–1096 (2020).

    CAS  PubMed  Google Scholar 

  27. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Bain, C. C. & Mowat, A. M. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev. 260, 102–117 (2014).

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Singh, D. K. Necrotizing enterocolitis: bench to bedside approaches and advancing our understanding of disease pathogenesis. Front. Pediatr. 10, 1107404 (2022).

    PubMed  Google Scholar 

  31. Aziz, M., Prince, J. M. & Wang, P. Gut microbiome and necrotizing enterocolitis: understanding the connection to find a cure. Cell Host Microbe 30, 612–616 (2022).

    CAS  PubMed  Google Scholar 

  32. Hunter, C. J. Understanding the susceptibility of the premature infant to necrotizing enterocolitis (NEC). Pediatr. Res. 63, 117–123 (2008).

    PubMed  Google Scholar 

  33. Singer, J. R. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nat. Med. 25, 1772–1782 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Lubin, J. B. Arresting microbiome development limits immune system maturation and resistance to infection in mice. Cell Host Microbe 31, 554–570 7 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Kim, Y. G. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 356, 315–319 (2017).

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Koch, M. A. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165, 827–841 (2016).

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Sanidad, K. Z. Maternal gut microbiome-induced IgG regulates neonatal gut microbiome and immunity. Sci. Immunol. 7, 3816 (2022).

    Google Scholar 

  38. Johnson-Hence, C. B. Stability and heterogeneity in the antimicrobiota reactivity of human milk-derived immunoglobulin A. J. Exp. Med. 220, e20220839 (2023).

  39. Hild, B., Dreier, M. S. & Oh, J. H. Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat. Metab. 3, 1042–1057 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Leonardi, I. Mucosal fungi promote gut barrier function and social immunity. Cell 185, 831–846 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Hill, J. H. et al. Neonatal fungi promote lifelong metabolic health through macrophage-dependent β cell development. Science 387, eadn0953 (2025).

    CAS  PubMed  Google Scholar 

  42. Nava, P. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 32, 392–402 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Sefik, E. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Xu, M. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018).

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Hepworth, M. R. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Hepworth, M. R. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Kedmi, R. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Akagbosu, B. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Fu, L. et al. PRDM16-dependent antigen-presenting cells induce tolerance to gut antigens. Nature 642, 756–765 (2025).

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Zhou, W. et al. ILC3s sense gut microbiota through STING to initiate immune tolerance. Immunity 58, 1762–1777.e7 (2025).

    CAS  PubMed  Google Scholar 

  52. Ulezko Antonova, A. et al. A distinct human cell type expressing MHCII and RORγt with dual characteristics of dendritic cells and type 3 innate lymphoid cells. Proc. Natl Acad. Sci. USA 120, e2318710120 (2023).

    PubMed Central  PubMed  Google Scholar 

  53. Rodrigues, P. F. et al. Rorγt-positive dendritic cells are required for the induction of peripheral regulatory T cells in response to oral antigens. Cell 188, 2720–2737 (2025).

    CAS  PubMed  Google Scholar 

  54. Rankin, L. C. Dietary tryptophan deficiency promotes gut RORγt+ Treg cells at the expense of Gata3+ Treg cells and alters commensal microbiota metabolism. Cell Rep. 42, 112135 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Cerovic, V., Pabst, O. & Mowat, A. M. The renaissance of oral tolerance: merging tradition and new insights. Nat. Rev. Immunol. 25, 42–56 (2025).

    CAS  PubMed  Google Scholar 

  56. Matteoli, G. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59, 595–604 (2010).

    CAS  PubMed  Google Scholar 

  57. Kulkarni, D. H. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol. 13, 271–282 (2020).

    CAS  PubMed  Google Scholar 

  58. Sanidad, K. Z. Gut bacteria-derived serotonin promotes immune tolerance in early life. Sci. Immunol. 9, eadj4775 (2024).

    Google Scholar 

  59. Henrick, B. M. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898 (2021).

    CAS  PubMed  Google Scholar 

  60. Veenbergen, S. Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103+ dendritic cells. Mucosal Immunol. 9, 894–906 (2016).

    CAS  PubMed  Google Scholar 

  61. Canesso, M. C. C. Identification of antigen-presenting cell–T cell interactions driving immune responses to food. Science 387, eado5088 (2024).

    Google Scholar 

  62. Sun, I. -H. et al. RORγt eTACs mediate oral tolerance and Treg induction. J. Exp. Med. 222, e20250573 (2025).

    CAS  PubMed  Google Scholar 

  63. Cabric, V. et al. A wave of Thetis cells imparts tolerance to food antigens early in life. Science 389, 268–274 (2025).

    CAS  PubMed  Google Scholar 

  64. Teng, F. et al. ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Rep. 37, 110051 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Paone, P. & Cani, P. D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232–2243 (2020).

    CAS  PubMed  Google Scholar 

  67. Johansson, M. E. V. et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18, 582–592 (2015).

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Naama, M. et al. Autophagy controls mucus secretion from intestinal goblet cells by alleviating ER stress. Cell Host Microbe 31, 433–446 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Ramanan, D. & Cadwell, K. Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe 19, 434–441 (2016).

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Santos-Júnior, C. D. et al. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 187, 3761–3778 (2024).

    PubMed Central  PubMed  Google Scholar 

  71. Macpherson, A. J. & McCoy, K. D. Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. Semin. Immunol. 25, 358–363 (2013).

    CAS  PubMed  Google Scholar 

  72. Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Blander, J. M. On cell death in the intestinal epithelium and its impact on gut homeostasis. Curr. Opin. Gastroenterol. 34, 413–419 (2018).

    PubMed Central  PubMed  Google Scholar 

  74. Cummings, R. J. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539, 565–569 (2016).

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Ghazavi, F. Executioner caspases 3 and 7 are dispensable for intestinal epithelium turnover and homeostasis at steady state. Proc. Natl Acad. Sci. USA 119, e2024508119 (2022).

  76. Lawlor, K. E., Murphy, J. M. & Vince, J. E. Gasdermin and MLKL necrotic cell death effectors: signaling and diseases. Immunity 57, 429–445 (2024).

    CAS  PubMed  Google Scholar 

  77. Zindel, J. & Kubes, P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu. Rev. Pathol. 15, 493–518 (2020).

    CAS  PubMed  Google Scholar 

  78. Kayagaki, N. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    CAS  PubMed  Google Scholar 

  79. Bulek, K. Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis. J. Clin. Invest. 130, 4218–4234 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Evavold, C. L. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2018).

    CAS  PubMed  Google Scholar 

  81. Boyapati, R. K., Rossi, A. G., Satsangi, J. & Ho, G. T. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol. 9, 567–582 (2016).

    CAS  PubMed  Google Scholar 

  82. Chiou, S. An immunohistochemical atlas of necroptotic pathway expression. EMBO Mol. Med. 16, 1717–1749 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Patankar, J. V. & Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol. Hepatol. 17, 543–556 (2020).

    PubMed  Google Scholar 

  84. Ivanov, A. I., Rana, N., Privitera, G. & Pizarro, T. T. The enigmatic roles of epithelial gasdermin B: recent discoveries and controversies. Trends Cell Biol. 33, 48–59 (2023).

    CAS  PubMed  Google Scholar 

  85. Privitera, G., Rana, N., Armuzzi, A. & Pizarro, T. T. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 20, 366–387 (2023).

    PubMed Central  PubMed  Google Scholar 

  86. Soderman, J., Berglind, L. & Almer, S. Gene expression-genotype analysis implicates GSDMA, GSDMB, and LRRC3C as contributors to inflammatory bowel disease susceptibility. Biomed. Res. Int. 2015, 834805 (2015).

  87. Rana, N. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell 185, 283–298 217 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Tan, G., Huang, C., Chen, J., Chen, B. & Zhi, F. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn’s disease by promoting intestinal inflammation. Cell Rep. 35, 109265 (2021).

    CAS  PubMed  Google Scholar 

  89. Foerster, E. G. How autophagy controls the intestinal epithelial barrier. Autophagy 18, 86–103 (2022).

    CAS  PubMed  Google Scholar 

  90. Eugene, S. P., Reddy, V. S. & Trinath, J. Endoplasmic reticulum stress and intestinal inflammation: a perilous union. Front. Immunol. 11, 543022 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Mudde, A. C. A., Booth, C. & Marsh, R. A. Evolution of our understanding of XIAP deficiency. Front. Pediatr. 9, 660520 (2021).

    PubMed Central  PubMed  Google Scholar 

  92. Gumede, D. B., Abrahamse, H. & Houreld, N. N. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun. Signal 22, 244 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Cialdai, F., Risaliti, C. & Monici, M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front. Bioeng. Biotechnol. 10, 958381 (2022).

    PubMed Central  PubMed  Google Scholar 

  94. Fullerton, J. N. & Gilroy, D. W. Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).

    CAS  PubMed  Google Scholar 

  95. Neurath, M. F. Resolution of inflammation: from basic concepts to clinical application. Semin. Immunopathol. 41, 627–631 (2019).

    CAS  PubMed  Google Scholar 

  96. Medina, C. B. Metabolites released from apoptotic cells act as tissue messengers. Nature 580, 130–135 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Mehrotra, P. Oxylipins and metabolites from pyroptotic cells act as promoters of tissue repair. Nature 631, 207–215 (2024).

    CAS  PubMed  Google Scholar 

  98. Chang, E. B. Epithelial wound healing in inflammatory bowel diseases: the next therapeutic frontier. Transl. Res. 236, 35–51 (2021).

    PubMed Central  PubMed  Google Scholar 

  99. Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383–397 (2022).

    PubMed  Google Scholar 

  100. Pascal, V. et al. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).

    CAS  PubMed  Google Scholar 

  101. Vich et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).

    Google Scholar 

  102. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol 4, 293–305 (2018).

    PubMed Central  PubMed  Google Scholar 

  103. Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852 (2017).

    PubMed Central  PubMed  Google Scholar 

  104. Lenoir, M. et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 12, 1–16 (2020).

    PubMed  Google Scholar 

  105. Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016).

    PubMed  Google Scholar 

  106. Lange, O., Proczko-Stepaniak, M. & Mika, A. Short-chain fatty acids—a product of the microbiome and its participation in two-way communication on the microbiome-host mammal line. Curr. Obes. Rep. 12, 108–126 (2023).

    PubMed Central  PubMed  Google Scholar 

  107. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  109. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  110. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    CAS  PubMed  Google Scholar 

  115. Sorbara, M. T. et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J. Exp. Med. 216, 84–98 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  116. McCrory, C., Lenardon, M. & Traven, A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol. 32, 1106–1118 (2024).

    CAS  PubMed  Google Scholar 

  117. van Best, N. et al. Bile acids drive the newborn’s gut microbiota maturation. Nat. Commun. 11, 3692 (2020).

    PubMed Central  PubMed  Google Scholar 

  118. Ridlon, J. M., Kang, D. -J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    CAS  PubMed  Google Scholar 

  119. Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015).

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Thomas, J. P., Modos, D., Rushbrook, S. M., Powell, N. & Korcsmaros, T. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13, 829525 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Paik, D. et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 603, 907–912 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    CAS  PubMed  Google Scholar 

  124. Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659–670 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature 626, 419–426 (2024).

    CAS  PubMed  Google Scholar 

  127. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    CAS  PubMed  Google Scholar 

  128. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Schumacher, F. et al. A secondary metabolite of Brassicales, 1-methoxy-3-indolylmethyl glucosinolate, as well as its degradation product, 1-methoxy-3-indolylmethyl alcohol, forms DNA adducts in the mouse, but in varying tissues and cells. Arch. Toxicol. 88, 823–836 (2014).

    CAS  PubMed  Google Scholar 

  130. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Nougayrède, J. -P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    PubMed  Google Scholar 

  132. Furuichi, M. et al. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 633, 878–886 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Kim, M. et al. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49, 151–163 (2018).

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Viladomiu, M. et al. Adherent-invasive E. coli metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe 29, 607–619 (2021).

    CAS  PubMed  Google Scholar 

  135. Leonardi, I. et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018).

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut TH17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Brockmann, L. et al. Intestinal microbiota-specific TH17 cells possess regulatory properties and suppress effector T cells via c-MAF and IL-10. Immunity 56, 2719–2735 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Kawano, Y. et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 185, 3501–3519 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    CAS  PubMed  Google Scholar 

  141. Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    PubMed Central  PubMed  Google Scholar 

  142. Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Arifuzzaman, M. et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 611, 578–584 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Arifuzzaman, M. Dietary fiber is a critical determinant of pathologic ILC2 responses and intestinal inflammation. J. Exp. Med. 221, e20232148 (2024).

  145. Cui, W. Diet-mediated constitutive induction of novel IL-4+ ILC2 cells maintains intestinal homeostasis in mice. J. Exp. Med. 220, e20221773 (2023).

  146. Liao, Y. et al. Fungal symbiont transmitted by free-living mice promotes type 2 immunity. Nature 636, 697–704 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Horn, V. & Sonnenberg, G. F. Group 3 innate lymphoid cells in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 21, 428–443 (2024).

    PubMed Central  PubMed  Google Scholar 

  148. Spits, H. Innate lymphoid cells–a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  149. Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).

    PubMed Central  PubMed  Google Scholar 

  150. Human Microbiome Jumpstart Reference Strains Consortium. et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010).

    Google Scholar 

  151. Auchtung, T. A. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3, e00092-18 (2018).

    PubMed Central  PubMed  Google Scholar 

  152. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    CAS  PubMed  Google Scholar 

  153. Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948–1956 (2015).

    PubMed  Google Scholar 

  154. Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250-16 (2016).

    PubMed Central  PubMed  Google Scholar 

  155. Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J. Crohns Colitis 10, 296–305 (2016).

    PubMed  Google Scholar 

  156. Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).

    CAS  PubMed  Google Scholar 

  157. Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).

    PubMed  Google Scholar 

  159. Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Auchtung, T. A. et al. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat. Commun. 13, 3151 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Iliev, I. D. et al. Focus on fungi. Cell 187, 5119–5482 (2024).

    Google Scholar 

  162. Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).

    CAS  PubMed  Google Scholar 

  163. Malamud, M. et al. Recognition and control of neutrophil extracellular trap formation by MICL. Nature 633, 442–450 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Espinosa, V. et al. Type III interferon is a critical regulator of innate antifungal immunity. Sci. Immunol. 2, eaan5357 (2017).

    PubMed Central  PubMed  Google Scholar 

  165. Mills, K. A. M. et al. GM-CSF–mediated epithelial-immune cell cross-talk orchestrates pulmonary immunity to Aspergillus fumigatus. Sci. Immunol. 10, eadr0547 (2025).

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Kusakabe, T. et al. Fungal microbiota sustains lasting immune activation of neutrophils and their progenitors in severe COVID-19. Nat. Immunol. 24, 1879–1889 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589–595 (2018).

    CAS  PubMed  Google Scholar 

  168. Chen, Y. -H. et al. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci. Immunol. 8, eadd6910 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Aggor, F. E. Y. et al. Combinatorial actions of IL-22 and IL-17 drive optimal immunity to oral candidiasis through SPRRs. PLoS Pathog. 20, e1012302 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Pierre, J. F. et al. Peptide YY: a Paneth cell antimicrobial peptide that maintains Candida gut commensalism. Science 381, 502–508 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Aggor, F. E. Y. et al. Oral epithelial IL-22/STAT3 signaling licenses IL-17–mediated immunity to oral mucosal candidiasis. Sci. Immunol. 5, eaba0570 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Bacher, P. et al. Human anti-fungal TH17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355 (2019).

  173. Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Desai, J. V. et al. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 186, 2802–2822 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Sekeresova Kralova, J. et al. Competitive fungal commensalism mitigates candidiasis pathology. J. Exp. Med. 221, e20231686 (2024).

    PubMed Central  PubMed  Google Scholar 

  176. Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778 (2019).

    CAS  PubMed  Google Scholar 

  177. Adiliaghdam, F. et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci. Immunol. 7, eabn6660 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Ungaro, F. et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 10, 149–158 (2019).

    CAS  PubMed  Google Scholar 

  180. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).

    Google Scholar 

  183. Howitt, M. R. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329–1333 (2016).

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Gerbe, F. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Nadjsombati, M. S. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49, 33–41 (2018).

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Schneider, C. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174, 271–284 (2018).

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Lei, W. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proc. Natl Acad. Sci. USA 115, 5552–5557 (2018).

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Fung, C. Tuft cells mediate commensal remodeling of the small intestinal antimicrobial landscape. Proc. Natl Acad. Sci. USA 120, 2216908120 (2023).

    Google Scholar 

  189. Banerjee, A. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology 159, 2101–2115 (2020).

    CAS  PubMed  Google Scholar 

  190. Sonnert, N. D., Rosen, C. E. & Ghazi, A. R. A host-microbiota interactome reveals extensive transkingdom connectivity. Nature 628, 171–179 (2024).

    CAS  PubMed  Google Scholar 

  191. Zhang, S., Morgan, X. & Dogan, B. Mucosal metabolites fuel the growth and virulence of E. coli linked to Crohn’s disease. JCI Insight 7, e157013 (2022).

  192. Gogokhia, L. et al. Donor composition and fiber promote strain engraftment in a randomized controlled trial of fecal microbiota transplant for ulcerative colitis. Med. https://doi.org/10.1016/j.medj.2025.100707 (2025).

  193. Brodel, A. K., Charpenay, L. H. & Galtier, M. In situ targeted base editing of bacteria in the mouse gut. Nature 632, 877–884 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Russell, B. J., Brown, S. D. & Siguenza, N. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 185, 3263–3277 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Galtier, M., Sordi, L. & Sivignon, A. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease. J. Crohns Colitis 11, 840–847 (2017).

    PubMed  Google Scholar 

  196. Federici, S., Kredo-Russo, S. & Valdes-Mas, R. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898 (2022).

    Google Scholar 

  197. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    CAS  PubMed  Google Scholar 

  198. Blake, S. J., Wolf, Y., Boursi, B. & Lynn, D. J. Role of the microbiota in response to and recovery from cancer therapy. Nat. Rev. Immunol. 24, 308–325 (2024).

    CAS  PubMed  Google Scholar 

  199. Matson, V. et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 350, 1084–1089 (2015).

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296 (2023).

    CAS  PubMed  Google Scholar 

  203. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  204. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    PubMed Central  PubMed  Google Scholar 

  205. Routy, B. et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  Google Scholar 

  206. Griffin, M. E. et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 373, 1040–1046 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  207. McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    CAS  PubMed  Google Scholar 

  209. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    CAS  PubMed  Google Scholar 

  211. Wang, Y., Jenq, R. R., Wargo, J. A. & Watowich, S. S. Microbiome influencers of checkpoint blockade–associated toxicity. J. Exp. Med. 220, 20220948 (2023).

    Google Scholar 

  212. Lo, B. C. Microbiota-dependent activation of CD4+ T cells induces CTLA-4 blockade–associated colitis via Fcγ receptors. Science 383, 62–70 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Hu, Z. I. Immune checkpoint inhibitors unleash pathogenic immune responses against the microbiota. Proc. Natl Acad. Sci. USA 119, 2200348119 (2022).

    Google Scholar 

  214. Wang, Y. et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 24, 1804–1808 (2018).

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Wang, F., Yin, Q., Chen, L. & Davis, M. M. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc. Natl Acad. Sci. USA 115, 157–161 (2018).

    CAS  PubMed  Google Scholar 

  216. Imdad, A., Pandit, N. G. & Zaman, M. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst. Rev. 4, CD012774 (2023).

    PubMed  Google Scholar 

  217. Paramsothy, S., Nielsen, S. & Kamm, M. A. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology 156, 1440–1454 (2019).

    PubMed  Google Scholar 

  218. Lima, S. F., Gogokhia, L. & Viladomiu, M. Transferable immunoglobulin A-coated odoribacter splanchnicus in responders to fecal microbiota transplantation for ulcerative colitis limits colonic inflammation. Gastroenterology 162, 166–178 (2022).

    CAS  PubMed  Google Scholar 

  219. Haifer, C., Paramsothy, S. & Kaakoush, N. O. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 7, 141–151 (2022).

    CAS  PubMed  Google Scholar 

  220. Zheng, W., Zhao, S. & Yin, Y. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 376, eabm1483 (2022).

    CAS  PubMed  Google Scholar 

  221. Reichart, N. J., Steiger, A. K. & Fossen, E. M. Selection and enrichment of microbial species with an increased lignocellulolytic phenotype from a native soil microbiome by activity-based probing. ISME Commun. 3, 106 (2023).

  222. Han, L., Pendleton, A. & Singh, A. Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases. Cell Chem. Biol. 32, 145–156 (2024).

  223. Choi, Y. et al. Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Sci. Immunol. 8, eabo2003 (2023).

  224. Jia, D. et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 187, 1651–1665 (2024).

    CAS  PubMed  Google Scholar 

  225. He, Y. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33, 988–1000 (2021).

    CAS  PubMed  Google Scholar 

  226. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    CAS  PubMed  Google Scholar 

  227. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  228. Galloway-Peña, J., Iliev, I. D. & McAllister, F. Fungi in cancer. Nat. Rev. Cancer 24, 295–298 (2024).

    PubMed Central  PubMed  Google Scholar 

  229. Dohlman, A. B. et al. The multi-kingdom cancer microbiome. Nat. Microbiol. https://doi.org/10.1038/s41564-025-02103-7 (2025).

  230. Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 11, 2168 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  231. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    CAS  PubMed  Google Scholar 

  232. Naghavian, R. et al. Microbial peptides activate tumour-infiltrating lymphocytes in glioblastoma. Nature 617, 807–817 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  234. Lancaster, S. M., Lee-McMullen, B. & Abbott, C. W. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe 30, 848–862 (2022).

    Google Scholar 

  235. Wastyk, H. C., Fragiadakis, G. K. & Perelman, D. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153 (2021).

    Google Scholar 

  236. Delannoy-Bruno, O., Desai, C. & Raman, A. S. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  237. Mocanu, V., Zhang, Z. & Deehan, E. C. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat. Med. 27, 1272–1279 (2021).

    CAS  PubMed  Google Scholar 

  238. Kedia, S., Virmani, S. & KV, S. Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet alone is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: a randomised controlled trial. Gut 71, 2401–2413 (2022).

    CAS  PubMed  Google Scholar 

  239. Costello, S. P., Day, A. & Yao, C. K. Faecal microbiota transplantation (FMT) with dietary therapy for acute severe ulcerative colitis. BMJ Case Rep. 13, e233135 (2020).

  240. Killinger, B. J., Whidbey, C. & Sadler, N. C. Activity-based protein profiling identifies alternating activation of enzymes involved in the bifidobacterium shunt pathway or mucin degradation in the gut microbiome response to soluble dietary fiber. NPJ Biofilms Microbiomes 8, 60 (2022).

  241. Park, H. B., Wei, Z. & Oh, J. Sulfamethoxazole drug stress upregulates antioxidant immunomodulatory metabolites in Escherichia coli. Nat. Microbiol. 5, 1319–1329 (2020).

    PubMed Central  CAS  PubMed  Google Scholar 

  242. Lima, S. F., Pires, S. & Rupert, A. The gut microbiome regulates the clinical efficacy of sulfasalazine therapy for IBD-associated spondyloarthritis. Cell Rep. Med. 5, 101431 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  243. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  244. Link, V. M. et al. Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Nat. Med. 30, 560–572 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  245. Siracusa, F. et al. Short-term dietary changes can result in mucosal and systemic immune depression. Nat. Immunol. https://doi.org/10.1038/s41590-023-01587-x (2023).

  246. Jeong, M. & Collins, N. Nutritional modulation of antitumor immunity. Curr. Opin. Immunol. 87, 102422 (2024).

    PubMed Central  CAS  PubMed  Google Scholar 

  247. Collins, N. & Belkaid, Y. Control of immunity via nutritional interventions. Immunity 55, 210–223 (2022).

    CAS  PubMed  Google Scholar 

  248. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    PubMed Central  CAS  PubMed  Google Scholar 

  249. Simpson, R. C. et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat. Med. 28, 2344–2352 (2022).

    CAS  PubMed  Google Scholar 

  250. Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101 (2019).

    PubMed Central  CAS  PubMed  Google Scholar 

  251. Mao, Y. -Q. et al. The antitumour effects of caloric restriction are mediated by the gut microbiome. Nat. Metab. 5, 96–110 (2023).

    CAS  PubMed  Google Scholar 

  252. Han, S. -J. et al. Microbiota configuration determines nutritional immune optimization. Proc. Natl Acad. Sci. USA 120, e2304905120 (2023).

    PubMed Central  CAS  PubMed  Google Scholar 

  253. Bolte, L. A. et al. Association of a Mediterranean diet with outcomes for patients treated with immune checkpoint blockade for advanced melanoma. JAMA Oncol. 9, 705–709 (2023).

    PubMed Central  PubMed  Google Scholar 

  254. Lussier, D. M. et al. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 16, 310 (2016).

    PubMed Central  PubMed  Google Scholar 

  255. Ferrere, G. et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 6, e145207 (2021).

    PubMed Central  PubMed  Google Scholar 

  256. Rubio-Patiño, C. et al. Low-protein diet induces IRE1α-dependent anticancer immunosurveillance. Cell Metab. 27, 828–842 (2018).

    PubMed  Google Scholar 

  257. Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents Anti–PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12, 1070–1087 (2022).

    PubMed Central  CAS  PubMed  Google Scholar 

  258. Huang, J. et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 71, 734–745 (2022).

    CAS  PubMed  Google Scholar 

  259. Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512 (2014).

    PubMed Central  CAS  PubMed  Google Scholar 

  260. Nakatsu, G., Andreeva, N., MacDonald, M. H. & Garrett, W. S. Interactions between diet and gut microbiota in cancer. Nat. Microbiol. 9, 1644–1654 (2024).

    CAS  PubMed  Google Scholar 

  261. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    CAS  PubMed  Google Scholar 

  262. Bader, J. E. et al. Obesity induces PD-1 on macrophages to suppress anti-tumour immunity. Nature https://doi.org/10.1038/s41586-024-07529-3 (2024).

  263. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following funding agencies for their support: US National Institutes of Health (NIH; R01DK113136, R01DK121977, R01AI178683, R01CA286920, R01AI163007, R01DK135816, AI172027, DK132244, AT013241, R01HD110118, R01HL169989, R01AI143842, R01AI123368, R01AI145989, U01AI095608, R01AI162936, R01CA274534, R37AI174468, R01DK126871, R01AI151599, R01AI095466, R01AR070116, R01AI182043, R00CA252443, R21AI178327, R01AI170832, R01AI170897), the Cancer Research Institute, the Sanders Family Foundation, the Rosanne H. Silbermann Foundation, Linda and Glenn Greenberg, the Allen Discovery Center Program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family Foundation, the Hartwell Foundation and Starr Cancer Consortium, the Leona M. and Harry B. Helmsley Charitable Trust, the Burroughs Wellcome Fund: Pathogenesis of Infectious Disease (PATH), Crohn’s and Colitis Foundation, Kenneth Rainin Foundation and the Canadian Institute for Advanced Research (CIFAR) Fungal Kingdom: Threats and Opportunities research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliyan D. Iliev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Andreas Diefenbach and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jamie D. K. Wilson, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, I.D., Blander, J.M., Collins, N. et al. Microbiota-mediated mechanisms of mucosal immunity across the lifespan. Nat Immunol 26, 1645–1659 (2025). https://doi.org/10.1038/s41590-025-02281-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-025-02281-w

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology