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Single-cell multiomic atlas of healthy 
pediatric bone marrow reveals  
age-dependent differences in lineage 
differentiation driven by stromal signaling
 

Childhood is a critical period for hematopoietic development and 
susceptibility to hematologic disease. Here we generated a multimodal 
single-cell atlas of healthy human bone marrow, capturing mRNA and surface 
protein expression in 90,710 cells, including over 20,000 hematopoietic 
stem and progenitor cells (HSPC) and mesenchymal stromal cells (MSC) 
from nine donors ranging from infancy to young adulthood (2–32 years). 
Young pediatric (YP) bone marrow (<10 years) was compositionally and 
molecularly distinct from adolescent and young adult (AYA) bone marrow 
(≥13 years), with hematopoietic output shifting from B cell dominance in 
YP bone marrow to myeloid and T cell bias in AYA bone marrow. Spatial 
transcriptomics of six bone marrow biopsies (0–23 years) confirmed these 
age-dependent changes. Two lymphoid progenitor (LyP) subsets regulated 
this lineage shift: CD127+ LyP cells with B cell-biased output were enriched 
before age 10, whereas CD127− LyP cells with combined lymphoid and myeloid 
features predominated thereafter. Stromal signaling showed corresponding 
age-dependent changes, with increased interleukin-7 production by bone 
marrow MSC in YP compared to AYA, indicating niche-mediated regulation 
of HSPC lineage potential during ontogeny. This single-cell atlas provides a 
comprehensive resource for understanding hematopoietic development 
and early-life origins of hematologic disease.

Hematopoiesis orchestrates the lifelong production of all differenti-
ated blood and immune cells throughout development, adulthood 
and old age. Due to its close connection to virtually any organ in the 
human body, the hematopoietic system is a major attribute of systemic 
health1–3. Blood production by hematopoietic stem and progenitor 
cells (HSPC) is tightly regulated by both cell-intrinsic and extrinsic 
mechanisms that balance HSPC self-renewal and multilineage dif-
ferentiation, maintain hematopoietic homeostasis, allow rapid and 
controlled responses to stress and prevent disease.

The composition and function of the hematopoietic system 
undergo substantial changes throughout human life. Extensive 

research has elucidated key features of human hematopoietic aging, 
including a shift from lymphoid-biased to myeloid-biased output4,5, 
an increase in the relative frequency of HSPC4 and a concomitant 
decline in their regenerative capacity6–8. Although differences 
between hematopoiesis in the developing fetus, young adults and 
older individuals have been studied in detail6,9–11, there is a relative 
paucity of studies defining the cellular and molecular composition 
of hematopoiesis during human childhood11–13. Comprehending 
pediatric hematopoiesis is crucial to understand the development 
of the human hematopoietic system and the origins of pediatric 
hematologic diseases.
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(SNVs) enabled postsequencing assignment of cells to enriched and 
nonenriched fractions to determine native cell frequencies. Multi-
plexed libraries were processed using 10x Genomics-based simul-
taneous single-cell profiling of transcriptome and surface protein 
expression and a customized panel of 138 oligonucleotide-conjugated 
antibodies (Fig. 1a).

After quality control and thresholding, the pediatric dataset com-
prised 68,094 high-quality cells, with a median of 5,133 transcripts and 
2,001 unique genes per cell for the RNA modality and 1,307 counts 
and 114 unique proteins per cell for the protein modality, respectively 
(Extended Data Fig. 1a–h). Integration across donors and measurement 
modalities revealed 28 high-resolution clusters. These clusters were 
annotated using published datasets11–13, canonical marker genes and 
differentially expressed transcripts and proteins, resulting in 8 major 
hematopoietic populations and 28 subpopulations: HSPC (8 subsets, 
including hematopoietic stem cells (HSCs), lympho–myeloid primed 
progenitors (LMPP), megakaryocyte–erythroid progenitors, mega-
karyocyte progenitors, erythroid progenitors, pro-myelocytes, mast 
cell progenitors and LyP), B cells and plasma cells (6 subsets), T cells and 
natural killer (NK) cells (7 subsets), myeloid populations (3 subsets) and 
dendritic cells (2 subsets; Fig. 1b and Supplementary Table 2). Erythroid 
and stromal cells contained no further subsets (Fig. 1b). All donors 
contributed to every subset (Extended Data Fig. 1i). HSPC and MSC 
were predominantly derived from the enriched fractions (13,225 HSPC 
in enriched versus 2,689 in nonenriched fractions, 4.9-fold enrichment; 
541 MSC in enriched versus 29 in nonenriched fractions, 18.7-fold 
enrichment; Fig. 1c). All HSPC subsets expressed key HSC-defining tran-
scripts (for example, NPM1; Fig. 1d) and surface proteins (for example, 
CD112 and CD34; Fig. 1e), whereas genes such as AVP (HSCs and LMPP) 
or MPO (pro-myelocytes) distinguished specific subsets (Fig. 1d,e 
and Supplementary Tables 2–6). Integration with public datasets18,19 
confirmed cluster annotations (Extended Data Fig. 2). Because cell 
annotation in the external datasets relied on RNA expression only18,19, 
there was greater variability in the classification of cell types that 
require surface protein modality weights for accurate annotation, 
such as T cell subsets (Supplementary Fig. 2). This observation aligns 
with previous reports20, underscoring the added value of multimodal 
profiling for high-resolution cell-type mapping. The complete pediat-
ric BM atlas generated in this study is available as a Seurat object and 
Loupe browser-compatible resource through Zenodo at https://doi.
org/10.5281/zenodo.14168864 (ref. 21).

Age-related cellular and transcriptional shifts in BM
Next, we leveraged the CITE-seq reference atlas to explore develop-
mental changes in BM composition from infancy to adolescence. 
Analysis of nonenriched cell fractions revealed a high abundance of B 
lineage cells in donors aged 2.1–9.6 years (n = 4, 2 male and 2 female; 
Supplementary Table 1), which occupied the majority of BM cellularity 
(Fig. 2a), consistent with previous observations in peripheral blood22,23. 
By contrast, BM composition of the donors aged 13.3–16.7 years (n = 3, 

A major challenge in characterizing pediatric hematopoiesis is 
obtaining bone marrow (BM) samples from healthy children. Addi-
tionally, several key hematopoietic and nonhematopoietic cell types, 
including HSPC and mesenchymal stromal cells (MSC), are rare in BM 
aspirates, necessitating specific enrichment strategies to capture 
sufficient cells for in-depth profiling14. Consequently, much of our 
current understanding of pediatric hematopoiesis is based on stud-
ies that may not fully capture all relevant cell types. Technologies that 
simultaneously measure mRNA and surface protein expression in 
single cells provide unprecedented opportunities to dissect the com-
position of hematopoiesis in health and disease15,16. Compared to flow 
cytometry-based approaches or unimodal single-cell RNA sequencing 
(scRNA-seq), these methods allow improved cell-type identification 
and more accurate detection of cell states17. Furthermore, as mRNA 
levels do not always correlate with protein expression17, the surface 
protein modality allows validation that specific transcripts of interest 
are indeed expressed and may have functional consequences.

Here, we performed multimodal profiling of BM cells from healthy 
individuals aged 0–32 years, revealing age-related changes in cell 
frequencies, states and differentiation trajectories between young 
pediatric (YP) donors (<10 years) and adolescent and young adult (AYA) 
donors (≥13 years). We identified phenotypic and transcriptional differ-
ences within the lymphoid progenitors (LyP) cell population underlying 
B cell-biased hematopoiesis in young children. Interaction analysis 
and BM cytokine measurements uncovered age-dependent changes 
in signaling from MSC that may differentially prime LyP toward stable 
or B cell-biased output. This comprehensive, multimodal pediatric 
BM atlas provides a valuable reference for studies on hematopoietic 
development and hematologic diseases, many of which may originate 
in childhood.

Results
Reference map shows the single-cell composition of  
pediatric BM
To uncover the cellular and transcriptional landscape of human 
pediatric BM, we established an experimental pipeline enabling 
single-cell analysis of rare BM cell types, while preserving informa-
tion on native cell frequencies (Fig. 1a and Supplementary Fig. 1).  
BM samples were obtained from seven healthy pediatric donors 
(4 female and 3 male, age 2.1–16.7 years, median of 9.6 years), all 
of whom served as donors for allogeneic hematopoietic cell trans-
plantation (Supplementary Table 1). To enable both in-depth analy-
sis of HSPC and MSC and accurate estimation of representative cell 
frequencies in a cost-efficient manner, three cell fractions were 
isolated from each donor: a nonenriched, erythrocyte-depleted 
CD235a− fraction, an HSPC-enriched CD235a−CD34+ fraction and 
an MSC-enriched CD235a−CD45loCD90+ or CD235a−CD45loCD271+ 
fraction. Enriched cell fractions from each donor were pooled with 
the nonenriched cell fractions of a genotypically distinct donor 
(Supplementary Fig. 1). Donor-specific single-nucleotide variants 

Fig. 1 | Multimodal single-cell reference map of healthy pediatric BM.  
a, Schematic overview of the experimental pipeline for CITE-seq, in which BM 
mononuclear cells were collected from seven healthy pediatric donors aged 
2.1–16.7 years (3 male and 4 female; Supplementary Table 1). CD235a−CD34+ 
HSPC and CD235a−CD45loCD90+ or CD235a−CD45loCD271+ MSC were enriched 
from each sample by flow cytometry and combined with the nonenriched 
fraction from a genetically distinct donor. Pooled samples were subjected to 
CITE-seq using 138 oligonucleotide-conjugated antibodies on the 10x Genomics 
platform. b, CITE-seq-based weighted nearest neighbor (WNN) uniform manifold 
approximation and projection (wnnUMAP) of 68,094 cells from pediatric BM 
aspirates (n = 7) showing 28 clusters identified and annotated based on joint 
transcriptomic and protein expression patterns and grouped into eight major 
cell populations: HSPC (8 subsets), B and plasma cells (6 subsets), T and NK cells 
(7 subsets), myeloid populations (3 subsets), dendritic cells (2 subsets), erythroid 

cells (1 subset) and stromal populations (1 subset). c, wnnUMAP depicting 
the relative contribution of the combined HSPC-enriched and MSC-enriched 
(enriched) versus the nonenriched cell fractions as in b. d, Top differentially 
expressed genes for all 28 clusters, grouped by major cell populations as 
defined in b. e, Top differentially expressed surface markers for all 28 clusters, 
grouped by major cell populations as defined in b. MNC, mononuclear cell; 
HSPC, hematopoietic stem and progenitor cell; HSC, hematopoietic stem cell; 
LMPP, lympho-myeloid primed progenitor; MEP, megakaryocyte–erythroid 
progenitor; MkP, megakaryocyte progenitor; EryP, erythroid progenitor; MCP, 
mast cell progenitor; TN, naive T cell; TM, memory T cell; Treg cell, regulatory 
T cell; MAIT cell, mucosal-associated invariant T cell; ProgDC, dendritic cell 
progenitor; cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell; 
Ery, erythroid; DC, dendritic cell; Avg, average.
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1 male and 2 female; Supplementary Table 1) exhibited a dominance of 
myeloid and T cells (Fig. 2a). To validate whether the observed com-
positional differences persisted into young adulthood, we expanded 
our dataset to include two adult BM donors (20.7 and 31.3 years,  

both female, 11,278 and 11,338 cells; Supplementary Table 1). BM 
composition in these two adult individuals closely resembled that 
of the donors aged 13.3–16.7 (Fig. 2a), allowing us to define two age  
categories: YP (age <10 years) and AYA (age 13–31 years; Fig. 2b).  
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Fig. 2 | B cell lineage bias in YP BM is driven by a distinct transcriptional 
program in LyP. a, Frequencies of cell subsets (as in Fig. 1b) in CITE-seq data of 
nonenriched BM aspirates of four YP (2.1–9.6 years, two male and two female)  
and five AYA (13.5–31.3 years, one male and four female) healthy donors.  
B lineage cells (YP BM, median 49.7%; AYA BM, median 13.9%, P = 0.016), T cells 
(YP BM, median 18.6%; AYA BM median 10.4%, P = 0.56) and myeloid cells (YP 
BM median 51.7%; AYA BM median 24.0%, P = 0.063; two-sided Wilcoxon rank-
sum test). b, Principal component analysis of BM composition in YP (n = 4) and 
AYA (n = 5) samples as in a. Dots represent individual BM aspirates, and arrows 
represent vectors reflecting each cell population’s contribution to the principal 
components. c, Frequencies of cell subsets (as in Fig. 1b) in BM aspirates from YP 
(n = 4) and AYA donors (n = 5). d, Representative BM cores from Xenium-based 
spatial transcriptomics of BM trephine biopsies from YP (n = 3, 0.7–1.5 years, two 
male participants and one female participant) and AYA donors (n = 3, 13.5–23 
years, all male participants). B lineage cells were overlaid to allow consistent 

comparisons across samples; scale bar, 300 μm; yrs, years. e, Relative abundance 
of BM cell subsets (as in Fig. 1b) in spatial transcriptomics data from YP (n = 3, 
0.7–1.5 years, two male participants and one female participant) and AYA (n = 3, 
13.5–23 years, all male participants) BM biopsies. f,h, Radar plot showing module 
expression of differentially expressed genes in HSCs (f), LMPP (g) and LyP (h) 
from YP (n = 4, 2.1–9.6 years, two male and two female participants) and AYA 
donors (n = 5, 13.5–31.3 years, one male and four female participants) across 
BM cell subsets as in Fig. 1b. Genes upregulated in YP or AYA BM cell subsets 
(Supplementary Table 9) were aggregated into module scores representing 
the average expression of age-associated transcriptional programs and 
assessed across all 28 cell clusters to evaluate their potential lineage-biasing 
effects. BaEoMaP, progenitors of basophils, eosinophils and mast cells; MkP/
Mk, megakaryocyte progenitor cell or megakaryocyte; AEC/VSMC, arteriolar 
endothelial cell or vascular smooth muscle cells; SEC, sinusoidal endothelial cell; 
Nonclass., nonclassical.
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B lineage cells were significantly higher in the YP group (median 
49.7% versus 13.9%), whereas T cells (median 18.6% versus 10.4%) and 
myeloid cells (median 51.7% versus 24.0%) were enriched in the AYA 
group (Fig. 2c). To validate these age-related differences, we performed 
spatial transcriptomics on BM trephine biopsies from an independent 
cohort of three YP (two male participants and one female participant, 
ages 0.7, 1 and 1.5 years) and three AYA donors (all male participants, 
ages 13.5, 17 and 23 years; Supplementary Tables 7 and 8). Analyses of 
cell composition in these BM biopsies revealed a higher abundance of  
B lineage cells in YP samples (median 34.6% in YP versus 9.1% in AYA), 
whereas myeloid cells were more prevalent in AYA samples (median 
36.1% in YP versus 58.2% in AYA; Fig. 2d,e and Extended Data Fig. 3). 
Together, these findings indicate that YP BM is distinct from AYA BM 
and is characterized by a shift from B cell lineage bias to increased T cell 
and myeloid output from infancy to young adulthood.

YP B lineage cell bias originates from LyP cells
We next explored whether the observed age-related differences in B, 
T and myeloid cell frequencies were accompanied by transcriptional 
changes in each of these populations or their upstream progenitors. 
To determine whether these frequency shifts reflected a general aging 
program shared across hematopoietic cell types or were restricted 
to specific hematopoietic cell populations, we compared single-cell 
transcriptomes and surface marker expression of each of the 28 BM 
subclusters in our CITE-seq data (as defined in Fig. 1b) between YP 
and AYA BM. Differential expression analysis identified ~5,000 genes 
(Extended Data Fig. 4a and Supplementary Table 9) and ~200 surface 
proteins differentially expressed between YP and AYA BM populations 
(Extended Data Fig. 4b and Supplementary Table 10). Among the 5,000 
differentially expressed genes, most were cell-type specific: 67% of 
genes upregulated in YP BM and 62% of genes upregulated in AYA BM 
were significantly altered in only a single cell population (for exam-
ple, restricted to HSCs, pro-B cells or classical monocytes; Extended 
Data Figs. 4 and 5). By contrast, a small number of genes, such as 
CD59 (higher expression in AYA BM) and CD74 (higher expression in 
YP BM) were consistently up- or downregulated across multiple cell 
types (Extended Data Figs. 4 and 5). The shared genes included genes 
previously linked to aging in adults, such as CTSW24 or KLF6 (ref. 25; 
Supplementary Table 10). These observations implied that hematopoi-
etic cells underwent predominantly cell-type-specific transcriptional 
changes rather than a uniform maturation program active across all 
populations during maturation from YP to AYA stages.

To assess whether the differentially expressed genes between 
YP and AYA BM imposed a lineage bias toward B cell lineage versus 
myeloid fates, we calculated lineage-specific module scores. These 
scores were generated by aggregating the differentially expressed 
genes between YP and AYA cell populations (Supplementary Table 9) 
and subsequently assigning to each individual cell in our CITE-seq data. 
Average module expression was then visualized across all 28 BM cell 
populations (as defined in Fig. 1b and Supplementary Figs. 3 and 4), 
focusing on populations comprising the differentiation trajectory from 
HSC to the B cell lineage (HSC, LMPP and LyP; Fig. 2f–h). The modules 
derived from the differentially expressed genes in HSC (for example, 
IGFBP2 and PROK2; Supplementary Table 8) and LMPP (for example, 
CD24; Supplementary Table 9) were uniformly distributed between B 
cell and myeloid populations (Fig. 2f,g and Supplementary Table 9), 
indicating that although early progenitors (HSC and LMPP) underwent 
transcriptional changes during maturation from YP to AYA, these dif-
ferences did not confer a lineage differentiation bias. By contrast, the 
modules derived from YP-upregulated LyP genes (for example, EBF1 
and CD79A; Supplementary Table 9) were enriched in B cell populations 
(pro-B, pre-B, naive/memory B and plasma cells) compared to other 
BM cell populations (Fig. 2h and Supplementary Fig. 3). Conversely, 
gene modules upregulated in AYA LyP versus YP LyP (for example, 
CD37 and SPINK2; Supplementary Table 9) were enriched in HSC, LMPP, 

pro-myelocytes, myelocytes, classical monocytes and nonclassical 
monocytes; Supplementary Fig. 3). At the single-gene level, expression 
of EBF1 and other B cell lineage genes, including BACH2 and CD79B, was 
higher in YP than in AYA samples, starting at the LyP stage and continu-
ing through the pro-B, pre-B and naive/memory B cell stages, but not 
in earlier LMPP or HSC stages (Extended Data Fig. 6). Overall, these 
analyses indicate substantial developmental changes in BM composi-
tion and transcriptional programs between YP and AYA groups, with 
a prominent B cell lineage bias in HSPC emerging (and potentially 
regulated) at the LyP stage.

Distinct LyP subsets correlate with age-related lineage bias
Next, we further dissected the LyP population to investigate whether 
heterogeneity within this population could explain the differences 
in B cell lineage versus myeloid bias between YP and AYA BM. Sub-
clustering of LyP cells revealed two distinct populations with unique 
transcriptomic and proteomic features (subclusters 1 and 2; Fig. 3a). 
Both subclusters exhibited hallmark features of LyP, including expres-
sion of canonical LyP transcripts (for example, IGLL1 and DNTT) and 
surface proteins (CD34+CD90−CD45RA+; Extended Data Fig. 7). This 
identity was further validated by mapping to the Deeply Integrated 
Human Single-Cell Omics (DISCO) external reference dataset, where 
both subclusters were annotated as LyP (Extended Data Fig. 8)19,26,27. 
Subcluster 1 showed high expression of B lineage cell-associated genes 
(EBF1, CD79A and VPREB1) and high surface protein expression of CD127 
(interleukin-7 (IL-7) receptor; Fig. 3b,c and Supplementary Tables 11 
and 12) and is referred to hereafter as B cell biased (LyP-B). Subcluster 2 
showed high expression of genes associated with stemness (for exam-
ple, SPINK2, ABCB1 and LRMDA), myeloid (LGALS1, CSF3R and CLEC12A) 
and lymphocyte lineage genes (CD37 and SPIB; Fig. 3b). Cells in this 
cluster also displayed increased protein expression of both myeloid 
(for example, CD123 and CD33) and lymphoid (for example, CD18 and 
CD155) markers (Fig. 3c) and are referred to as stable LyP (LyP-S). Gene 
Ontology term enrichment analysis supported this functional distinc-
tion, with LyP-B cells enriched for pathways related to B cell receptor 
signaling and lymphocyte proliferation and differentiation, whereas 
LyP-S cells were enriched for pathways related to myeloid leukocyte 
activation, mononuclear cell differentiation and B cell activation 
(Fig. 3d). Inference of gene regulatory networks showed increased 
activity of B lineage cell-associated regulons in LyP-B cells (for example, 
PAX5, LEF1 and TCF3)28,29, whereas LyP-S cells were enriched for regulons 
associated with general lymphoid development and stemness (for 
example, ELF4, RXRA and KLF4; Fig. 3e and Supplementary Table 13)30,31. 
To visualize both LyP subsets within the hematopoietic hierarchy, we 
created a diffusion map from our CITE-seq data, incorporating the B 
cell and myeloid trajectories (from HSCs to LMPP, LyP, cycling pro-B 
cells and pro-B cells and from HSCs to LMPP, pro-myelocytes, mye-
locytes and classical monocytes; Fig. 1b and Extended Data Fig. 7b). 
When annotated onto this trajectory, LyP-B cells localized closer to 
pro-B cell populations, whereas LyP-S cells positioned closer to LMPP 
and pro-myelocytes (Extended Data Fig. 7e), supporting the notion 
that although both LyP subsets arose downstream of LMPP, LyP-B cells 
exhibited a B cell lineage bias whereas LyP-S cells maintained broader, 
more multipotent potential. Although both LyP subsets were present 
across all individuals, LyP-B cells were significantly more abundant in 
YP BM, whereas LyP-S cells predominated in AYA BM (median 74.4% 
versus 26.9% LyP-B; Fig. 3f). Of note, in one of the two adult individu-
als (age 20.7), LyP-B cells were only detected in the enriched fraction 
(Fig. 3f), emphasizing the rarity of this subset in adults. Cell cycle analy-
sis showed a trend toward higher proportions of cycling LyP-B cells 
(S + G2/M) in YP samples than in AYA samples (median 45.2% versus 
24.5%; Fig. 3g), which might have contributed to their increased abun-
dance. Moreover, the frequency of LyP-B cells in each individual was 
significantly correlated with the overall percentage of B lineage cells 
(Fig. 3h). To validate these age-associated patterns, we reanalyzed a 
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a. d, Gene Ontology biological process enrichment of differentially expressed 
genes between LyP-B and LyP-S cells using clusterProfiler. Dot size indicates 
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Hochberg false discovery rate correction. e, Volcano plot of differentially active 
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activity was assessed using a two-sided Wilcoxon rank-sum test as implemented 
in Seurat, with Bonferroni correction for multiple testing. f, Relative proportions 
of LyP-B and LyP-S subsets within the total LyP population (nonenriched fraction) 
for each individual (n = 9; Supplementary Table 1). LyP-B (YP BM, median 74.4%; 
AYA BM, median 26.9%; Wilcoxon rank-sum test P = 0.016). g, Stacked bar plots 
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individual.
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public scRNA-seq dataset of CD34+ cells from 15 BM donors (ages 2–77 
years; 8 male and 7 female donors)32 and reclassified LyP into LyP-B 
or LyP-S cells (Extended Data Fig. 8a). This analysis confirmed that 
LyP-B cells were more abundant in young donors (ages 2–12 years, 
median 70.1% of all LyP) than in AYA donors (ages 17–77 years, median 
60.4% of all LyP; Extended Data Fig. 8b,c). Conversely, LyP-S cells were 
increased in AYA donors (median 29.4% in YP versus 39.6% in AYA; 
Extended Data Fig. 8b,c). Thus, in line with previous reports22,33, we 
found that two phenotypically and functionally distinct subpopulations 
of LyP exist in healthy BM, the abundance of which was age-dependent 
and associated with a systemic bias toward B lineage cells in YP BM.

Age-dependent stromal signals drive LyP lineage bias
B lineage cell differentiation is regulated, in part, by cell-extrinsic sig-
nals from MSC within the BM niche34–38. To explore whether stromal 
signaling regulates LyP subsets in an age-dependent manner, we used 
NicheNet to infer ligand–receptor interactions that differed between 
LyP-B and LyP-S cells39. We prioritized expressed ligands based on their 
predicted regulatory influence on the differentially expressed genes 
between LyP-B and LyP-S cells, such as EBF1, ZCCHC7 and GLRX (LyP-B) 
and CD37, ATP8B4 and LGALS1 (LyP-S) and the differential expression 
of the receptors matching these ligands between LyP-B and LyP-S 
cells. The growth factor IGF2, the lymphoid-supporting cytokine IL-7 
and the immunoglobulin superfamily member BTLA emerged as the 
top candidate ligands for LyP-B cells (Fig. 4a). IL-7 demonstrated the 
strongest predicted influence on B lineage cell transcription factors, 
including EBF1, LEF1 and PAX5 (Fig. 4a). By contrast, the pleiotropic 
cytokine transforming growth factor-β1 (TGFβ1) was identified as the 
top candidate regulator for LyP-S cells (Fig. 4a). Both ligands showed 
cross-regulatory potential: IL-7 affected certain LyP-S target genes 
(for example, LGALS1, RFLNB and MAP3K8), whereas TGFβ1 influenced 
certain LyP-B genes (for example, HMGB1, SOCS2 and IL7R; Fig. 4a), sup-
porting their reciprocal regulatory relationship34,35,37. Receptor analysis 
of our CITE-seq data showed significantly increased mRNA expression 
of the IL-7 receptor α-chain (IL-7Rα, encoded by IL7R; fold change (FC): 
7.01) and its co-receptor, the common γ-chain (IL2RG; FC: 1.45), on LyP-B 
cells. This was confirmed at the protein level via increased expression of 
CD127 (IL-7Rα; Fig. 3c). Conversely, LyP-S cells expressed more TGFBR1 
mRNA (FC: 2.26; Fig. 4b). To identify the cellular source of these ligands 
in BM, we mapped IL7 and TGFB1 expression across all BM cell types in 
our CITE-seq data (as defined in Fig. 1b). Although TGFB1 was broadly 
expressed across dendritic, myeloid, NK and T cells, IL7 expression 
was mostly restricted to MSC (Fig. 4c). Both IL7 and TGFB1 showed 
age-dependent patterns: IL7 mRNA expression was higher in YP MSC 
than in AYA MSC, whereas TGFB1 mRNA was higher in AYA BM cells than 
in YP BM cells (Fig. 4d,e). To validate the age-dependent availability of 
IL-7, we quantified concentrations of 12 cytokines and growth factors, 
including IL-7, in BM plasma (defined as the cell-free fraction of BM aspi-
rates) using a bead-based multiplex immunoassay in an independent 
cohort of 78 donors (‘LegendPlex cohort’, 0–20 years; median age of 
8 years; 47 male and 31 female donors; Supplementary Table 14). IL-7 
concentrations were significantly higher in YP than in AYA BM plasma 
(2.6 versus 2.0 pg ml−1; Fig. 4f). Other cytokines, such as IL-15, IL-3 or 
IL-34, showed no age-dependent differences (Fig. 4f). These findings 
aligned with prior reports identifying BM and thymic stromal cells as 
the primary sources of IL-7 (ref. 40) and with studies showing elevated 
concentrations of IL-7 in the blood plasma of young children (0–5 years) 
relative to AYAs (22–53 years)41.

Adult stromal cell atlases have defined various subsets of BM 
MSC expressing distinct HSPC-supporting factors and identified 
adipo-MSC and Thy-1+ MSC as the main producers of IL-7 in BM14. 
When mapped onto this atlas, most MSC in our CITE-seq data were 
annotated as adipo-MSC (Extended Data Fig. 9a,b). However, the lim-
ited number of MSC in these data (n = 588) precluded subset-specific 
analyses (Extended Data Fig. 9a). In the spatial transcriptomics dataset, 

which captured 8.4-fold more stromal cells (n = 4,950 versus 588 in 
CITE-seq; Fig. 5a–c), the stromal cell population in YP samples showed 
significantly increased frequencies of osteo-MSC (12.2% versus 1.4% of 
total MSC) and reduced frequencies of adipocytes (2.0% versus 14.0% 
of total MSC) compared to AYA samples (Fig. 5c–e). Adipo-MSC fre-
quencies were comparable between YP and AYA samples (73.6 versus 
66.1% of total MSC; Fig. 5c–e). These findings suggest that the elevated 
concentrations of IL-7 protein in YP BM might arise from increased 
per-cell production by adipo-MSC or from a more promiscuous stro-
mal source than in AYA BM. In summary, age-dependent expression 
of IL7 and TGFB1, along with their respective receptors, paralleled the 
age-dependent dynamics of LyP subsets, supporting a model where 
signals from BM stromal cells cooperate with LyP-intrinsic differences 
to shape lineage bias during human development.

Discussion
Here, we compiled a comprehensive multimodal single-cell analysis of 
healthy pediatric BM, including single-cell transcriptomics, cell surface 
proteomics and spatial transcriptomics, to map HSPC lineage fate deci-
sions during human development from infancy to young adulthood 
(0–32 years). We showed that YP BM (<10 years) was biased toward B 
lineage differentiation, whereas AYA BM was dominated by T cell and 
myeloid populations. This age-dependent lineage shift was driven by 
two distinct LyP subsets: CD127+ LyP, transcriptionally primed toward 
B cell output (LyP-B) and enriched before 10 years of age, and CD127+ 
LyP with T cell and myeloid features, predominating from ≥13 years 
onward. These changes correlated with age-related differences in BM 
MSC signaling, characterized by increased IL-7 production in early child-
hood and increased TGFβ signaling in AYA, indicative of niche-derived 
signals as critical regulators of HSPC lineage bias across development.

We identified two transcriptionally and phenotypically distinct 
subpopulations of LyP cells that differed in surface marker expres-
sion, lineage differentiation programs and age-dependent preva-
lence. Our data are consistent with previous flow cytometry-based 
studies that reported similar heterogeneity within human LyP22,33,42. 
Up to 57% of multipotent LyP (CD34+CD38−Thy-1neg-loCD45RA+) from 
human adult BM generate B cell, T cell and myeloid progeny in vitro 
and in vivo35, reflecting residual myeloid potential. Studies in human-
ized mice have demonstrated that CD34+CD38loCD45RA+ITGB7+ pro-
genitor cells can be subdivided into CD127− and CD127+ LyP subsets 
biased toward NK cell–innate lymphoid cell–T cell or B cell lineages, 
respectively22,33,42. Although CD127− LyP cell differentiation has been 
linked to FLT3 signaling, expansion of CD127+ LyP cells has been con-
sidered largely cell autonomous28. Our data refined this model by 
identifying niche-derived IL-7 as an HSPC-extrinsic regulator of CD127+ 
LyP cells, shaping the developmental balance between NK cell–innate 
lymphoid cell–T and B cell lineage output.

Our work highlighted the critical role of BM stromal signaling in 
driving age-dependent changes in hematopoiesis. Stromal-derived 
factors, including FLT3L, CXCL12 and IL-7, are established regulators 
of B cell lymphopoiesis36–38. We showed that stromal expression of IL7 
progressively declined from birth to young adulthood, coinciding 
with a shift from B cell lineage to myeloid differentiation in LyP cells. 
Measurement of IL-7 protein concentrations in BM-derived plasma 
supported the functional relevance of our transcriptomic data. The 
mechanisms underlying age-related cytokine production by BM MSC 
remain incompletely known. Sex hormones represent one plausible 
contributor: both testosterone and estrogen suppress IL-7 produc-
tion, and estrogen inhibits lymphopoiesis in mice, partly by inducing 
apoptosis of LyP43. Estrogen depletion increases BM IL-7 expression44. 
Additionally, pregnancy-induced elevations in estrogen and progester-
one are associated with reduced IL-7 levels and B cell lymphopoiesis, 
effects reversible by recombinant IL-7 (ref. 45). Our dataset did not 
allow for the identification of the precise age at which the shift from B 
cell lineage to myeloid bias occurs, nor its relationship with pubertal 

http://www.nature.com/natureimmunology


Nature Immunology

Resource https://doi.org/10.1038/s41590-026-02422-9

onset in individual donors. Rather than a discrete event, this shift is 
likely to represent a gradual developmental process, occurring between 
ages 10 and 13, with interindividual variability in onset and duration. 
Alternatively, or in conjunction with sex hormones, developmental 
changes in MSC composition may contribute to the increased IL-7 
production in YP BM. Adult stromal atlases have identified distinct 
MSC populations, with adipo-MSC and Thy-1+ MSC as the principal 
sources of BM IL-7 (ref. 14), alongside contributions of epithelial cells 
and reticular cells. In our CITE-seq data, MSC most closely resembled 
adipo-MSC, but numbers were insufficient for robust subset-specific 
analyses. Although our spatial datasets captured larger numbers of 
MSC, panel design precluded precise identification of IL-7-producing 
stromal subsets, which might differ between YP individuals and adults. 

Further studies are needed to define the precise stromal source of BM 
IL-7 across human development.

Finally, the developmental states observed within the healthy 
pediatric lymphoid lineage closely resembled the transcriptomic 
heterogeneity reported in B cell acute lymphoblastic leukemia46. Bulk 
leukemic samples from young children displayed stronger B lineage 
transcriptional signatures than those from AYA individuals, which had 
more multipotent transcriptional profiles46. These age-dependent 
leukemic states mirrored the age-dependent transcriptomic programs 
of LyP cells identified here. Because the cell of origin for pediatric B cell 
acute lymphoblastic leukemia likely emerges years before clinical diag-
nosis, possibly during fetal development47–49, these findings suggest 
that BM niche-mediated instruction of B cell lineage differentiation is 
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(n = 690 cells) and LyP-S (n = 649 cells) cells in CITE-seq data from BM aspirates of 
YP and AYA donors combined (n = 9; 2.1–31.3 years, three male, six female donors; 
Supplementary Table 1), showing the top three predicted ligands underlying 
the observed upregulation of LyP-B cell genes (top rows) and LyP-S cell genes 
(bottom rows), prioritized based on regulatory potential and differential 
receptor expression between the two LyP cell subsets. The genes shown 
represent the top 30 differentially expressed genes in LyP-B (left) or LyP-S (right) 
cells predicted to be regulated by these ligands. The regulatory potential of 
LyP-B cell ligands on LyP-S cell genes (top right quadrant) and vice versa (bottom 
left quadrant) is also shown. b, Dot plot showing the average expression of IL7R, 
IL2RG, TGFBR1 and TGFBR2 in LyP-B and LyP-S cell subsets (IL7R (LyP-B versus 
LyP-S; FC: 7.01, P < 0.001), IL2RG (LyP-B versus LyP-S; FC: 1.45, P = 0.002) and 

TGFBR1 (LyP-S versus LyP-B; FC: 2.26, P < 0.001; two-sided Wilcoxon rank-sum 
test with Benjamini–Hochberg false discovery rate correction)). Dot color 
indicates scaled receptor expression, and dot size represents the percentage of 
expressing cells. c–e, Dot plot showing the average mRNA expression of IL7 and 
TGFB1 in all BM cell types from CITE-seq data (c), in all BM cell types combined 
per individual (d) and in MSC only per individual (e). f, Box plots showing the 
concentrations of IL-7, IL-3, IL-15 and IL-34 protein measured by multiplex 
immunoassay (LegendPlex) in the BM of 78 individuals (age range of 0–20, 
median age of 8 years, 47 male and 31 female donors; Supplementary Table 13) 
with localized solid tumors without BM involvement. Boxes represent the median 
and the first and third quartiles, and whiskers indicate data points within 1.5 times 
the interquartile range. P values were calculated using a two-sided Wilcoxon 
rank-sum test.
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preserved in the malignant setting. Elevated IL-7 in YP BM, which can 
induce a preleukemic state49,50, may therefore facilitate acquisition 
of additional oncogenic events. Given the increasing application of 
lymphoid-targeted therapies and the potential for lineage switch as a 

mechanism of escape, manipulating lineage-instructive signals from 
the BM niche may provide a relevant therapeutic strategy.

In conclusion, we provide a comprehensive reference of healthy 
pediatric BM spanning from birth to young adulthood (0–32 years) and 
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Fig. 5 | BM stromal composition differs between YP and AYA BM. a–c, Xenium 
spatial transcriptomics-based UMAP of 163,325 cells from BM trephine biopsies 
of YP (n = 3, age 0.7–1.5 years, two male and one female donor) and AYA donors 
(n = 3, age 13.5–23 years, all male donors; Supplementary Table 7), showing the 
identification of 27 clusters, annotated and grouped into 11 major populations: 
HSPC (3 subsets), B and plasma cells (5 subsets), T and NK cells (3 subsets), 
myeloid populations (5 subsets), stromal cells (5 subsets), erythroid cells, 
dendritic cells, megakaryocytes, erythroid cells, sinusoidal endothelial cells and 
arteriolar endothelial cell or vascular smooth muscle cells, annotated per major 
population (a) and subcluster (b). c, UMAP of cells as in a showing adipo-MSC 
(n = 3,571 cells), adipocytes (n = 478 cells), fibro-MSC (n = 38 cells), fibro/
osteo-MSC (n = 598 cells), osteo-MSC (n = 265 cells) and osteoclasts (n = 82 cells). 

Key markers for each subpopulation are available in Supplementary Table 2. 
d, Representative BM cores from each individual as in a showing the spatial 
distribution of adipo-MSC, adipocytes, fibro-MSC, fibro/osteo-MSC, osteo-MSC 
and osteoclasts; scale bar, 300 μm. e, Stacked bar plot showing the relative 
abundance of adipo-MSC, adipocytes, fibro-MSC, fibro/osteo-MSC, osteo-MSC 
and osteoclasts in each individual. Osteo-MSC (YP BM median 12.2% of total MSC; 
AYA BM median of 1.4% of total MSC, mixed-effects logistic regression with donor 
as random intercept, Benjamini–Hochberg-adjusted P = 3.2 × 10−16), adipocytes 
(YP BM median 2.0% of total MSC; AYA BM median 14.0% of total MSC; Benjamini–
Hochberg-adjusted P = 2.3 × 10−36) and adipo-MSC (YP BM median 73.6% of 
total MSC; AYA BM median 66.1% of total MSC; Benjamini–Hochberg-adjusted 
P = 0.60).
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have made our dataset openly available as an online resource accom-
panying this manuscript (https://doi.org/10.5281/zenodo.14168864)21. 
The differences between pediatric and adult BM underscore the impor-
tance of age-matched references when interpreting disease-associated 
changes. By enabling such comparisons, our pediatric single-cell map 
provides a foundation for future research on pediatric blood disorders. 
In addition, it reveals age-specific regulatory mechanisms that may 
underlie the timing and susceptibility of hematologic malignancies 
in childhood and adolescence.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41590-026-02422-9.
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Methods
Human donors
BM samples were obtained from three independent cohorts, each used 
for distinct analyses. All samples were obtained through the Biobank of 
the Princess Máxima Center for Pediatric Oncology, Utrecht, the Neth-
erlands. Cohort demographics, including donor numbers, age ranges 
and sex distributions, are provided in Supplementary Tables 1, 7 and 
14. For CITE-seq, BM aspirates from healthy individuals (n = 9, 2.1–31.3 
years, three male and six female donors; Supplementary Table 1) were 
acquired. BM aspirates had been collected bilaterally from the poste-
rior superior iliac crests as part of a stem cell donation to an affected 
relative. None of the healthy donors received any HSC-mobilizing treat-
ment before donation. Written informed consent was obtained from 
all donors or legal guardians. Approval was granted by the Institutional 
Review Board of the Princess Máxima Center (PMCLAB2022.0328).

For Xenium-based spatial transcriptomics, formalin-fixed 
paraffin-embedded (FFPE) BM trephine biopsies were analyzed from 
an independent cohort of YP (n = 3, 0.7–1.5 years, two male and one 
female donor) and AYA donors (n = 3, 13.5–23 years, all male donors). 
As BM biopsies are invasive and not routinely performed in healthy 
individuals, samples were obtained from individuals undergoing diag-
nostic evaluation for suspected BM metastasis of solid tumors. All 
selected individuals were ultimately diagnosed with localized disease 
and showed no evidence of BM involvement (Supplementary Table 7). 
Written informed consent was obtained from all donors or legal guard-
ians. Approval was granted by the Institutional Review Board of the 
Princess Máxima Center (PMCLAB2022.0351).

For BM cytokine measurements, BM plasma from cancer-free 
BM aspirates (n = 78, ages 0–20 years, 47 male and 31 female donors; 
Supplementary Table 14) was acquired. All aspirates were derived 
from individuals diagnosed with localized solid tumors, including 
low-grade embryonal rhabdomyosarcoma, Ewing sarcoma, gangli-
oneuroblastoma, malignant rhabdoid tumor, neuroblastoma or small 
cell sarcoma, without any evidence for BM involvement. Informed 
consent was obtained from all donors or legal guardians. Approval 
was granted by the Institutional Review Board of the Princess Máxima 
Center (PMCLAB2025.0620).

Sample preparation for CITE-seq
Residual mononuclear cells from BM aspirates, leftover after graft 
infusion, were isolated by Ficoll (Cytiva Life Sciences) density gradi-
ent centrifugation and cryopreserved in liquid nitrogen until further 
use. For CITE-seq, cryopreserved BM samples were thawed rapidly in 
a water bath at 37 °C. An equal volume of prewarmed thawing medium 
(DMEM, high glucose, pyruvate, no glutamine and 20% fetal calf serum) 
was added to the viably frozen cell suspension in a dropwise fashion. 
The cell suspension was transferred to a 50-ml Falcon tube and was 
further diluted (1:10) by dropwise addition of prewarmed thawing 
medium. Cells were centrifuged at 400g for 5 min at 4 °C. The cell pellet 
was resuspended in thawing medium containing DNase (100 µg ml−1; 
Roche) with MgCl2 (10 mM; Merck) and incubated for 30 min at 4 °C. 
After incubation, cells were centrifuged at 400g for 5 min at 4 °C and 
resuspended in cell staining buffer (CSB; Biolegend). The number 
of cells in the suspension was established using the Countess II cell 
counter (Invitrogen).

Cell sorting and multiplexing for CITE-seq
Before library preparation, each individual’s sample was enriched 
for HSPC and MSC, which were multiplexed with the nonenriched 
cell fraction of another genetically distinct individual. For this, 
FcR blocking reagent (Human Trustain FcX, Biolegend) was added 
to the cells at a 1:10 dilution and incubated on ice for 5 min. Cells 
were then incubated with Zombie NIR viability dye (BioLegend) on 
ice in the dark for 15 min. After incubation, the cell suspension was 
washed by adding CSB and centrifuging at 400g at 4 °C, followed by 

resuspension. Next, the cells were incubated on ice in the dark for 
30 min with a customized mix of fluorophore-conjugated antibodies 
and oligonucleotide-conjugated antibodies (Supplementary Tables 15 
and 16). Following incubation, the cells were washed three times with 
CSB and centrifuged at 400g at 4 °C after each wash. The cell suspen-
sion was then filtered using a 35-µm filter and sorted using a Sony 
SH800S cell sorter (SONY SH800S system software v2.1), with a uni-
form gating strategy for all samples (Supplementary Fig. 1). In general, 
we sorted 2.5 × 104 nonenriched, erythrocyte precursor-depleted 
cells (Zombie NIR−CD235a−) from one individual and combined 
with 1 × 104 HSPC (Zombie NIR−CD235a−CD45−CD34+) and up to 
2 × 103 MSC (Zombie NIR−CD235a−CD45loCD34−CD271+ or Zombie 
NIR−CD235a−CD45loCD34−CD90+) of another genetically distinct  
individual. During subsequent data analysis (described below), cells 
were demultiplexed and assigned to their original sample based on 
SNVs specific for each individual. After mixing, the resulting cell suspen-
sions were counted using Trypan Blue and a Bürker counting chamber.

Library preparation and sequencing
Approximately 40,000 cells per multiplexed sample were loaded onto 
a Chromium Single Cell G chip and used for library preparation using 
a Chromium Next GEM Single Cell 3′ Library and Gel Bead Kit v3.1 (10x 
Genomics) according to the manufacturer’s instructions. For each 
multiplexed sample, two libraries were prepared, one for the RNA and 
one for the antibody capture modality. Each library was sequenced 
using a NovaSeq 6000 (Illumina) and the following number of cycles: 
read 1: 28; read i7: 10; read i5: 10; read 2: 91.

Xenium experiments
In collaboration with the Department of Pathology, representative 
regions from each BM biopsy (n = 6 biopsies, one to three regions per 
biopsy; Supplementary Table 7) were identified and incorporated 
into a tissue microarray (TMA), comprising one to three BM cores per 
individual (1.5 mm in diameter each). A 5-µm TMA section was prepared 
for spatial transcriptomics according to the Demonstrated Protocols 
Xenium In Situ for FFPE Tissue Preparation Guide (CG000578, 10x 
Genomics) and Xenium In Situ for FFPE Tissues Deparaffinization and 
Decrosslinking (CG000580, 10x Genomics). The Human Multi-Tissues 
and Cancer Panel probe set was supplemented with probes targeting 
100 custom genes (Supplementary Table 8) and Cell Segmentation 
Reagents. Probe hybridization, ligation and rolling circle amplifica-
tion were performed by the Leiden Genome Technology Center at 
the Leiden University Medical Center, following the manufacturer’s 
protocol (CG000582 Rev E, 10x Genomics).

CITE-seq data preprocessing
CITE seq data were processed using CellRanger count with feature 
barcoding (version 7.1.0, 10x Genomics) using the refdata-gex-GRCh38-
2020-A transcriptome and a modified Feature Reference file 
(Supplementary Table 14).

CITE-seq genotype demultiplexing and barcode filtering
Cells from multiplexed samples were SNV-based genotype- 
demultiplexed using souporcell (singularity image created 1 December 
2021)51. Barcodes with less than 1,500 transcripts and/or a percentage 
of mitochondrial genes above 10% were removed. Also, barcodes classi-
fied as doublets or unassigned genotypes by souporcell51 and barcodes 
classified as doublets in over five of ten runs using scDblFinder (version 
1.18.0)52 were discarded.

CITE-seq normalization, dimensional reduction, feature 
deconfounding and integration
Further processing and analyses were performed in R (version 4.4.0) 
using Seurat (version 5.1.0)20. For each individual, donor gene expres-
sion data were SCTransform normalized with SCTransform (v2, number 
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of variable features = 3,000). Dimensional reduction was conducted 
with the RunPCA function from Seurat. SCT integration features were 
calculated using the SelectSCTIntegrationFeatures function from 
Seurat. Using gene lists from the SCutils package (version 1.123), the 
following genes were filtered out from the SCT integration features, 
provided they were also found as variable features: genes specific to 
the S or G2M cell cycle phase, donor-specific genes correlating with the 
S or G2M phase, male and female-specific genes, stress-related genes 
and ribosomal protein genes. Gene expression data were integrated 
across donors with canonical correlation analysis (CCA), using the 
IntegrateLayers function in Seurat and the filtered SCT integration 
features. Antibody capture data were normalized per library using 
DSBantibody normalization (version 1.0.3)20. For each individual donor, 
FindVariableFeatures and ScaleData were run, and dimensional reduc-
tion was performed with the RunPCA function from Seurat. Data were 
also integrated with CCA using the IntegrateLayers function in Seurat 
and all antibodies as integration features.

CITE-seq visualization, clustering and cell-type annotation
A WNN graph was created with the FindMultiModalNeighbors func-
tion in Seurat, using the integrated reductions of both RNA and ADT 
modalities. A wnnUMAP was created from this WNN graph with RunU-
MAP, using 30 principal components for both modalities. Clustering 
was performed using FindClusters from Seurat with the wsnn graph, 
the SLM modularity optimization algorithm, as recommended by 
the Weighted Nearest Neighbor Analysis vignette from Seurat, and a 
resolution of 0.4.

Cell-type annotation was performed by combining three com-
plimentary annotation approaches, performed with gene expression 
log-normalized data. First, cell types were inferred with SingleR (ver-
sion 2.6.0)53. Second, individual cells were mapped to two external 
reference BM datasets11,13. Mapping to the CITE-seq dataset bmcite 
(version 0.3.0) from SeuratData (version 0.2.2.9001) was performed as 
recommended by the Seurat multimodal reference mapping vignette18. 
The Gene Expression BM dataset in DISCO19 was downsampled to a 
maximum of 3,000 cells per cell type and SCTransform normalized, 
followed by generation of a principal component analysis and UMAP, 
which were in turn used for reference mapping, according to the Seu-
rat Mapping and annotating query datasets vignette. Third, antibody 
capture data and RNA expression data from known marker genes were 
used to confirm cell-type annotations.

For in-depth analysis of the erythroid lineage, myeloid lineage 
and T and NK cells, the respective clusters were subsetted, followed 
by subset-specific SCT normalization, dimensional reduction, feature 
deconfounding, integration and clustering at resolutions of 0.7, 0.5 
and 0.3, respectively. Cell-type annotations were then redefined as 
described above. The resulting Seurat object provided cell-type anno-
tations at multiple levels of resolution, ranging from broad categories 
(major groups, for example, T cells) to more detailed classifications 
(high-resolution clusters, for example, γδT cells).

CITE-seq subclustering of LyP cells
For in-depth analysis of LyP cells, cells were subsetted and analyzed 
as described above, with the following deviations: for clustering, 
a resolution of 0.1 was used; CCA integration between donors was 
not performed.

CITE-seq differential gene and protein expression
To compare each major group and high-resolution cell type against 
all other cell types, we used the wilcoxauc function in presto (version 
1.0.0) to find cell-type-specific, significantly differentially expressed 
genes and proteins. We used the following thresholds: p-adj < 0.01, pct_
in – pct_out ≥ 0, pct_in > 20, auc > 0.5 and logFC > 0. For each cell type, 
 the FindMarkers function (test.use = ‘wilcox’, logfc.threshold = 0, 
min.pct = 0.01) was used to identify genes and proteins with 

significant differential expression between YP and AYA cells (thresh-
olds: p-adj < 0.01 and FC > 1.5 and pct.1 > pct.2 or p-adj < 0.01 and 
FC < –1.5 and pct.1 < pct.2). From these cell-type-specific young and 
old gene lists, we computed module scores using Seurat’s AddMod-
uleScore function and assessed scores per cell. Module scores were 
visualized as mean module scores per cluster using the ggradar pack-
age (version 0.2), capping negative average scores at 0. For LyP cell 
subclusters, the FindMarkers function (test.use = ‘wilcox’, logfc.thresh-
old = 0, min.pct = 0.01) was used to identify significantly differentially 
expressed genes and proteins between clusters 0 and 1 (thresholds: 
p-adj < 0.01 and FC > 2 and pct.1 > pct.2 or p-adj < 0.01 and FC < –2 and 
pct.1 < pct.2). For all differential gene expression analyses, male- and 
female-specific genes were removed. For comparisons of major groups 
and high-resolution clusters, confounder genes mentioned above were 
also removed. Gene Ontology enrichment analysis was performed 
using the enrichGO function from the clusterProfiler (version 4.12.0) 
package, using biological process terms.

Transcription factor activity analysis in CITE-seq data
Inference of transcription factor network activity was performed 
using pySCENIC (image version aertslab-pyscenic-0.11.2.sif)54. For 
this, we used a loom file with raw transcript counts of a downsampled 
dataset as input, along with the ‘hs_hgnc_tfs.txt’ transcription factor 
list, the ‘motifs-v9-nr.hgnc-m0.001-o0.0.tbl’ motifs and the ‘hg38__
refseq-r80__10kb_up_and_down_tss.mc9nr.feather’ input databases. 
Only transcription factors that were identified in two or more of three 
independent runs were analyzed. Activity per cell was calculated as the 
mean AUCell values across runs. For LyP cell subclusters, FindMark-
ers (test.use = ‘wilcox’, logfc.threshold = 0, min.pct = 0.01) was used 
to identify significant differential regulon activity between clusters  
0 and 1 (thresholds: p-adj < 0.01 and FC > 1).

Cell interaction analysis in CITE-seq data
Interaction analysis and ligand prioritization were performed using 
NicheNet (nichenetr package, version 2.2.0)39. Ligand activity analysis 
was performed on genes upregulated in LyP-B or LyP-S cells (identified 
using the FindMarkers function as described above), using the top 
n = 5,000 downstream targets for each ligand and a quantile cutoff of 
0.001. Ligands were prioritized by equally weighing the following two 
criteria: (1) the predicted ligand activity and (2) LyP subset-specific 
receptor expression.

Xenium data preprocessing, filtering, normalization and 
dimensional reduction
Imaging and signal decoding were performed using the Xenium on-board 
analysis pipeline (10x Genomics, version xenium-3.1.1.0). The Xenium 
ranger relabel function was applied after removing the FLT3LG feature, 
due to lack of specificity of this custom probe. Cell segmentation was 
performed using a probabilistic segmentation method (ProSeg) to 
infer refined cell boundaries55. Regions of interest corresponding to 
the individual cores were selected in Xenium Explorer (version 3). For 
the selected cells, metadata and gene expression profile matrices were 
imported into scanpy (version 1.11.3)56 for downstream analyses. Quality 
assessment matrices were performed on the cells, including normalizing 
gene counts to total cell volume. Cells with a sum log1 (P value)-scaled 
gene count greater than 3.5 were retained for downstream analyses. An 
autoencoder variational model, ResolVI (scvi-tools, version 1.3.3), was 
applied, treating all BM cores as one batch (model parameters: n_hid-
den = 32, n_latent = 10, n_layers = 2, dropout_rate = 0.05)57 to obtain a 
low-dimensional representation with ten dimensions. The latent rep-
resentation was used for constructing a UMAP.

Xenium visualization, clustering and cell-type annotation
Leiden clustering (resolution 2.4, ten iterations) was performed based 
on the ResolVI latent space (resolution 2.4, ten iterations). For cell-type 

http://www.nature.com/natureimmunology


Nature Immunology

Resource https://doi.org/10.1038/s41590-026-02422-9

annotation, we used reference mapping with Tangram58 against the 
adult BM atlas as published by Bandyopadhyay et al.14 and Zeng et al.59 
and CITE-seq data from this manuscript. Cells were then subdivided 
into major groups: HSPC, T/NK cells, megakaryocyte lineage, B cell 
lineage, myeloid lineage, erythroid lineage and nonhematopoietic 
clusters. These subsets were reclustered at resolutions of 0.3, 0.5 and 
1.0. Final annotations were assigned by integrating reference-based 
predictions with known marker gene expression, yielding both broad 
and fine-grained cell-type labels.

Comparison of LyP cell subtypes in CITE-seq data and a public 
dataset of CD34+ cells
A public scRNA-seq dataset of CD34+ cells isolated from BM aspirates 
of 15 donors (ages 2–77 years; 8 male and 7 female donors)32 was down-
loaded from the Gene Expression Omnibus (GEO) under accession 
number GSE189161. Transcripts in all cells were log normalized per 
sample (orig.ident) to a total of 10,000 transcripts. LyP exhibiting LyP 
score >0 with more than 1,500 transcripts were retained for downstream 
analyses. Module scores were constructed from differentially expressed 
genes in the LyP, LyP-B and LyP-S populations from the CITE-seq data in 
this manuscript, excluding sex- and cell cycle-related genes. Relative cell 
fractions of cells with an LyP-B score of >0 and LyP-S score ≤0 (LyP-B); 
cells with a LyP-S score >0 and LyP-B score ≤0 (LyP-S) and cells with LyP-B 
score ≤0 and LyP-S score ≤0 (double-negative LyP) were compared.

Cytokine measurements in BM plasma
BM plasma (the cell-free fraction of BM aspirates) was col-
lected by Ficoll (Cytiva Life Sciences) density gradient centrifu-
gation of EDTA-anticoagulated BM aspirates (n = 78 samples; 
Supplementary Table 14). The resulting plasma was stored at –80 °C 
until further analysis. IL-7 and IL-15 were measured using the LEGEND-
plex Human Hematopoietic Stem Cell Panel (Biolegend). Samples 
were processed, and cytokine levels were measured according to the 
manufacturer’s instructions, with the sole deviation being an extended 
overnight incubation during the initial incubation step to optimize 
cytokine detection. Cytokine concentrations were analyzed in R and 
visualized using the ggplot2 (version 3.5.1) and ggbeeswarm (version 
0.7.2) packages. Cytokine concentrations lower than the detection limit 
(IL-15, <271.56 pg ml−1; IL-7, <0.317 pg ml−1) were assigned half the value 
of the detection limit. Outliers were identified and removed.

Statistics and reproducibility
Dimensional reduction of BM composition data was performed using 
principal component analysis and the prcomp function from the stats 
package (version 4.4.0). The relative abundance of cell types, LyP-B 
and LyP-S cell subsets and cycling versus noncycling LyP between YP 
BM and AYA BM was compared using a two-sided Wilcoxon rank-sum 
test. Correlations between B cell and LyP-B cell frequencies were cal-
culated using the stat_correlation function (method = ‘pearson’) from 
the ggpmisc package (version 0.6.0). To allow reliable comparisons 
of rare cell types (cycling versus noncycling LyP and MSC subsets), 
the enriched and nonenriched were pooled. For all other compari-
sons, the nonenriched fractions were used. For comparison of spatial 
cell-type composition, mixed-effects logistic regression models were 
used (lme4 package, version 1.1-35.5) with donor as a random effect to 
account for multiple cores per individual; P values were adjusted for 
multiple testing using the Benjamini–Hochberg false discovery rate 
method. YP and AYA sample cytokine concentrations were compared 
using a Wilcoxon rank-sum test. No statistical methods were used to 
predetermine sample sizes, but our sample sizes are similar to those 
reported in previous publications60.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All generated data and the corresponding analysis scripts have been 
deposited in Zenodo at https://doi.org/10.5281/zenodo.14168864 (ref. 
21). The publicly available data used in the study are DISCO BM atlas19 
(https://www.immunesinglecell.com/atlas/bone_marrow), the Stuart 
et al. dataset (GEO: GSE128639)18, the Li et al. dataset (GEO: GSE189161)32 
and the Bandyopadhyay et al. dataset (GEO: GSE253355)14.

Code availability
No new code was generated in this study. All code used in the analysis 
scripts have been deposited in Zenodo at https://doi.org/10.5281/
zenodo.14168864 (ref. 21).
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Extended Data Fig. 1 | Quality control plots of CITE-seq data. a) Bar plot 
showing the number of bone marrow (BM) cells collected from seven healthy 
pediatric donors aged 2.1-16.7 years (3 males, 4 females). From each sample, 
HSPC (CD235a−CD34+) and mesenchymal stromal cells (CD235a−CD45loCD90+ 
or CD235a−CD45loCD271+) were enriched by flow cytometry and combined with 
the non-enriched fraction from a genetically distinct donor. Pooled samples 
were subjected to CITE-seq using 138 oligonucleotide-conjugated antibodies, 
on the 10x Genomics platform. b) Boxplot of the percentage of mitochondrial 
reads per cell. c) Boxplot of the number of RNA counts per cell. d) Boxplot of 
the number of unique RNA features per cell. e) Boxplot of the number of ADT 
counts per cell. f) Boxplot of the number of unique ADT features per cell. g) 
Violin plot showing the relative expression level of the female-specific XIST 
gene per donor sample used to confirm sample sex. h) Violin plot showing the 

relative expression level of the male-specific UTY gene per donor sample used 
to confirm sample sex. i) CITE-seq-based weighted nearest neighbor uniform 
manifold approximation and projection (wwnUMAP) of cells from pediatric 
BM aspirates (n = 7) and adult BM aspirates (n = 2) per individual. Twenty-eight 
clusters were identified and annotated based on joint transcriptomic and protein 
expression patterns. MSC, mesenchymal stromal cell; HSC, hematopoietic stem 
cell; LMPP, lympho-myeloid primed progenitor; MEP, megakaryocyte-erythroid 
progenitor; MkP, megakaryocyte progenitor; EryP, erythroid progenitor; McP, 
mast cell progenitor; TN, naive T cell, TM: memory T cell; Treg cell: regulatory T cell; 
MAIT cell: mucosal-associated invariant T cell; NK cell, natural killer cell; progDC, 
dendritic cell progenitor; cDC, conventional DC; pDC, plasmacytoid DC, Ery, 
erythroid; DC, dendritic cell.
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Extended Data Fig. 2 | External references validate cell type annotations 
and multimodal clustering. a) Tile plots showing mapping of each of the 28 
cell clusters in the CITE-seq dataset (n = 9 donors, age 2.1-31.3, 3 male, 5 female) 
to the external dataset of Stuart et al.18. Colors depict the proportion of cells 
in each cluster assigned to each reference cell type. b) As in a), but for the 
external DISCO single-cell reference map19. HSC, hematopoietic stem cell; LMPP, 
lympho-myeloid primed progenitor; MEP, megakaryocyte-erythroid progenitor; 
MkP, megakaryocyte progenitor; EryP, erythroid progenitor; McP, mast cell 
progenitor; LyP, lymphoid progenitor; TN, naive T cell; TM, memory T cell; Treg cell, 

regulatory T cell; MAIT, mucosal-associated invariant T cell; NK, natural killer cell; 
prog DC, dendritic cell progenitor; cDC, conventional DC; pDC, plasmacytoid 
DC; MSC, mesenchymal stromal cells; LMPP, lymphoid-primed multipotent 
progenitor; Prog_Mk, megakaryocyte progenitor; Prog_RBC, red blood cell 
progenitor; GMP, granulocyte-monocyteprogenitor; Mono, monocyte; Prog_DC, 
dendritic cell progenitor; MPP, multipotent progenitor; CMP, common myeloid 
progenitor; CLP, common lymphoid progenitor; ILC, innate lymphoid cell; 
CDP,common dendritic cell progenitor; cDC1, conventional DC type 1; cDC2, 
conventional DC type 2; pre-pDC, precursor plasmacytoid DC.
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populations within the biopsy sections. Scale bar = 300 μm. b) Stacked bar plots 
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stromal cell; SEC, sinusoidal endothelial cell; AEC/VSMC, arterial endothelial 
cell or vascular smooth muscle cell; EryP, erythroid progenitor cell; BaEoMaP, 
progenitors of basophils, eosinophils and mast cells; MkP/Mk, megakaryocyte 
progenitor cell or megakaryocyte; pDC, plasmacytoid dendritic cell; Adipo-MSC, 
adipolineage MSC; Fibro-Osteo-MSC, fibro-osteolineage MSC; Fibro-MSC, 
fibrolineage MSC; Osteo-MSC, osteolineage MSC; YP, young pediatric; AYA, 
adolescents and young adults.
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Extended Data Fig. 4 | Differentially expressed genes and cell surface proteins 
between YP and AYA per cell type and their overlap. a) CITE-seq-based stacked 
bar plots showing the number of differentially expressed genes between YP 
(age 2.1-9.6 years, n = 4 donors, 2 males, 2 females) and AYA (age 13.3-16.7, n = 3 
donors, 1 male, 2 female), categorized by the number of cell types in which 
they are identified. b) As in a), but for cell surface proteins. c) Bar plot showing 
the number of differentially expressed genes upregulated in YP and AYA per 
cell type. d) As in c), but for cell surface proteins. Abbreviations: YP, young 

pediatric; DE, differentially expressed; AYA, adolescents and young adults; 
HSC, hematopoietic stem cell; LMPP, lympho-myeloid primed progenitor; MEP, 
megakaryocyte-erythroid progenitor; MkP, megakaryocyte progenitor; EryP, 
erythroid progenitor; McP, mast cell progenitor; LyP, lymphoid progenitor; 
TN, naive T cell; TM, memory T cell; Treg cell, regulatory T cell; MAIT cell, 
mucosal-associated invariant T cell; NK cell, natural killer cell; progDC, dendritic 
cell progenitor; cDC, conventional DC; pDC, plasmacytoid DC; Ery, erythroid cell; 
DC, dendritic cell; MSC, mesenchymal stromal cell.
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Extended Data Fig. 5 | Shared and differentially expressed genes between 
YP and AYA cell clusters. a) Heatmap showing the overlap of differentially 
expressed genes between pairs of cell types from CITE-seq data of BM aspirates 
of YP donors (n = 4, age 2.1-9.6 years, 2 males, 2 females). b) As in a), but for 
AYA donors (n = 3, age 13.3-16.7, 1 male, 2 female). Abbreviations: YP, young 
pediatric; DE, differentially expressed; AYA, adolescent and young adults. HSC, 
hematopoietic stem cell; LMPP, lympho-myeloid primed progenitor; MEP, 

megakaryocyte-erythroid progenitor; MkP, megakaryocyte progenitor; EryP, 
erythroid progenitor; McP, mast cell progenitor; LyP, lymphoid progenitor; 
TN, naive T cell; TM, memory T cell; Treg cell, regulatory T cell; MAIT cell, 
mucosal-associated invariant T cell; NK cell, natural killer cell; progDC, dendritic 
cell progenitor; cDC, conventional DC; pDC, plasmacytoid DC; Ery, erythroid cell; 
DC, dendritic cell; MSC, mesenchymal stromal cell.
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Extended Data Fig. 6 | B cell lineage bias in YP BM originates at the level of LyP. 
Heatmap showing the relative expression of the top 10 differentially expressed 
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populations (as defined in Fig. 1b), comparing young pediatric (YP; age 2.1–9.6 
years; n = 4 donors, 2 male and 2 female) and adolescent and young adult (AYA; 
age 13.3–16.7 years; n = 3 donors, 1 male and 2 female) samples. Abbreviations: 
YP, young pediatric; AYA, adolescent and young adult; HSPC, hematopoietic 
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McP, mast cell progenitor; LyP, lymphoid progenitor.YP, young pediatric; AYA, 
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Extended Data Fig. 7 | Validation of LyP subcluster annotation and differential 
lineage bias. a) CITE-seq based violin plots showing the relative expression levels 
of DSB-normalized ADT counts for shown surface markers in LMPP, LyP-S, LyP-B 
and pro B cells (cycling), as identified in Fig. 1b and Fig. 3a. b) Violin plots showing 
the relative expression of the top10 marker genes for lymphoid progenitor cells 
from the DISCO single-cell reference atlas19. c) Tile plot showing the percentage 
of cells for each LyP subcluster mapping to each of the cell clusters in the DISCO 
single-cell reference atlas19. d) CITE-seq based diffusion map, showing the 

differentiation trajectory from HSC to B cell and myeloid lineages, visualizing 
all the intermediary cell types. e) As in d) highlighting the Lyp-B and LyP-S 
subclusters. Abbreviations: LyP, lymphoid progenitor; pDC, plasmacytoid 
dendritic cell; GMP, granulocyte-monocyte progenitor; CDP, common dendritic 
cell progenitor; pre-pDC, precursor plamacytoid DC; CMP, common myeloid 
progenitor; HSC, hematopoietic stem cell; LMPP, lympho-myeloid primed 
progenitor.
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Extended Data Fig. 8 | External data validate of age-dependent shifts in 
LyP subset abundance. a) Dot plot showing the consistency between the 
LyP-transcriptional signatures in our BM reference map (n = 9 donors) and 
those reported by Li et al. (n = 15, ages = 2-77 years22). b) Bar plot showing the 
frequencies of LyP-B and LyP-S subclusters by age in the reference map of Li et al. 
Cells were selected based on LyP-identity in both datasets (LyP score>0) and 
subclassified as LyP-B (blue) or LyP-S (orange) based on subset-specific scores. 

Cells positive for both were classified according to the highest score; cells that 
did not meet either criterion were labeled unclassified (grey). c, Boxplot showing 
LyP-B and LyP-S frequencies in male individuals stratified by age. Abbreviations: 
LyP: lymphoid progenitor; Prog: progenitor; Ly: lymphoid; G: granulocyte; 
Mk: megakaryocyte; E: erythroid; pDC: plasmacytoid dendritic cell; G/M: 
granulocyte/monocyte; MPP: multipotent progenitor; Mono/DC: monocyte/
dendritic cell; Baso/Mast: basophil/mast cell.
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Extended Data Fig. 9 | Analysis of mesenchymal stromal cell subsets in the 
CITE-seq dataset. a) Tile plot showing the percentage of mesenchymal stromal  
cells (MSC, n = 588 cells) in CITE-seq data of BM aspirates of YP and AYA donors  
(n = 9; 2.1-31.3 years, 3 males 6 females), mapping to the MSC clusters in an 

external reference (Bandyopadhyay et al. 14). Cell numbers are shown in brackets. 
b) Dot plot showing the mRNA expression of IL7 in the MSC in our CITE-seq 
dataset, annotated using the MSC cluster labels from Bandyopadhyay et al. 
Abbreviations: MSC, mesenchymal stromal cell.
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