Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Impact of the Human Cell Atlas on medicine

Abstract

Single-cell atlases promise to provide a ‘missing link’ between genes, diseases and therapies. By identifying the specific cell types, states, programs and contexts where disease-implicated genes act, we will understand the mechanisms of disease at the cellular and tissue levels and can use this understanding to develop powerful disease diagnostics; identify promising new drug targets; predict their efficacy, toxicity and resistance mechanisms; and empower new kinds of therapies, from cancer therapies to regenerative medicine. Here, we lay out a vision for the potential of cell atlases to impact the future of medicine, and describe how advances over the past decade have begun to realize this potential in common complex diseases, infectious diseases (including COVID-19), rare diseases and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential medical impacts of the Human Cell Atlas and remaining challenges.
Fig. 2: Single-cell atlases have been collected for a broad range of organs and disease tissues.

Similar content being viewed by others

References

  1. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  Google Scholar 

  2. Regev, A. et al. The Human Cell Atlas white paper. Preprint at arXiv https://doi.org/10.48550/arXiv.1810.05192 (2018).

  3. Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).

    Article  CAS  Google Scholar 

  4. Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016–1035(2020).

    Article  CAS  Google Scholar 

  5. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    Article  CAS  Google Scholar 

  6. Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).

    Article  CAS  Google Scholar 

  7. Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

    Article  CAS  Google Scholar 

  8. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    Article  CAS  Google Scholar 

  9. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article  CAS  Google Scholar 

  10. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  Google Scholar 

  11. Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622 (2020).

    Article  CAS  Google Scholar 

  12. Jardine, L. et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature 598, 327–331 (2021).

    Article  CAS  Google Scholar 

  13. Krenkel, O., Hundertmark, J., Ritz, T. P., Weiskirchen, R. & Tacke, F. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 8, 503 (2019).

    Article  CAS  Google Scholar 

  14. He, H. et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J. Allergy Clin. Immun. 145, 1615–1628 (2020).

    Article  CAS  Google Scholar 

  15. Liu, Y. et al. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci. Immunol. 7, eabl9165 (2022).

    Article  CAS  Google Scholar 

  16. Wei, K. et al. Notch signaling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  Google Scholar 

  17. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  Google Scholar 

  18. Hua, X. et al. Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation 142, 384–400 (2020).

    Article  CAS  Google Scholar 

  19. Liu, J. et al. Single-cell RNA sequencing of psoriatic skin identifies pathogenic TC17 cell subsets and reveals distinctions between CD8+ T cells in autoimmunity and cancer. J. Allergy Clin. Immun. 147, 2370–2380 (2021).

    Article  CAS  Google Scholar 

  20. Belonwu, S. A. et al. Bioinformatics analysis of publicly available single-nuclei transcriptomics alzheimer’s disease datasets reveals APOE genotype-specific changes across cell types in two brain regions. Front Aging Neurosci. 14, 749991 (2022).

    Article  CAS  Google Scholar 

  21. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271 (2019).

    Article  CAS  Google Scholar 

  22. Wang, P. et al. Global characterization of peripheral B cells in Parkinson’s disease by single-cell RNA and BCR sequencing. Front. Immunol. 13, 814239 (2022).

    Article  CAS  Google Scholar 

  23. Lampinen, R. et al. Single-cell RNA-seq analysis of olfactory mucosal cells of Alzheimer’s disease patients. Cells 11, 676 (2022).

    Article  CAS  Google Scholar 

  24. Braga, F. A. V. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

    Article  Google Scholar 

  25. Deng, C.-C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat. Commun. 12, 3709 (2021).

    Article  CAS  Google Scholar 

  26. Kobayashi, S. et al. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a gene network module underlying systemic sclerosis. J. Autoimmun. 116, 102547 (2021).

    Article  CAS  Google Scholar 

  27. Menon, M. et al. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat. Commun. 10, 4902 (2019).

    Article  Google Scholar 

  28. Hill, M. C. et al. Integrated multi-omic characterization of congenital heart disease. Nature 608, 181–191 (2022).

    Article  CAS  Google Scholar 

  29. Smillie, C. S. et al. Intra- and Inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730 (2019).

    Article  CAS  Google Scholar 

  30. Zhang, F. & Lupski, J. R. Non-coding genetic variants in human disease. Hum. Mol. Genet 24, R102–R110 (2015).

    Article  CAS  Google Scholar 

  31. Dimitriu, M. A., Lazar-Contes, I., Roszkowski, M. & Mansuy, I. M. Single-cell multiomics techniques: from conception to applications. Front. Cell Dev. Biol. 10, 854317 (2022).

    Article  Google Scholar 

  32. Wang, S. K. et al. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. Cell Genom. 2, 100164 (2022).

    Article  CAS  Google Scholar 

  33. Ashton, J. J. et al. Identification of variants in genes associated with single-gene inflammatory bowel disease by whole-exome sequencing. Inflamm. Bowel Dis. 22, 2317–2327 (2016).

    Article  Google Scholar 

  34. Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022).

    Article  CAS  Google Scholar 

  35. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    Article  CAS  Google Scholar 

  36. Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  37. Conde, C. D. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

  38. Suo, C. et al. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

  39. Bolton, C. et al. An integrated taxonomy for monogenic inflammatory bowel disease. Gastroenterology 162, 859–876 (2022).

    Article  CAS  Google Scholar 

  40. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  Google Scholar 

  41. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, (2022).

  42. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508 (2019).

    Article  CAS  Google Scholar 

  43. Mostafavi, S. et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat. Neurosci. 21, 811–819 (2018).

    Article  CAS  Google Scholar 

  44. Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    Article  CAS  Google Scholar 

  45. Schupp, J. C. et al. Integrated single-cell atlas of endothelial cells of the human lung. Circulation 144, 286–302 (2021).

    Article  CAS  Google Scholar 

  46. Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).

  47. Vickovic, S. et al. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. Commun. Biol. 5, 129 (2022).

    Article  CAS  Google Scholar 

  48. Marshall, J. L. et al. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 25, 104097 (2022).

    Article  CAS  Google Scholar 

  49. Wu, H. et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 34, 1064–1078 (2022).

    Article  CAS  Google Scholar 

  50. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of alzheimer’s disease. Cell 169, 1276–1290 (2017).

    Article  CAS  Google Scholar 

  51. Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683 (2020).

    Article  CAS  Google Scholar 

  52. Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).

  53. Petukhov, V. et al. Case–control analysis of single-cell RNA-seq studies. Preprint at biorXiv https://doi.org/10.1101/2022.03.15.484475 (2022).

  54. Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat. Biotechnol. 40, 1467–1477 (2022).

  55. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01467-z (2022).

  56. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

    Article  CAS  Google Scholar 

  57. Bischoff, P. et al. Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene 40, 6748–6758 (2021).

    Article  CAS  Google Scholar 

  58. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997 (2018).

    Article  CAS  Google Scholar 

  59. Yang, R. et al. Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. Genome Biol. 21, 2 (2019).

    Article  Google Scholar 

  60. Mathewson, N. D. et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298 (2021).

    Article  CAS  Google Scholar 

  61. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765 (2017).

    Article  CAS  Google Scholar 

  62. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 (2020).

    Article  CAS  Google Scholar 

  63. Jerby-Arnon, L. et al. Opposing immune and genetic mechanisms shape oncogenic programs in synovial sarcoma. Nat. Med 27, 289–300 (2021).

    Article  CAS  Google Scholar 

  64. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752 (2021).

    Article  CAS  Google Scholar 

  65. Timperi, E. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82, 3291–3306 (2022).

    Article  CAS  Google Scholar 

  66. Pradhan, R. N., Krishnamurty, A. T., Fletcher, A. L., Turley, S. J. & Müller, S. A bird’s eye view of fibroblast heterogeneity: a pan‐disease, pan‐cancer perspective. Immunol. Rev. 302, 299–320 (2021).

    Article  CAS  Google Scholar 

  67. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459 (2021).

    Article  CAS  Google Scholar 

  68. Li, R. et al. Multi-regional characterisation of renal cell carcinoma and microenvironment at single cell resolution. Preprint at biorXiv https://doi.org/10.1101/2021.11.12.468373 (2021).

  69. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648 (2021).

    Article  CAS  Google Scholar 

  70. Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  Google Scholar 

  71. Obradovic, A. et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 184, 2988–3005 (2021).

    Article  CAS  Google Scholar 

  72. Hwang, W. L. et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat. Genet. 54, 1178–1191 (2022).

    Article  CAS  Google Scholar 

  73. Sfakianos, J. P. et al. Epithelial plasticity can generate multi-lineage phenotypes in human and murine bladder cancers. Nat. Commun. 11, 2540 (2020).

    Article  CAS  Google Scholar 

  74. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    Article  CAS  Google Scholar 

  75. Young, M. D. et al. Single cell derived mRNA signals across human kidney tumors. Nat. Commun. 12, 3896 (2021).

    Article  CAS  Google Scholar 

  76. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 181, 747 (2020).

    Article  CAS  Google Scholar 

  77. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 176, 404 (2019).

    Article  CAS  Google Scholar 

  78. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer–immunity cycle. Immunity 39, 1–10 (2013).

    Article  Google Scholar 

  79. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935 (2022).

    Article  CAS  Google Scholar 

  80. Nathan, A. et al. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature 606, 120–128 (2022).

    Article  CAS  Google Scholar 

  81. Perez, R. K. et al. Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  CAS  Google Scholar 

  82. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    Article  CAS  Google Scholar 

  83. Weitz, P. et al. Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks. Bioinformatics 38, 3462–3469 (2022).

    Article  CAS  Google Scholar 

  84. Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 53, 1698–1711 (2021).

    Article  CAS  Google Scholar 

  85. Schiller, H. B. et al. The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am. J. Resp. Cell Mol. 61, 31–41 (2019).

    Article  CAS  Google Scholar 

  86. Dyring-Andersen, B. et al. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 11, 5587 (2020).

    Article  CAS  Google Scholar 

  87. Sinjab, A. et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion single-cell sequencing. Cancer Discov. 11, 2506–2523 (2021).

    Article  CAS  Google Scholar 

  88. Datar, I. et al. Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non–small cell lung cancer using spatially resolved and multiparametric single-cell analysis. Clin. Cancer Res. 25, 4663–4673 (2019).

    Article  CAS  Google Scholar 

  89. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article  Google Scholar 

  90. Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503–509 (2015).

    Article  CAS  Google Scholar 

  91. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  Google Scholar 

  92. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    Article  CAS  Google Scholar 

  93. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  Google Scholar 

  94. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  CAS  Google Scholar 

  95. Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    Article  CAS  Google Scholar 

  96. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).

    Article  CAS  Google Scholar 

  97. Han, L. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022).

    Article  CAS  Google Scholar 

  98. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  Google Scholar 

  99. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661 (2021).

    Article  CAS  Google Scholar 

  100. Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251 (2020).

    Article  CAS  Google Scholar 

  101. Bielecki, P. et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature 592, 128–132 (2021).

    Article  CAS  Google Scholar 

  102. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    Article  CAS  Google Scholar 

  103. Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).

    Article  CAS  Google Scholar 

  104. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    Article  CAS  Google Scholar 

  105. Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    Article  CAS  Google Scholar 

  106. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  CAS  Google Scholar 

  107. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575 (2022).

    Article  CAS  Google Scholar 

  108. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 1516 (2019).

    Article  CAS  Google Scholar 

  109. Ursu, O. et al. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat. Biotechnol. 40, 896–905 (2022).

  110. Jin, X. et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science 370, eaaz6063 (2020).

    Article  CAS  Google Scholar 

  111. Paulsen, B. et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268–273 (2022).

    Article  CAS  Google Scholar 

  112. Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).

    Article  CAS  Google Scholar 

  113. McFarland, J. M. et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11, 4296 (2020).

    Article  CAS  Google Scholar 

  114. Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).

    Article  CAS  Google Scholar 

  115. Lotfollahi, M. et al. Learning interpretable cellular responses to complex perturbations in high-throughput screens. Preprint at https://doi.org/10.1101/2021.04.14.439903 (2021).

  116. Roohani, Y., Huang, K. & Leskovec, J. GEARS: pedicting transcriptional outcomes of novel multi-gene perturbations. Preprint at biorXiv https://doi.org/10.1101/2022.07.12.499735 (2022).

  117. Bock, C. et al. The organoid cell atlas. Nat. Biotechnol. 39, 13–17 (2021).

    Article  CAS  Google Scholar 

  118. Manno, G. L. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–5802016).

    Article  Google Scholar 

  119. Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

    Article  CAS  Google Scholar 

  120. Fleck, J. S. et al. Inferring and perturbing cell fate regulomes in human cerebral organoids. Nature https://doi.org/10.1038/s41586-022-05279-8 (2022).

  121. Holloway, E. M. et al. Mapping development of the human intestinal niche at single-cell resolution. Cell Stem Cell 28, 568–580 (2021).

    Article  CAS  Google Scholar 

  122. Mead, B. E. et al. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat. Biomed. Eng. 6, 476–494 (2022).

    Article  CAS  Google Scholar 

  123. Beumer, J. et al. High-Resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 181, 1291–1306 (2020).

    Article  CAS  Google Scholar 

  124. Todd, L. et al. Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep. 37, 109857 (2021).

    Article  CAS  Google Scholar 

  125. Hoang, T. et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science 370, eabb8598 (2020).

    Article  CAS  Google Scholar 

  126. Freimer, J. W. et al. Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks. Nat. Genet. 54, 1133–1144 (2022).

  127. Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786 (2022).

    Article  CAS  Google Scholar 

  128. Schumann, K. et al. Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nat. Immunol. 21, 1456–1466 (2020).

    Article  CAS  Google Scholar 

  129. Bai, Z. et al. Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells. J. Immunother. Cancer 9, e002328 (2021).

    Article  Google Scholar 

  130. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  Google Scholar 

  131. Majumder, P. P., Mhlanga, M. M. & Shalek, A. K. The Human Cell atlas and equity: lessons learned. Nat. Med 26, 1509–1511 (2020).

    Article  CAS  Google Scholar 

  132. Majumder, P. et al. How to ensure the Human cell atlas benefits humanity. Nature 605, 30–30 (2022).

    Article  CAS  Google Scholar 

  133. Chung, H. et al. SnFFPE-Seq: towards scalable single nucleus RNA-seq of formalin-fixed paraffin-embedded (FFPE) tissue. Preprint at biorXiv https://doi.org/10.1101/2022.08.25.505257 (2022).

  134. Vallejo, A. F. et al. snPATHO-seq: unlocking the FFPE archives for single nucleus RNA profiling. Preprint at biorXiv https://doi.org/10.1101/2022.08.23.505054 (2022).

  135. Rood, J. E. & Regev, A. The legacy of the human genome project. Science 373, 1442–1443 (2021).

    Article  CAS  Google Scholar 

  136. Simmons, S. K. et al. Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01452-6 (2022).

  137. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00515-3 (2022).

  138. Teichmann, S. & Regev, A. The network effect: studying COVID-19 pathology with the Human Cell Atlas. Nat. Rev. Mol. Cell Bio. 21, 415–416 (2020).

    Article  CAS  Google Scholar 

  139. Zou, X. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med.14, 185–192 (2020).

    Article  Google Scholar 

  140. Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Co. 526, 135–140 (2020).

    Article  CAS  Google Scholar 

  141. Lukassen, S. et al. SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39, e105114 (2020).

    Article  CAS  Google Scholar 

  142. Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 27, 892–903 (2021).

    Article  CAS  Google Scholar 

  143. Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).

    Article  CAS  Google Scholar 

  144. Fullard, J. F. et al. Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19. Genome Med. 13, 118 (2021).

    Article  CAS  Google Scholar 

  145. Rendeiro, A. F. et al. The spatial landscape of lung pathology during COVID-19 progression. Nature 593, 564–569 (2021).

    Article  CAS  Google Scholar 

  146. Pujadas, E. et al. Molecular profiling of COVID-19 autopsies uncovers novel disease mechanisms. Am. J. Pathol. 191, 2064–2071 (2021).

    Article  CAS  Google Scholar 

  147. Ziegler, C. G. K. et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell 184, 4713–4733 (2021).

    Article  CAS  Google Scholar 

  148. Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 184, 1895–1913 (2021).

    Article  CAS  Google Scholar 

  149. Bernardes, J. P. et al. Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity 53, 1296–1314 (2020).

    Article  CAS  Google Scholar 

  150. Fischer, D. S. et al. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’. Nat. Commun. 12, 4515 (2021).

    Article  CAS  Google Scholar 

  151. Trump, S. et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat. Biotechnol. 39, 705–716 (2021).

    Article  CAS  Google Scholar 

  152. Scheid, J. F. et al. B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell 184, 3205–3221 (2021).

    Article  CAS  Google Scholar 

  153. Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

    Article  CAS  Google Scholar 

  154. Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).

    Article  CAS  Google Scholar 

  155. Arunachalam, P. S. et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 596, 410–416 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is part of the Human Cell Atlas. A.M. and S.A.T. acknowledge core funding from Wellcome (grants 206194 and 108413/A/15/D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah A. Teichmann or Aviv Regev.

Ethics declarations

Competing interests

A.R. is a co-founder and equity holder of Celsius Therapeutics, an equity holder in Immunitas Therapeutics and, until 31 July 2020, was a scientific advisory board member of Thermo Fisher Scientific, Syros Pharmaceuticals, Asimov and Neogene Therapeutics. From 1 August 2020, A.R. is an employee of Genentech and has equity in Roche. A.R. is a named inventor on multiple patents related to single-cell and spatial genomics filed by or issued to the Broad Institute. J.E.R. and A.H. are employees of Genentech and have equity in Roche. In the past three years, S.A.T. has consulted or been a member of scientific advisory boards at Roche, Genentech, Biogen, GlaxoSmithKline, Qiagen and ForeSite Labs, and is an equity holder of Transition Bio.

Peer review

Peer review information

Nature Medicine thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rood, J.E., Maartens, A., Hupalowska, A. et al. Impact of the Human Cell Atlas on medicine. Nat Med 28, 2486–2496 (2022). https://doi.org/10.1038/s41591-022-02104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-022-02104-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research